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for the closedness of characterization cones related to constraint qualifications for the
problem. Moreover, we give a characterization of the solution set for the problem.

The paper is organized as follows: in Section 2, some basic definitions and pre-
liminary results are given. In Section 3 and 4, we establish two kinds of sequential
optimality theorems for a convex optimization problem. In Section 5, we give suffi-
cient conditions for the closedness of a characteristic cone. In Section 6, we give a
characterization of the solution sets for the convex optimization problem.

2. Preliminaries

Let us first recall some notations and preliminary results which will be used
throughout this thesis.

Rn denotes the n-dimensional Euclidean space. The nonnegative orthant of Rn is
defined by Rn

+ := {(x1, · · · , xn) ∈ Rn : xi = 0}. The inner product in Rn is defined

by ⟨x, y⟩ := xT y for all x, y ∈ Rn. We say that a set A in Rn is convex whenever
µa1 + (1− µ)a2 ∈ A for all µ ∈ [0, 1], a1, a2 ∈ A.

Let f be a function from Rn to R, where R = [−∞,+∞]. Here, f is said to be
proper if for all x ∈ Rn, f(x) > −∞ and there exists x0 ∈ Rn such that f(x0) ∈ R.
We denote the domain of f by domf , that is, domf := {x ∈ Rn | f(x) < +∞}.
The epigraph of f , epif , is defined as epif := {(x, r) ∈ Rn×R | f(x) 5 r}, and f is
said to be convex if epif is convex. The function f is said to be concave whenever
−f is convex.

Let f : Rn → R∪{+∞} be a convex function. The subdifferential of f at x ∈ Rn

is defined by

∂f(x) =

{
{x∗ ∈ Rn | ⟨x∗, y − x⟩ ≤ f(y)− f(x), ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.

More generally, for any ϵ = 0, the ϵ-subdifferential of f at x ∈ Rn is defined by

∂ϵf(x) =

{
{x∗ ∈ Rn | ⟨x∗, y − x⟩ ≤ f(y)− f(x) + ϵ, ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.

We say that f is a lower semicontinuous function if lim infy→x f(y) = f(x) for all
x ∈ Rn.

As usual, for any proper convex function g on Rn, its conjugate function g∗ : Rn →
R ∪ {+∞} is defined by g∗(x∗) = sup {⟨x∗, x⟩ − g(x) | x ∈ Rn} for any x∗ ∈ Rn.

For a given set A ⊂ Rn, we denote the closure, the convex hull, and the conical
hull generated by A, by clA, coA, and coneA, respectively. The indicator function
δA is defined by

δA(x) :=

{
0, x ∈ A,
+∞, otherwise.

The following proposition, which describes the relationship between the epigraph
of a conjugate function and the ϵ-subdifferential and plays a key role in deriving the
main results, was recently given in [5].



ON SEQUENTIAL OPTIMALITY THEOREMS FOR CONVEX OPTIMIZATION PROBLEMS 157

Proposition 2.1 ([5]). If f : Rn → R ∪ {+∞} is a proper lower semicontinuous
convex function and if a ∈ domf , then

epif∗ =
∪
ϵ=0

{(v, ⟨v, a⟩+ ϵ− f(a)) | v ∈ ∂ϵf(a)}.

Proposition 2.2 ([6]). Let f, g : Rn → R ∪ {+∞} be proper lower semicontinuous
convex functions. If dom f ∩ dom g ̸= ∅, then

epi(f + g)∗ = cl(epif∗ + epig∗).

Moreover, if one of the functions f and g is continuous, then

epi(f + g)∗ = epif∗ + epig∗.

We recall a version of the Brondsted-Rockafellar theorem which was established
in [14].

Proposition 2.3 ([1,14, Brondsted-Rockafellar Theorem]). Let f : Rn → R∪{+∞}
be a proper lower semi-continuous convex function. Then for any real number ϵ > 0
and any x∗ ∈ ∂ϵf(x̄) there exist xϵ ∈ Rn, x∗ϵ ∈ ∂f(xϵ) such that

∥xϵ − x̄∥ ≤
√
ϵ, ∥x∗ϵ − x∗∥ ≤

√
ϵ and |f(xϵ)− x∗ϵ (xϵ − x̄)− f(x̄)| ≤ 2ϵ.

3. Sequential optimality theorems I

Now we give sequential optimality theorems for (CP), which are expressed se-
quences of epsilon subgradients of involved functions. The involved functions of the
problem are proper, lower semi-continuous and convex functions.

