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ON SEQUENTIAL OPTIMALITY THEOREMS FOR CONVEX
OPTIMIZATION PROBLEMS

JAE HYOUNG LEE AND GUE MYUNG LEE*

ABSTRACT. In this paper, we give two kinds of sequential optimality theorems
for a convex optimization problem, which are expressed in terms of sequences of
e—subgradients and subgradients of involved functions. The involved functions
of the problem are proper, lower semicontinuous and convex. We give sufficient
conditions for the closedness of characterization cones for the problem. Moreover,
we characterize the solution set for the problem. Several numerical examples are
presented to illustrate results.

1. INTRODUCTION

Consider the following convex programming problem
(CP) min f(x)
st. gi(x) 20, 1=1,...,m,

where R = [~o0,+oc] and f, g; : R® = R, i = 1,...,m, are proper lower semi-
continuous convex functions.

Recently, new sequential Lagrange multiplier conditions characterizing optimality
without any constraint qualification for convex programs were presented in terms
of the subgradients and the e—subgradients ([8,9,12]). It was also shown how
the sequential conditions are related to the standard Lagrange multiplier condition
(19,12]).

The characterization of the solution set of all optimal solutions of optimization
problems is very important for understanding the behavior of solution methods for
optimization programming problems that have multiple solutions ([3,4,10, 11,13,
15]). Recently, various characterizations of the solution set of the convex optimiza-
tion problem have been developed ([3,7,13]).

In this paper, we give two kinds of sequential optimality theorems for a convex
optimization problem, which are expressed in terms of sequences of e—subgradients
and subgradients of involved functions. The involved functions of the problem are
proper, lower semi-continuous and convex functions. We give sufficient conditions
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for the closedness of characterization cones related to constraint qualifications for the
problem. Moreover, we give a characterization of the solution set for the problem.
The paper is organized as follows: in Section 2, some basic definitions and pre-
liminary results are given. In Section 3 and 4, we establish two kinds of sequential
optimality theorems for a convex optimization problem. In Section 5, we give suffi-
cient conditions for the closedness of a characteristic cone. In Section 6, we give a
characterization of the solution sets for the convex optimization problem.

2. PRELIMINARIES

Let us first recall some notations and preliminary results which will be used
throughout this thesis.

R™ denotes the n-dimensional Euclidean space. The nonnegative orthant of R™ is
defined by R} := {(z1, -+ ,2,) € R" : &; 2 0}. The inner product in R" is defined
by (z,y) := xTy for all z,y € R". We say that a set A in R” is convex whenever
par + (1 — p)ag € A for all p € [0,1], ar, a2 € A.

Let f be a function from R™ to R, where R = [—o00,+00]. Here, f is said to be
proper if for all z € R™, f(x) > —oc and there exists xp € R™ such that f(xg) € R.
We denote the domain of f by domf, that is, domf := {x € R" | f(x) < +o0}.
The epigraph of f, epif, is defined as epif := {(z,7) € R"" xR | f(x) £ r}, and f is
said to be convex if epif is convex. The function f is said to be concave whenever
—f is convex.

Let f: R™ — RU{+o0} be a convex function. The subdifferential of f at z € R”
is defined by

o — {x*eR”](x*,y—a:>§f(y)—f(a:), VyERn}, if.I'EdOmf,
fla) = 0, otherwise.

More generally, for any € = 0, the e-subdifferential of f at z € R™ is defined by

_ {‘T* € R" ‘ <$*,y—$> S f(y) —f(CC)-f-G, VyE]Rn}, ifﬂ?GdOmf7
Oef(x) = { 0, otherwise.

We say that f is a lower semicontinuous function if liminf, . f(y) 2 f(z) for all
r € R™

As usual, for any proper convex function g on R", its conjugate function ¢g* : R" —
R U {400} is defined by ¢*(z*) = sup {(z*,z) — g(z) | x € R"} for any z* € R".

For a given set A C R", we denote the closure, the convex hull, and the conical
hull generated by A, by clA, coA, and coneA, respectively. The indicator function

04 is defined by
5a(x) ::{O, x €A,

400, otherwise.