Theorem 3.1. Let f , gi : Rn → R, i = 1, . . . ,m, be proper lower semi-continuous
convex functions. Let A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m} ̸= ∅ and let x̄ ∈ A.
Assume that A ∩ domf ̸= ∅. Then the following statements are equivalent:

(i) x̄ is an optimal solution of (CP);
(ii) there exist δk = 0, γk = 0, λk

i = 0, i = 1, . . . ,m, ξk ∈ ∂δkf(x̄), ζk ∈
∂γk(

∑m
i=1 λ

k
i gi)(x̄) such that

lim
k→∞

(ξk + ζk) = 0, lim
k→∞

(δk + γk) = 0

and lim
k→∞

(

m∑
i=1

λk
i gi)(x̄) = 0.

Proof. Assume that x̄ is an optimal solution of (CP). It means that f(x) = f(x̄)
for any x ∈ A, that is,

f(x) + δA(x) = f(x̄) + δA(x̄), ∀x ∈ Rn.

Since ⟨0, x⟩ − (f(x) + δA(x)) 5 ⟨0, x⟩ − (f(x̄) + δA(x̄)), for any x ∈ Rn,

(f + δA)
∗(0) = −(f(x̄) + δA(x̄)) = −f(x̄).

It means that

(0,−f(x̄)) ∈ epi(f + δA)
∗.
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From Proposition 2.2, equivalently,

(3.1) (0,−f(x̄)) ∈ cl(epif∗ + epiδ∗A).

Since epiδ∗A = cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗, from (3.1),

(0,−f(x̄)) ∈ cl(epif∗ + cl
∪
λi=0

epi(

m∑
i=1

λigi)
∗).

Since cl(epif∗ + cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗) = cl(epif∗ +

∪
λi=0 epi(

∑m
i=1 λigi)

∗), we

have,

(0,−f(x̄)) ∈ cl(epif∗ +
∪
λi=0

epi(

m∑
i=1

λigi)
∗).

By Proposition 2.1, we see that

(0,−f(x̄)) ∈ cl(
∪
ϵ=0

{(ξ, ⟨ξ, x̄⟩+ ϵ− f(x̄)) | ξ ∈ ∂ϵf(x̄)}(3.2)

+
∪
ϵ=0

{(ζ, ⟨ζ, x̄⟩+ ϵ−
m∑
i=1

λigi(x̄)) | ζ ∈ ∂ϵ(

m∑
i=1

λigi)(x̄)}).

From (3.2), we see that there exist δk = 0, γk = 0, λk
i = 0, i = 1, . . . ,m, ξk ∈

∂δkf(x̄), ζk ∈ ∂γk(
∑m

i=1 λ
k
i gi)(x̄) such that (ξk, ⟨ξk, x̄⟩ + δk − f(x̄)) + (ζk, ⟨ζk, x̄⟩ +

γk −
∑m

i=1 λ
k
i gi(x̄)) → (0,−f(x̄)) as k → ∞. Since λk

i gi(x̄) 5 0, i = 1, . . . ,m, there

exist δk = 0, γk = 0, λk
i = 0, i = 1, . . . ,m, ξk ∈ ∂δkf(x̄), ζk ∈ ∂γk(

∑m
i=1 λ

k
i gi)(x̄)

such that

lim
k→∞

(ξk + ζk) = 0, lim
k→∞

(δk + γk) = 0

and lim
k→∞

(

m∑
i=1

λk
i gi)(x̄) = 0.

�

Now we give an example illustrating Theorem 3.1:

Example 3.2. Let f(x) =

 x log x, x > 0,
0, x = 0,

+∞, x < 0
and g(x) = max{0, x}. Then

f∗(y) = ey−1 for all y ∈ R and g∗(y) =

{
0, 0 5 y 5 1,

+∞, otherwise.
So, epif∗ = {(y, α) ∈

R × R : ey−1 5 α} and
∪

λ=0 epi(λg)
∗ = R2

+. Hence, we see that epif∗ and∪
λ=0 epi(λg)

∗ are closed. However, epif∗ +
∪

λ=0 epi(λg)
∗ = R × (0,+∞) is not

closed.
Now we consider the following convex optimization problem (CP)1

(CP)1 min f(x)

s.t. g(x) 5 0.
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Then the feasible set of (CP)1 is (−∞, 0]. So, we can easily see that x̄ = 0 is an
optimal solution of (CP)1. For each k ∈ N, if we take δk = e−k = 0, γk = 1

k = 0

and λk = k − 1 = 0, then we can easily calculate that

∂δkf(x̄) = (−∞, log δk + 1] = (−∞,−k + 1] and

∂γk(λ
kg)(x̄) = [0, λk] = [0, k − 1].

Let ξk = −k + 1 ∈ ∂δkf(x̄) and ζk = k − 1 ∈ ∂γk(λ
kg)(x̄). Then we can easily see

that

lim
k→∞

(ξk + ζk) = 0, lim
k→∞

(δk + γk) = 0

and lim
k→∞

(λkg)(x̄) = 0.

Thus, Theorem 3.1 holds.

Theorem 3.3. Let f , gi : Rn → R, i = 1, . . . ,m, be proper lower semi-continuous
convex functions. Let A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m} ̸= ∅ and let x̄ ∈ A.
Assume that A∩domf ̸= ∅. Assume that epif∗+cl

∪
λi=0 epi(

∑m
i=1 λigi)

∗ is closed.

Then the following statements are equivalent:

(i) x̄ is an optimal solution of (CP);
(ii) there exist γk = 0, λk

i = 0, i = 1, . . . ,m, ξ ∈ ∂f(x̄), ζk ∈ ∂γk(
∑m

i=1 λ
k
i gi)(x̄)

such that

ξ + lim
k→∞

ζk = 0, lim
k→∞

γk = 0 and lim
k→∞

(

m∑
i=1

λk
i gi)(x̄) = 0.

Proof. Assume that x̄ is an optimal solution of (CP). It means that f(x) = f(x̄)
for any x ∈ A, that is,

f(x) + δA(x) = f(x̄) + δA(x̄), ∀x ∈ Rn.

Since ⟨0, x⟩ − (f(x) + δA(x)) 5 ⟨0, x⟩ − (f(x̄) + δA(x̄)), for any x ∈ Rn,

(f + δA)
∗(0) = −(f(x̄) + δA(x̄)) = −f(x̄).

It means that

(0,−f(x̄)) ∈ epi(f + δA)
∗.

From Proposition 2.2, equivalently,

(3.3) (0,−f(x̄)) ∈ cl(epif∗ + epiδ∗A).

Since epiδ∗A = cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗, from (3.3),

(0,−f(x̄)) ∈ cl(epif∗ + cl
∪
λi=0

epi(

m∑
i=1

λigi)
∗).

Since epif∗ + cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗ is closed,

(0,−f(x̄)) ∈ epif∗ + cl
∪
λi=0

epi(

m∑
i=1

λigi)
∗.
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By Proposition 2.1, we see that

(0,−f(x̄)) ∈
∪
ϵ=0

{(ξ, ⟨ξ, x̄⟩+ ϵ− f(x̄)) | ξ ∈ ∂ϵf(x̄)}(3.4)

+cl(
∪
ϵ=0

{(ζ, ⟨ζ, x̄⟩+ ϵ−
m∑
i=1

λigi(x̄)) | ζ ∈ ∂ϵ(

m∑
i=1

λigi)(x̄)}).

From (3.4), we see that there exist δ = 0, γk = 0, λk
i = 0, i = 1, . . . ,m, ξ ∈

∂δf(x̄), ζk ∈ ∂γk(
∑m

i=1 λ
k
i gi)(x̄) such that (ξ, ⟨ξ, x̄⟩ + δ − f(x̄)) + (ζk, ⟨ζk, x̄⟩ +

γk −
∑m

i=1 λ
k
i gi(x̄)) → (0,−f(x̄)) as k → ∞. Since λk

i gi(x̄) 5 0, i = 1, . . . ,m,

equivalently, there exist δ = 0, γk = 0, λk
i = 0, i = 1, . . . ,m, ξ ∈ ∂δf(x̄),

ζk ∈ ∂γk(
∑m

i=1 λ
k
i gi)(x̄) such that

ξ + lim
k→∞

ζk = 0 and lim
k→∞

(δ + γk − (
m∑
i=1

λk
i gi)(x̄)) = 0.

Since δ = 0, γk = 0 and −(
∑m

i=1 λ
k
i gi)(x̄) = 0, we have δ = 0 and limk→∞(γk −

(
∑m

i=1 λ
k
i gi)(x̄)) = 0. Thus, we obtain the desired result. �

Now we give an example illustrating Theorem 3.3:

Example 3.4. Let f(x) =

{ √
x2 + 1, x = 0,
+∞, x < 0

and g(x) = 1
2x

2. Then f∗(y) =
−1, y < 0,

−
√

1− y2, 0 5 y 5 1,
+∞, y > 1

and g∗(y) = 1
2y

2 for all y ∈ R. So, epif∗ = {(y, α) ∈ R×

R : −
√

1− y2 5 α, 0 5 y 5 1}∪(−∞, 0)×[−1,∞) and
∪

λ=0 epi(λg)
∗ = R×(0,∞)∪

{0} ×R+. Hence epif∗ +
∪

λ=0 epi(λg)
∗ = (−∞, 0]× [−1,∞) ∪ (0,∞)× (−1,∞) is

not closed. But, we can easily see that epif∗ + cl
∪

λ=0 epi(λg)
∗ = R × [−1,∞) is

closed.
Now we consider the following convex optimization problem (CP)2

(CP)2 min f(x)

s.t. g(x) 5 0.