The following proposition, which describes the relationship between the epigraph
of a conjugate function and the e-subdifferential and plays a key role in deriving the
main results, was recently given in [5].
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Proposition 2.1 ([5]). If f : R" — RU {400} is a proper lower semicontinuous
convez function and if a € domf, then

epif* = [ J{(v, (v,a) + €= f(a)) | v € Def(a)}.

€20

Proposition 2.2 ([6]). Let f,g: R" — RU {400} be proper lower semicontinuous
convex functions. If dom f Ndom g # (), then
epi(f +g)" = cl(epif” + epig”).
Moreover, if one of the functions f and g is continuous, then
epi(f +g)" = epif” + epig”.
We recall a version of the Brondsted-Rockafellar theorem which was established
in [14].

Proposition 2.3 ([1,14, Brondsted-Rockafellar Theorem]). Let f : R" — RU{+4o00}
be a proper lower semi-continuous convex function. Then for any real number e > 0
and any x* € 0. f(Z) there exist xc € R™, x¥ € 0f(x¢) such that

e — 2 < Ve, llet " < Ve and |f(xd) — iz~ 7) — F(@)] < 2.

3. SEQUENTIAL OPTIMALITY THEOREMS I

Now we give sequential optimality theorems for (CP), which are expressed se-
quences of epsilon subgradients of involved functions. The involved functions of the
problem are proper, lower semi-continuous and convex functions.

Theorem 3.1. Let f, g : R®" = R, i = 1,...,m, be proper lower semi-continuous
convez: functions. Let A :={x € R" : g;() £0, i=1,...,m} #0 and let T € A.
Assume that ANdomf # (). Then the following statements are equivalent:

(i) & is an optimal solution of (CP);
(ii) there exist 6 = 0, y 2 0, AF 2 0, i = 1,...,m, & € 95, f(7), ¢ €
Oy, (Zﬁ1 )\fgz)(i) such that

kli_{go(ik +Ck) =0, (0 +v) =0

lim
k—00

li *9:)(Z) = 0.
and  lim (;Algz)(w) 0

Proof. Assume that Z is an optimal solution of (CP). It means that f(z) = f(Z)
for any = € A, that is,

F@) +8a(2) 2 F(2) +8a(2), Vo € R
Since (0,z) — (f(x) +da(x)) £ (0,2) — (f(Z) + 04(Z)), for any x € R",
(f+04)°(0) = =(f(z) +6a(2)) = —f(2).

It means that
(0, —f(z)) € epi(f +da)"
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From Proposition 2.2, equivalently,
(3.1) (0, —f(x)) € cl(epif* + epidy).
Since epidy = cllUy >oepi(D i, Aigi)*, from (3.1),
(0,—f(2)) € clepif* +cl | epi(>_ Xigi)*)
20 =l
Since cl(epif* + clU,, 20 ePi(2 10, Aigi)*) = cl(epif” + Uy, 20 ePi(2o1%1 Aigi)™), we

have,

(0,—£(@)) € cllepif* + | epi(> hige)®)

Nz0 =l

By Proposition 2.1, we see that
(32) (0,—f(2) € A J{(& (&) +e— f(2) | £ €0:f(2)}

€20

F GG +e =D Xigi(@) | ¢ € 0.0 Xigi)(2)})

€0 i=1 i=1
From (3.2), we see that there exist dx = 0, vx = 0, Af 20,4 = 1,...,m, & €
05, f(Z), G € 0, (30721 Af9i) (%) such that (&, (€, %) + 0 — (i“)) + (Ck, (Ck, T) +
i — S AFgi(7)) — (0, —f()) as k — oo. Since Afg;(z) £0,i=1,...,m, there
exist 0 = 0, 7 = 0, )\f” 20,i=1,...,m, & € 05, f(Z), (k; (Zm )\k i) (Z)

such that
lim (& + (k) =0, lim () +v) =0
k—o00 k—oo

. k() —
and klggo(Z)\zgl)(m) 0.