Then the feasible set of (CP)2 is {0}. So, we can easily see that x̄ = 0 is an optimal
solution of (CP)2. For each k ∈ N, if we take γk = 1

2k2
= 0 and λk = k − 1 = 0,

then we can easily calculate that

∂f(x̄) = (−∞, 0] and

∂γk(λ
kg)(x̄) = [−

√
2γkλk,

√
2γkλk] = [−

√
k−1
k2

,
√

k−1
k2

]

Let ξ = 0 ∈ ∂f(x̄) and ζk = −
√

k−1
k2

∈ ∂γk(λ
kg)(x̄). Then we can easily see that

ξ + lim
k→∞

ζk = 0, lim
k→∞

γk = 0 and lim
k→∞

(λkg)(x̄) = 0.

Thus, Theorem 3.3 holds.
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Theorem 3.5. Let f , gi : Rn → R, i = 1, . . . ,m, be proper lower semi-continuous
convex functions. Let A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m} ̸= ∅ and let x̄ ∈ A.
Let A ∩ domf ̸= ∅. Assume that epif∗ +

∪
λi=0 epi(

∑m
i=1 λigi)

∗ is closed. Then the

following statements are equivalent:

(i) x̄ is an optimal solution of (CP);
(ii) there exist λ̄i = 0, i = 1, . . . ,m, such that

0 ∈ ∂f(x̄) + ∂(
m∑
i=1

λ̄igi)(x̄) and
m∑
i=1

λ̄igi(x̄) = 0.

Proof. Assume that x̄ is an optimal solution of (CP). It means that f(x) = f(x̄)
for any x ∈ A, that is,

f(x) + δA(x) = f(x̄) + δA(x̄), ∀x ∈ Rn.

Since ⟨0, x⟩ − (f(x) + δA(x)) 5 ⟨0, x⟩ − (f(x̄) + δA(x̄)), for any x ∈ Rn,

(f + δA)
∗(0) = −(f(x̄) + δA(x̄)) = −f(x̄).

It means that
(0,−f(x̄)) ∈ epi(f + δA)

∗.

From Proposition 2.2, equivalently,

(3.5) (0,−f(x̄)) ∈ cl(epif∗ + epiδ∗A).

Since epiδ∗A = cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗, from (3.5),

(3.6) (0,−f(x̄)) ∈ cl(epif∗ + cl
∪
λi=0

epi(

m∑
i=1

λigi)
∗).

Since cl(epif∗ + cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗) = cl(epif∗ +

∪
λi=0 epi(

∑m
i=1 λigi)

∗) and

epif∗ +
∪

λi=0 epi(
∑m

i=1 λigi)
∗ is closed, (3.6) is equivalent to the condition that

(0,−f(x̄)) ∈ epif∗ +
∪
λi=0

epi(

m∑
i=1

λigi)
∗.

By Proposition 2.1, we see that

(0,−f(x̄)) ∈
∪
δ=0

{(ξ, ⟨ξ, x̄⟩+ δ − f(x̄)) | ξ ∈ ∂δf(x̄)}(3.7)

+
∪
γ=0

{(ζ, ⟨ζ, x̄⟩+ γ −
m∑
i=1

λigi(x̄)) | ζ ∈ ∂γ

m∑
i=1

λigi(x̄)}.

From (3.7), we see that there exist δ̄ = 0, γ̄ = 0, λ̄i = 0, i = 1, . . . ,m, ξ̄ ∈ ∂δ̄f(x̄),
ζ̄ ∈ ∂γ̄(

∑m
i=1 λigi)(x̄) such that (ξ̄, ⟨ξ̄, x̄⟩+ δ̄−f(x̄))+(ζ̄, ⟨ζ̄, x̄⟩+ γ̄−

∑m
i=1 λ̄igi(x̄)) =

(0,−f(x̄)) i.e., ξ̄ + ζ̄ = 0 and δ̄ + γ̄ − (
∑m

i=1 λ̄igi)(x̄) = 0. Since λ̄igi(x̄) 5 0,
i = 1, . . . ,m, equivalently, there exist λ̄i = 0, i = 1, . . . ,m, such that

0 ∈ ∂f(x̄) + ∂(

m∑
i=1

λ̄igi)(x̄) and

m∑
i=1

λ̄igi(x̄) = 0.

�
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Now we give an example illustrating Theorem 3.5:

Example 3.6. Let f(x) =

 x log x, x > 0,
0, x = 0,

+∞, x < 0
and g(x) = 1

2x
2 − 1. Then f∗(y) =

ey−1 for all y ∈ R and g∗(y) = 1
2y

2 + 1 for all y ∈ R. So, epif∗ = {(y, α) ∈
R × R : ey−1 5 α} and

∪
λ=0 epi(λg)

∗ = {(y, α) ∈ R × R : |y| 5 α}. Hence

epif∗ +
∪

λ=0 epi(λg)
∗ = {(y, α) ∈ R × R : ey−1 5 α, y 5 1} ∪ {(y, α) ∈ R × R :

|y| 5 α, y > 1} is closed.
Now we consider the following convex optimization problem (CP)3

(CP)3 min f(x)

s.t. g(x) 5 0.

Then the feasible set of (CP)3 is [−
√
2,
√
2]. So, we can easily see that x̄ = e−1 is

an optimal solution of (CP)3. Moreover, we can easily see that ∂f(x̄) = {0} and
∂(λ̄g)(x̄) = {λ̄e−1}. If we take λ̄ = 0, then we have

0 ∈ ∂f(x̄) + ∂(λ̄g)(x̄) and λ̄g(x̄) = 0.

Thus, Theorem 3.5 holds.

Remark 3.7. Theorem 3.5 can be regarded as one which is sharper than Theorem
4.2 in [2] in the case that the involved geometric set is empty.

Now we give an example illustrating that the Slater condition may not imply the
closedness of the set epif∗ +

∪
λi=0 epi(

∑m
i=1 λigi)

∗.

Example 3.8. Let f(x) =

 x log x, x > 0,
0, x = 0,

+∞, x < 0
and g(x) = x(x+1). Clearly, Slater

condition holds. f∗(y) = ey−1 for all y ∈ R and g∗(y) = (y−1)2

4 for all y ∈ R. So,

epif∗ = {(y, α) ∈ R × R : ey−1 5 α} and
∪

λ=0 epi(λg)
∗ = {(y, α) ∈ R × R : y 5

α, y < 0} ∪ R2
+. Hence epif∗ +

∪
λ=0 epi(λg)

∗ = R× (0,+∞) is not closed.

4. Sequential optimality theorems II

By using Proposition 2.3(a version of Brondsted-Rockafellar Theorem) and The-
orem 3.1, we can obtain the following sequential optimality theorem for (CP) which
involve only the subgradients at nearby points to a minimizer of (CP). So the sequen-
tial optimality condition in Theorem 3.1 is different from the one in the following
theorem. However, we omit the proof of the following theorem:

Theorem 4.1. Let f , gi : Rn → R, i = 1, . . . ,m, be proper lower semi-continuous
convex functions. Let A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m} ̸= ∅ and let x̄ ∈ A.
Assume that A ∩ domf ̸= ∅. Then the following statements are equivalent:

(i) x̄ is an optimal solution of (CP);
(ii) there exist xk ∈ Rn, λk

i = 0, i = 1, . . . ,m, ξ̄k ∈ ∂f(xk), ζ̄k ∈ ∂(
∑m

i=1 λ
k
i gi)(xk)

such that

lim
k→∞

xk = x̄, lim
k→∞

(ξ̄k + ζ̄k) = 0,
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and lim
k→∞

[
f(xk) + (

m∑
i=1

λk
i gi)(xk)− f(x̄)

]
= 0.

Now we give an example illustrating Theorem 4.1:

Example 4.2. Consider the following convex optimization problem (CP)1

(CP)1 min f(x)

s.t. g(x) 5 0,

where f(x) =

 x log x, x > 0,
0, x = 0,

+∞, x < 0
and g(x) = max{0, x}. Then the feasible set of

(CP)1 is (−∞, 0]. So, we can easily see that x̄ = 0 is an optimal solution of (CP)1.
For each k ∈ N, if we take xk = e−k and λk = k−1 = 0, then we can easily calculate
that

∂f(xk) = (−∞, log xk + 1] = (−∞,−k + 1] and

∂(λkg)(xk) = {k − 1}.

Let ξk = −k + 1 ∈ ∂f(xk) and ζk = k − 1 ∈ ∂(λkg)(xk). Then we can easily see
that

lim
k→∞

xk = lim
k→∞

e−k = 0 = x̄, lim
k→∞

(ξk + ζk) = 0

and lim
k→∞

[
f(xk) + (λkg)(xk)− f(x̄)

]
= lim

k→∞
(−e−k) = 0.

Thus, Theorem 4.1 holds.

By using Proposition 2.3 and Theorem 3.3, we can obtain the following sequential
optimality theorem for (CP). The sequential optimality condition in Theorem 3.3 is
different from the one in the following theorem. We omit the proof of the following
theorem:

Theorem 4.3. Let f , gi : Rn → R, i = 1, . . . ,m, be proper lower semi-continuous
convex functions. Let A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m} ̸= ∅ and let x̄ ∈ A.
Assume that A ∩ domf ̸= ∅ and

epif∗ + cl
∪
λi=0

epi(

n∑
i=1

λjgi)
∗

is closed. Then the following statements are equivalent:

(i) x̄ is an optimal solution of (CP);
(ii) there exist xk ∈ Rn, λk

i = 0, i = 1, . . . ,m, ξ̄ ∈ ∂f(x̄), ζ̄k ∈ ∂(
∑m

i=1 λ
k
i gi)(xk)

such that

lim
k→∞

xk = x̄, ξ̄ + lim
k→∞

ζ̄k = 0 and lim
k→∞

(

m∑
i=1

λk
i gi)(xk) = 0.