i=1
O
Now we give an example illustrating Theorem 3.1:
zlogz, x>0,
Example 3.2. Let f(z) = 0, =0, and g(zr) = max{0,z}. Then

400, <0

f*(y) = ev~! for all y € R and g*(y) = 0, 0=y=1, So, epif* = {(y,«a) €
400, otherwise. ’ ’

R xR : e ! < a}and Jysoepi(Ag)* = R2. Hence, we see that epif* and
Ussp epi(Ag)* are closed. However, epif* + Usspepi(Ag)* = R x (0,+00) is not
closed.
Now we consider the following convex optimization problem (CP);
(CP)1 min  f(z)
st. g(z) £0.
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Then the feasible set of (CP); is (—00,0]. So, we can easily see that £ = 0 is an
optimal solution of (CP);. For each k € N, if we take 6, = e % > 0, 7, = % >0
and \F = k — 1 > 0, then we can easily calculate that
05, f() = (—o00,logdy + 1] = (—o0,—k+1] and
0y (N'g)(@) = [0,A"] =10,k —1].

Let & = —k+ 1€ 95, f(Z) and ¢ = k — 1 € 0, (\*g)(Z). Then we can easily see
that

lim (§ + (k) =0, lim (6 +) =0
k—o0 k—o00
and  lim (\*g)(z) = 0.
k—o0
Thus, Theorem 3.1 holds.

Theorem 3.3. Let f, g;: R®" = R, i = 1,...,m, be proper lower semi-continuous
convez functions. Let A :={x € R" : g;() £0, i=1,...,m} #0 and let T € A.
Assume that ANdomf # (). Assume that epif* + cl U0 epi(3oit Nigi)* is closed.
Then the following statements are equivalent: -

(i) z is an optimal solution of (CP);
(ii) there emist vy 20, \F =2 0,i=1,...,m, £ € 0f(Z), ¢ € 0, (O, N\egi)(7)
such that

. . . i . ko V() —
§+ klin;o =0, klin;o v, = 0 and klin;o(; A gi)(Z) = 0.
Proof. Assume that Z is an optimal solution of (CP). It means that f(z) = f(Z)
for any x € A, that is,
F(@) + 6a(x) 2 f(2) +6a(2), Vi € R
Since (0,z) — (f(z) + da(z)) < (0,z) — (f(Z) + 04(Z)), for any x € R,
(f +04)°(0) = =(f(Z) +0a(2)) = —f ().
It means that
(0, —f(x)) € epi(f +da)".
From Proposition 2.2, equivalently,
(3.3) (0, —f(x)) € cl(epif” + epidy).
Since epid} = cllJy. > epi(D i, Aigi)*, from (3.3),
(0, = f(x)) € cl(epif” +cl | epi(> Nigi)*)
N0 i=1
Since epif* + clU,,>0 epi(D_i2; Aigi)* is closed,
(0,—f(2)) € epif* +cl | J epi(d_ Xigi)*

A0 i=1
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By Proposition 2.1, we see that

B4)0,~f(@) € (& (&) +e—f(@) | E€0f(@)}

€20

T LG T + e~ 3 Mgi(@) | €€ 04> Migh)(@)))

0 i=1 i=1

From (3.4), we see that there exist 6 = 0, v, = 0, )\f >20,i=1,....,m, £ €
05 (7). G € Oy, () Mbgi)(®) such that (€,(€,7) + 0 — F(2)) + (G (G 7) +
i — S Argi(2)) = (0,—f(z)) as k — oco. Since /\fgi(iﬁ) <0,i=1,...,m,
equivalently, there exist § = 0, 7% = 0, A¥ 2 0, i = 1,....m, £ € 05f(%),

C € 04, (527, AFg;)(Z) such that

li = li - *9:)(Z)) = 0.
¢+ lim G =0and lim (5 +, (; Xgi)(T)) =0
Since § = 0, v, = 0 and — (31", \eg:)(z) = 0, we have § = 0 and limg_,o0(% —