Now we give an example illustrating Theorem 4.3:
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Example 4.4. Consider the following convex optimization problem (CP)2

(CP)2 min f(x)

s.t. g(x) 5 0,

where f(x) =

{ √
x2 + 1, x = 0,
+∞, x < 0

and g(x) = 1
2x

2. Then the feasible set of (CP)2

is {0}. So, we can easily see that x̄ = 0 is an optimal solution of (CP)2. For each
k ∈ N, if we take xk = 1

k2
and λk = k − 1 = 0, then we can easily calculate that

∂f(x̄) = (−∞, 0] and

∂(λkg)(xk) = {λkxk} =

{
k − 1

k2

}
.

Let ξ = 0 ∈ ∂f(xk) and ζk = k−1
k2

∈ ∂(λkg)(xk). Then we can easily see that

lim
k→∞

xk = 0 = x̄, ξ + lim
k→∞

ζk = 0

and lim
k→∞

(λkg)(xk) = 0.

Thus, Theorem 4.3 holds.

5. Closedness of characterization cones

The set
∪

λi=0 epi(
∑m

i=1 λigi)
∗ is called the characterization cone of (CP). Closed-

ness of the set is important in Theorem 3.5 since the set is related to the constraint
qualification for (CP) ( [9]). Now we give sufficient conditions for the set to be
closed.

Proposition 5.1. Let f : Rn → R and gi : Rn → R, i = 1, . . . ,m be convex
functions. Let A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m} ̸= ∅ and let x̄ ∈ A. Assume
that h : Rn → R is a positive homogeneous convex function such that g∗ = h and
0 /∈ ∂h(0). Then

Λ :=
∪
λ=0

epi(λg)∗ =
∪
λ>0

epi(λg)∗ ∪ {0} × R+

is closed.

Proof. Since g∗ = h and h is a positive homogeneous convex function,

(5.1) epig∗ ⊂ epih = ∂h(0)× R+

Let {(vk, αk)} be a sequence in the set Λ such that (vk, αk) → (v∗, α∗) as k →
∞. If (vk, αk) ∈ {0} × R+ infinitely, (v∗, α∗) ∈ {0} × R+. Now we assume that
{(vk, αk)} ⊂

∪
λ>0 epi(λg)

∗ and v∗ ̸= 0. Then there exist λk > and (wk, βk) ∈ epig∗

such that (vk, αk) = λk(wk, βk). Since wk ∈ ∂h(0) (from (5.1)), ∂h(0) is compact
and 0 /∈ ∂h(0), we may assume that wk → w∗ ̸= 0 as k → ∞. If λk → +∞, then
λkwk can not converges to v∗. So, we may assume that λk → λ∗(̸= 0) as k → ∞.

Since limk→∞
λkβk−α∗

λk
= 0, limk→∞ βk = α∗

λ∗ . Since (wk, βk) ∈ epig∗ and g∗ is lower
semicontinuous,

g∗(w∗) 5 lim inf
k→∞

g∗(wk) 5 lim inf
k→∞

βk =
α∗

λ∗ ,
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and so (w∗, α
∗

λ∗ ) ∈ epig∗, that is, (λ∗w∗, α∗) ∈ λ∗epig∗. Hence (v∗, α∗) ∈ λ∗epig∗.
Thus Λ is closed. �

Proposition 5.2. Let g : Rn → R be a positive homogeneous convex function
which is separable, that is , g(x) =

∑m
i=1 gi(xi), where gi : R → R is a function,

i = 1, 2, . . . ,m. Assume that gi(0) = 0, i = 1, 2, . . . ,m. Then
∪

λ=0(λg)
∗ is closed.

Proof. Since g is positive homogeneous convex and separable, we see that∪
λ=0

epi(λg)∗

=
∪
λ>0

λepig∗ ∪ {0} × R+

=
∪
λ>0

λ(∂g(0)× R+) ∪ {0} × R+

=
∪
λ>0

λ(∂g1(0)× · · · × ∂gm(0)× R+) ∪ {0} × R+

=
∪
λ>0

λ([g′1−(0), g
′
1+(0)]× · · · × [g′m−(0), g

′
m+(0)]× R+) ∪ {0} × R+

=
∪
λ=0

λ([g′1−(0), g
′
1+(0)]× · · · × [g′m−(0), g

′
m+(0)]× R+)

={λ1g
′
1−(0)+λ̃1g

′
1+(0)+· · ·+λmg′m−(0)+λ̃mg′m+(0) |λi = 0, λ̃i = 0, i = 1, . . . ,m}.

Thus
∪

λ=0(λg)
∗ is closed. �

Proposition 5.3. Let gi : R2 → R, i = 1, 2, be a function such that gi = max{ajixi+
bji : j = 1, 2}, i = 1, 2. Let g = g1 + g2. Then

∪
λ=0 epi(λg)

∗ is closed

Proof. Notice that
∪

λ=0 epi(λg)
∗ =

∪
λ=0 λepig

∗ ∪ {0} ×R+. Since g = g1 + g2 and

gi, i = 1, 2, is a sublinear, we can easily see that

(5.2) epig∗ = epig∗1 + epig∗2

Now, we will prove that

epig∗1 = co{(a11, 0,−b11), (a
2
1, 0,−b21)}+ {0} × R+

epig∗2 = co{(0, a12,−b12), (0, a
2
2,−b22)}+ {0} × R+.

Since gi = max{ajixi + bji : j = 1, 2}, i = 1, 2,

g∗i =

(
max

j∈{1,2}
(ajixi + bji )

)∗
= cl

(
co

(
inf

j∈{1,2}
(ajixi + bji )

∗
))

.

Then we can easily see that

inf
j∈{1,2}

(ajixi + bji )
∗(ξ1, ξ2) =

 −b1i , if ξi = a1i
−b2i , if ξi = a2i
+∞, otherwise.

.
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So, we have

co

(
inf

j∈{1,2}
(ajixi + bji )

∗(ξ1, ξ2)

)
=

 −α1
i b

1
i − α2

i b
2
i , if ξi = α1

i a
1
i + α2

i a
2
i ,

α1
i , α

2
i = 0, α1

i + α2
i = 1

+∞, otherwise.
.

Since co
(
infj∈{1,2}(a

j
ixi + bji )

∗
)
is lower semi-continuous,

g∗i = cl

(
co

(
inf

j∈{1,2}
(ajixi + bji )

∗
))

= co

(
inf

j∈{1,2}
(ajixi + bji )

∗
)
.

So, we have

epig∗1 = co{(a11, 0,−b11), (a
2
1, 0,−b21)}+ {0} × R+

epig∗2 = co{(0, a12,−b12), (0, a
2
2,−b22)}+ {0} × R+.

Hence, from (5.2), we can easily see that∪
λ=0

epi(λg)∗

=
∪
λ>0

λ
[
co{(a11, 0,−b11), (a

2
1, 0,−b21)}+ co{(0, a12,−b12), (0, a

2
2,−b22)}+ {0} × R+

]
∪ {0} × R+

=
∪
λ>0

λ
[
co{(a11, a12,−b11 − b12), (a

1
1, a

2
2,−b11 − b22), (a

2
1, a

1
2,−b21 − b12), (a

2
1, a

2
2,−b21 − b22)}

+{0} × R+] ∪ {0} × R+

=λ


 2∑

j=1

αj
1a

j
1,

2∑
j=1

αj
2a

j
2,−

2∑
j=1

αj
1b

j
1 −

2∑
j=1

αj
2b

j
2

 | αj
i = 0,

m∑
j=1

αj
i = 1,

i, j = 1, 2, } ∪ {0} × R+

�

6. Solution Sets

Consider the following convex optimization problem of which objective function
is finite-valued convex functions:

(CP) min f(x)

s.t. x ∈ A := {x ∈ Rn : gi(x) 5 0, i = 1, . . . ,m}
where f : Rn → R is a convex function, and gi : Rn → R ∪ {+∞}, i = 1, 2, . . . ,m,
are proper, lower semicontinuous and convex functions.

Let S be the set of all optimal solutions for (CP). We assume that S ̸= ∅. Let
x̄ ∈ S. Since the function f is continuous and epiδ∗A = cl

∪
λi=0 epi(

∑m
i=1 λigi)

∗, it

follows from Proposition 2.3 that epi(f + δ)∗ is closed and epi(f + δA)
∗ = epif∗ +

cl
∪

λi=0 epi(
∑m

i=1 λigi)
∗. So it follows from Theorem 3.3 that there exist ū ∈ ∂f(x̄),

{λ̄k
i } ⊂ R+, ϵk = 0, v̄k ∈ ∂ϵk

(∑m
i=1 λ̄

k
i gi
)
(x̄) such that

ū+ v̄k → 0 as k → ∞,
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ϵk → 0 as k → ∞,

and lim
k→∞

(
m∑
i=1

λ̄k
i gi

)
(x̄) = 0.

Using the above optimality conditions for x̄ ∈ S, we can characterize the solution
set S as follows;

Theorem 6.1.

S = {x ∈ A | lim inf
k→∞

(
n∑

i=1

λ̄k
i gi

)
(x) = 0, ū ∈ ∂f(x), ūT (x− x̄) = 0}

= {x ∈ A | ū ∈ ∂f(x), ūT (x− x̄) = 0}.