=19

Oy Af )(Z)) = 0. Thus, we obtain the desired result. O

Now we give an example illustrating Theorem 3.3:

Va2+1, 20,

_ 1.2 * —
oo, 20 and g(z) = 5z°. Then f*(y)

Example 3.4. Let f(z) = {

y <0,
\/1—y2 0<y <1, andg*(y) = 3y forally € R. So, epif* = {(y,a) € Rx
+00, y>1

R:—y/1-y*=a, 0=y =1}U(-00,0)x[~1,00) and [y epi(Ag)* = Rx (0, 00)U
{0} x Ry. Hence epif* 4+ ysqepi(Ag)* = (—00,0] x [=1,00) U (0,00) x (=1, 00) is
not closed. But, we can easily see that epif* + cl U,\;o epi(Ag)* = R x [-1,00) is
closed.
Now we consider the following convex optimization problem (CP)q
(CP)y min f(x)
st.  g(x) =0.

Then the feasible set of (CP)s is {0}. So, we can easily see that £ = 0 is an optimal

solution of (CP)s. For each k € N, if we take v, = 2k2 >0and N =k —120,
then we can easily calculate that

0f() = (~o0,0] and
By (Wg)(T) = [—V27AE, W]:[—\/%, \/‘%

Let £ =0€ 0f(x) and ( = — % € 9, (\*g)(z). Then we can easily see that
£+ kli}n;o =0, kli_)ngofyk =0 and lim (\*g)(z) = 0.

k—o00

Thus, Theorem 3.3 holds.
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Theorem 3.5. Let f, g;: R® - R, i =1,...,m, be proper lower semi-continuous
convex functions. Let A = {z € R" : g;(x ) < O i=1,...,m} #0 and let T € A.
Let Andomf # ). Assume that epif* + >0 epl(z )\19@)* is closed. Then the

following statements are equivalent:
(i) @ is an optimal solution of (CP);
(ii) there exist \; 20, i =1,...,m, such that

0eaf(z —i—@i )(Z) and iﬂigi(i’)zo.

Proof. Assume that T is an optimal solution of (CP). It means that f(z) = f(%)
for any x € A, that is,

f(x) +da(zx) 2 f(Z) +0a(Z), Vo € R™.
Since (0,z) — (f(z) + 6a(x)) = (0,2) — (f(Z) + 04(Z)), for any = € R™,
(f +04)"(0) = =(f(Z) + 6a(2)) = —f(2).
It means that
(0, =f(%)) € epi(f +04)".
From Proposition 2.2, equivalently,
(3.5) (0, —f(Z)) € cl(epif™ + epidy).
Since epid}y = cllJy > epi(D i, Aigi)*, from (3.5),

(3.6) (0, 1(2)) € el(epis* + 1 | epi(> higi)")

nNz0 =1

Since cl(epif* + clUy, >0 ePi(D % Aigi)*) = cl(epif* + U,, >0 epi(Q_i%; Aigi)*) and
epif* + Uy.>0 epi(3 it Aigi)* is closed, (3.6) is equivalent to the condition that

0,—f(@)) €epif* + (J epi>_ Xigs)*

Ai=0 i=1

By Proposition 2.1, we see that
(37 0,—f(@) € (J{& &) +5— (@) | €osf(m)}

620

UG Gm +7 =3 @) | €€ 0y hu(@)}

420 i=1 i=1

From (3.7), we see that there exist _52 720, N\ 2 0,i=1,...,m, ¢ € 05f(%),
CG@&(Z%&QZ)( ) such that (&, (€, ) +0 — f(2)) +((, (¢, Z) +7 — ZZ 1 Aigi(T)) =
(0,—f(z)) ie., E+¢ =0and § +7 (Z”il g )( )—0 Since \;gi(z) < 0,
i=1,...,m, equlvalently, there exist 5\ >0,i=1,...,m, such that

0cof(z +8Z>\Zgz )(2) and Z/\zgz =



162 J. H. LEE AND G. M. LEE

Now we give an example illustrating Theorem 3.5:
zlogx, x>0,
Example 3.6. Let f(z) = 0, =0, and g(z) = 322 — 1. Then f*(y) =
400, <0
ev~! for all y € R and ¢*(y) = %y2 + 1 for all y € R. So, epif* = {(y,a) €
RxR:e ! < a} and Uasoepi(Ag)® = {(y,a) € R xR : |y| = a}. Hence
epif* + UyzoepiAg)* = {(y,a) e RxR: eV ' S a, y S 1} U{(y,0) e RxR:
ly| < a, y > 1} is closed.
Now we consider the following convex optimization problem (CP)s3
(CP)3 min f(z)
st.  g(x) =0.
Then the feasible set of (CP)3 is [—\/5, \/5] So, we can easily see that T
an optimal solution of (CP)3. Moreover, we can easily see that 0f(z) =
O(Ag)(z) = {Ae~1}. If we take A = 0, then we have
0 € df(z)+0(\g)(z) and Ag(z) = 0.
Thus, Theorem 3.5 holds.

e 1is

{0} and

Remark 3.7. Theorem 3.5 can be regarded as one which is sharper than Theorem
4.2 in [2] in the case that the involved geometric set is empty.

Now we give an example illustrating that the Slater condition may not imply the
closedness of the set epif* + [, > epi(D ;% Aigi)*.

zlogx, x>0,
Example 3.8. Let f(x) = 0, z =0, and g(z) =x(zx+1). Clearly, Slater
400, x<0
condition holds. f*(y) = e¥~! for all y € R and g*(y) = (y;1)2 for all y € R. So,
epif* = {(y,0) € RxR:e? ! < a} and Uysgepi(Ag)* = {(y,0) ERxR:y =
o, y < 0} URZ. Hence epif* + [Jy>oepi(Ag)* = R x (0,+00) is not closed.

4. SEQUENTIAL OPTIMALITY THEOREMS II

By using Proposition 2.3(a version of Brondsted-Rockafellar Theorem) and The-
orem 3.1, we can obtain the following sequential optimality theorem for (CP) which
involve only the subgradients at nearby points to a minimizer of (CP). So the sequen-
tial optimality condition in Theorem 3.1 is different from the one in the following
theorem. However, we omit the proof of the following theorem:

Theorem 4.1. Let f, g;: R* - R, i =1,...,m, be proper lower semi-continuous
convex functions. Let A :={x € R": g;(x) £0, i=1,...,m} # 0 and let T € A.
Assume that ANdomf # (). Then the following statements are equivalent:
(i) z is an optimal solution of (CP);
(ii) there evistz, € R", \E > 0,i=1,...,m, &, € Of (zx), (1 € oo, Megi) ()
such that

lim zp =z, lim (& + () =0,
k—o0 k—oo
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m
. k _
and T | f(xx) + (3 Afg:)(wx) — f(2)] =0.
k—o00 i1

Now we give an example illustrating Theorem 4.1:

Example 4.2. Consider the following convex optimization problem (CP);

(CP)1 min  f(z)
st.  g(z) =0,
zlogz, x>0,
where f(z) = 0, =0, and g(z) = max{0,z}. Then the feasible set of
400, <0
(CP); is (—00,0]. So, we can easily see that = 0 is an optimal solution of (CP);.
For each k € N, if we take 2 = e % and \F = k—1 > 0, then we can easily calculate
that

Of(xzr) = (—oo,logzy + 1] = (—o0,—k +1] and
O(N'g)(xr) = {k—1}.

Let & = —k +1 € Of(xy) and ¢ = k — 1 € (\g)(x). Then we can easily see
that

lim z;, = lim e~

F=0==2, lim(&+ )=
k—o00

k—o0 k—o0
and  lim [ f(wy) + (\g)(i) = f(@)| = lim (=) = 0.

Thus, Theorem 4.1 holds.

By using Proposition 2.3 and Theorem 3.3, we can obtain the following sequential
optimality theorem for (CP). The sequential optimality condition in Theorem 3.3 is
different from the one in the following theorem. We omit the proof of the following
theorem:

Theorem 4.3. Let f, gi: R* - R, i =1,...,m, be proper lower semi-continuous
convez functions. Let A :={x € R" : gj(x) £0, i =1,...,m} # 0 and let T € A.
Assume that ANdomf # 0 and

n
epif* +cl U epi(z Xigi)*
A20 =l

is closed. Then the following statements are equivalent:

(i) & is an optimal solution of (CP); B )
(ii) there existx € R, A\F 2 0,i=1,...,m, £ € 0f(), {x € O 12, Argi)(wg)
such that

li =7z, £+ lim § = d li kg =0.
Jim =7, {+ lim G =0 an kingo(;&g)(f%) 0

Now we give an example illustrating Theorem 4.3:
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Example 4.4. Consider the following convex optimization problem (CP)s
(CP)y min f(x)
st.  g(x) =0,
2+1, =0,
400, xz <0
is {0}. So, we can easily see that z = 0 is an optimal solution of (CP)s. For each
k € N, if we take z;, = k—g and \F =k —1 > 0, then we can easily calculate that
df(z) = (—o00,0] and
k—1
ONeg)(z) = {Noap} = {kg} :

Let £ =0 € 0f(xx) and (; = % € d(\¥g)(zx). Then we can easily see that

where f(x) = and g(z) = $22. Then the feasible set of (CP),

Im 2, =0=2zZ, £+ lim ( =0
k—o00

k—o00
and (Ng)(zx) = 0.

lim
k—o0
Thus, Theorem 4.3 holds.

5. CLOSEDNESS OF CHARACTERIZATION CONES

The set [Jy, >0 epi(D ;=1 Aigi)* is called the characterization cone of (CP). Closed-
ness of the set is important in Theorem 3.5 since the set is related to the constraint
qualification for (CP) ( [9]). Now we give sufficient conditions for the set to be
closed.

Proposition 5.1. Let f : R®" - R and g; : R® — R, ¢ = 1,...,m be convex
functions. Let A:={x € R":g;(z) =0, i=1,...,m} #0 and let T € A. Assume
that h : R™ — R is a positive homogeneous convex function such that g* = h and
0 ¢ Oh(0). Then

A= U epi(A\g)* = U epi(Ag)* U {0} x R4
A>0 A>0

1s closed.

Proof. Since g* = h and h is a positive homogeneous convex function,
(5.1) epig® C epih = 0h(0) x Ry

Let {(vg, )} be a sequence in the set A such that (vg,ar) — (v*,a*) as k —
oo. If (vg,ar) € {0} x Ry infinitely, (v*,a*) € {0} x Ry. Now we assume that
{(vg, o)} € Uyspepi(Ag)* and v* # 0. Then there exist Ay, > and (wy, Bx) € epig”
such that (vg,ar) = Ag(wg, Br). Since wi € Oh(0) (from (5.1)), Oh(0) is compact
and 0 ¢ 0h(0), we may assume that wy, — w* # 0 as k — oo. If Ay — +o0, then
Apwg can not converges to v*. So, we may assume that A\ — \*(# 0) as k — oc.

ArBr—a*
Ak

Since limy,_, oo =0, limy_yo0 B = %* Since (wg, Bx) € epig* and g* is lower

semicontinuous,
. .. a*
9" (w?) < liminf g"(wy,) < liminf By = =,
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*

and so (w ,)\*) € epig*, that is, (\*w*,a*) € Aepig*. Hence (v*,a*) € \*epig*.
Thus A is closed. O

Proposition 5.2. Let g : R®™ — R be a positive homogeneous conver function
which is separable, that is , g(z) = Y /", gi(x;), where g; : R — R is a function,
i=1,2,...,m. Assume that g;(0) =0, i =1,2,...,m. Then |Jy>¢(Ag)* is closed.

Proof. Since g is positive homogeneous convex and separable, we see that

| epi(Ag)*

A0

= U Aepig® U {0} x R4
A>0

= J A(@g(0) x Ry) U {0} x Ry
A>0

- U A(0g1(0) X -+ x 9 (0) x Ry) U {0} x Ry
A>0

= J A91-(0), 914.(0)] x -+ x [g7,_(0), g1, (0)] x Ry) U {0} x Ry
A>0

= JMG1_(0). 91, (0)] x - x [g,_(0), g 4 (0)] X Ry)

A=0
={Mgi_(0)+ X191 (0)+++ XAl (0)F A (0) [\ 20, A; 20, i =1,...,m}.
Thus Uy>0(Ag)* is closed. O

Proposition 5.3. Let g; : R? = R, i = 1,2, be a function such that g; = max{agmi—k
bl :j=1,2},i=1,2. Let g = g1 + g2. Then Uazo epi(Ag)* is closed

Proof. Notice that (Jy>, epi(Ag)* = Uy>o Aepig” U {0} x R. Since g = g1 + g2 and
gi, t = 1,2, is a sublinear, we can easily see that

(5.2) epig” = epigy + epig;
Now, we will prove that
epig} = co{(al,0,—b1), (a?,0,—b3)} + {0} x R,
epng — CO{(O (12, )7 (07 (I%, b2)} + {0} X RJF
1

Since g; = max{a x; + b] j=1,2},i=1,2,

g;‘:(max (almz—i—bJ) cl(co( inf axi—&—bz)*)).
je{1,2} je{1,2}

Then we can easily see that

—b}, if&=al
Jinf (alwi + b)) (6, &) = —b7,  if & =a?
je{1,2} +o0, otherwise.
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So, we have

' . —albl —a?b?, if & =alal +aa?,
co(lirif2 (aga:i+bg)*(§1752)> = al,a? 20, af +a? =1
JE12} 400, otherwise.

Since co (infje{lvg}(agmi + bf)*) is lower semi-continuous,
gf =cl <co <j€igf2}(a§xi + b{)*)) = co <j€i{r52}(a§xi + b{)*) .
So, we have
epigi = co{(a1,0, =b), (a7, 0,—b})} + {0} x R
eplgék = CO{(07 CL%, _b%)v (07 a%v _b%)} + {0} X R'F'
Hence, from (5.2), we can easily see that

| epi(Ag)*

A20

= J A[co{(al, 0, —b}), (a2,0,—52)} + co{(0, ab, —bd), (0,a3, —b3)} + {0} x Ry ]
A>0
U{0} x Ry
= U A [CO{(G’L a%? _b% - b%)? (a%v CL%, _b% - bg)? (ai a%? _b% - b%)v (aia%? _b% - b%)}
A>0
+{0} x Ry]U{0} x Ry

2 2 2 2 m
_ J.J J.J Jrg JrJ J J _
=)\ E ajay, E anal, g alb] E ayby | o 20, E a; =1,
i=1 i=1 i=1 i=1

j=1
i,j=1,2,}U{0} x R,

6. SOLUTION SETS

Consider the following convex optimization problem of which objective function

is finite-valued convex functions:
(CP) min f(x)
st. zeA={zeR":gi(x)=0,i=1,...,m}

where f: R"™ — R is a convex function, and g; : R" - RU{+o0},i=1,2,...,m,
are proper, lower semicontinuous and convex functions.

Let S be the set of all optimal solutions for (CP). We assume that S # (). Let
z € S. Since the function f is continuous and epid’y = cllJy >oepi(D i, Aigi)*, it
follows from Proposition 2.3 that epi(f + d)* is closed and epi(f + 04)* = epif* +
clUy, 20 ePi(Q0i% Aigi)*. So it follows from Theorem 3.3 that there exist u € 9f (%),
(MY CRy, 6 20, 0 €0, (30, Arg;) () such that

w4 v — 0 as k — o0,
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er — 0 as k — oo,
m
. 3k N
and kl;ngo (;_l Aj gz> (z)=0

Using the above optimality conditions for € S, we can characterize the solution
set S as follows;

Theorem 6.1.
S = {x€A|likIgi£f<Z>\fgi>()—0 u € of(x), ' (xr—z) =0}

= {zeA|uedf(z), al(x—z) =0}

Proof. Let S1 = {z € A | liminfy 0o (311 AFgi) (z) = 0, @ € Of(x), u’ (x —
) = 0}. Let z € S. Then Y1 Mgi(z) < 0. Since u € 9f(z) and vy €
8% (Zz 1)\591)( ) we have

and hence,

So, we have

k—o0

Since Y7 | AFgi(2) 0, liminfy_,oo {D 10, AFgi(z)} = 0. So, we have
— liminf MNegi(z) b — i N gi(z
imin {; zg(fv)}Jr 1msup< ; zg(ﬂf))

k—o00
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AV
?v:
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8 E

=
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NE
>l
o
2
&
|
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&
——

V

1
2 liminf {0, (z — Z) — e}
= —u (x—7=).

Hence 0 < ! (x — Z). Since f is convex, @ € f(Z)and f(x) = f(Z). So,

0= f(x) — f(z) =2 " (z - 7).

Thus, we have @ (z — Z) = 0. Moreover, for any y € R",
fly) = f@) = fly)—f@)
= a'(y-1)
= al(y—2)+a (z—7)
= al(y—x).

Hence @ € 9f(x). So, S C Si.
Conversely, if z € Sy, then 2 € A, @ € 9f(Z) and 4’ (z — Z) = 0, and hence
f(@) — f(x) 2 ul(z —x) =0. So, x € S. Hence S; C S. O

Example 6.2. Let f(x,y) = z and g(x,y) = /22 + y2 —y. Consider the following
convex optimization problem:
(CP) min f(z,y)
st (z,y) € A= {(z,y) € R?* | g(x,y) £ 0}.
Then A = {(z,5) € R? | y 2 0, = = 0} and S = {(z,) € R |y 2 0, z = 0},
where S is the set of all optimal solutions of (CP). Let (z,y) = (0,1). For A > 0.
Then 9f(z,7) + A0g(z,7) = (1,0)T + M(&0,&)" — (0,1)7 | & + €& < 1}, and so,
0,007 € 0f(z,9) + A\dg(Z, 7). However, for any A > 0 and € > 0,
0e(Ag)(Z,7) = {(v1,v2) € R? [ 0] + (02 + N)? S A%, vp 2 —e}.

Let w = (1,0). For each k € N, we let ¢, = %, AL = %(k:—k %) +1 and v, =
(=1 —%,—%). Then vy € 9, (Mxg)(2,7), u+ vy — 0 as k — 0o, €, — 0 as k — 0o
and A\pg(Z,y) = 0. Moreover, we see that

{(z,y) € A| liminf (\eg) (2,y) =0, u € 0f(2,y), u' ((z,y) = (%,9)) = 0}
= {(z,y) € A| lig&f(%(k—k%)—kl)(\/ﬂ—ky? —y)=0, 2—z =0,y € R}

(
= {($7y)EA| Vx2+y2_y:07 J;:Oy yER}
{(z,y) e Az =0, y =0}

I
h

Hence Theorem 6.1 holds.
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Example 6.3. Let f(z,y) = { CC*?’er > i’ and g(z,y) = /22 +y? — =

Consider the following convex optimization problem:
(CP)  min  f(z,y)
st (z,9) € A= {(2,y) € R? | g(z,y) £ 0}.

Then A = {(z,y) €R? |2 20, y=0}and S = {(z,y) eR?2 |0z < 1, y = 0},
where S is the set of all optimal solutions of (CP). Let (z,y) = (1,0). Then
(Z,§) € S. Foreach k € N, we let e, = 1, Ay = 35(k+ %) +1and v = (—1,-1— ).
Then v, € 0, (Ag)(Z,y) k € N. Let u = (0,1). Then u € 9f(0,1). Moreover,
utvp —0as k — o0, ¢ — 0as k— oo and \yg(Z,y) =0, k € N. We have

= {(@z,y) €Al glz,y) =0, 251, y—y=0}

= {zyed|ld=z=1, y=0}

= S
Hence Theorem 6.1 holds.
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