Proof. Let S1 = {x ∈ A | lim infk→∞
(∑n

i=1 λ̄
k
i gi
)
(x) = 0, ū ∈ ∂f(x), ūT (x −

x̄) = 0}. Let x ∈ S. Then
∑n

i=1 λ̄
k
i gi(x) 5 0. Since ū ∈ ∂f(x̄) and vk ∈

∂ϵk
(∑m

i=1 λ
k
i gi
)
(x̄), we have

f(x)− f(x̄) = ūT (x− x̄)

and

m∑
i=1

λ̄k
i gi(x)−

m∑
i=1

λ̄k
i gi(x̄) = v̄Tk (x− x̄)− ϵk,

and hence,

lim inf
k→∞

{
f(x) +

m∑
i=1

λ̄k
i gi(x)− (f(x̄) +

m∑
i=1

λ̄k
i gi(x̄))

}
= lim inf

k→∞

{
(ū+ v̄k)

T (x− x̄)− ϵk
}

= 0.

So, we have

0 5 lim inf
k→∞

{
f(x) +

m∑
i=1

λ̄k
i gi(x)

}
+ lim sup

k→∞

{
−f(x̄)−

m∑
i=1

λ̄k
i gi(x̄)

}

= f(x)− f(x̄) + lim inf
k→∞

{
m∑
i=1

λ̄k
i gi(x)

}

= lim inf
k→∞

{
m∑
i=1

λ̄k
i gi(x)

}
.

Since
∑n

i=1 λ̄
k
i gi(x) 5 0, lim infk→∞

{∑m
i=1 λ̄

k
i gi(x)

}
= 0. So, we have

0 = lim inf
k→∞

{
m∑
i=1

λ̄k
i gi(x)

}
− lim

k→∞

n∑
i=1

λ̄k
i gi(x̄)

= lim inf
k→∞

{
m∑
i=1

λ̄k
i gi(x)

}
+ lim sup

k→∞

(
−

n∑
i=1

λ̄k
i gi(x̄)

)
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= lim inf
k→∞

{
m∑
i=1

λ̄k
i (gi(x)− gi(x̄))

}
= lim inf

k→∞

{
v̄Tk (x− x̄)− ϵk

}
= −ūT (x− x̄).

Hence 0 5 ūT (x− x̄). Since f is convex, ū ∈ ∂f(x̄)and f(x) = f(x̄). So,

0 = f(x)− f(x̄) = ūT (x− x̄).

Thus, we have ūT (x− x̄) = 0. Moreover, for any y ∈ Rn,

f(y)− f(x) = f(y)− f(x̄)

= ūT (y − x̄)

= ūT (y − x) + ūT (x− x̄)

= ūT (y − x).

Hence ū ∈ ∂f(x). So, S ⊂ S1.
Conversely, if x ∈ S1, then x ∈ A, ū ∈ ∂f(x̄) and ūT (x − x̄) = 0, and hence

f(x̄)− f(x) = ūT (x̄− x) = 0. So, x ∈ S. Hence S1 ⊂ S. �

Example 6.2. Let f(x, y) = x and g(x, y) =
√

x2 + y2− y. Consider the following
convex optimization problem:

(CP) min f(x, y)

s.t. (x, y) ∈ A := {(x, y) ∈ R2 | g(x, y) 5 0}.

Then A = {(x, y) ∈ R2 | y = 0, x = 0} and S = {(x, y) ∈ R2 |y = 0, x = 0},
where S is the set of all optimal solutions of (CP). Let (x̄, ȳ) = (0, 1). For λ > 0.
Then ∂f(x̄, ȳ) + λ∂g(x̄, ȳ) = (1, 0)T + λ{(ξ1, ξ2)T − (0, 1)T | ξ21 + ξ22 5 1}, and so,
(0, 0)T ̸∈ ∂f(x̄, ȳ) + λ∂g(x̄, ȳ). However, for any λ > 0 and ϵ > 0,

∂ϵ(λg)(x̄, ȳ) = {(v1, v2) ∈ R2 | v21 + (v2 + λ)2 5 λ2, v2 = −ϵ}.

Let u = (1, 0). For each k ∈ N, we let ϵk = 1
k , λk = 1

2(k + 2
k ) + 1 and vk =

(−1 − 1
k ,−

1
k ). Then vk ∈ ∂ϵk(λkg)(x̄, ȳ), u + vk → 0 as k → ∞, ϵk → 0 as k → ∞

and λkg(x̄, ȳ) = 0. Moreover, we see that

{(x, y) ∈ A | lim inf
k→∞

(λkg) (x, y) = 0, u ∈ ∂f(x, y), uT ((x, y)− (x̄, ȳ)) = 0}

= {(x, y) ∈ A | lim inf
k→∞

(
1

2
(k +

2

k
) + 1)(

√
x2 + y2 − y) = 0, x− x̄ = 0, y ∈ R}

= {(x, y) ∈ A |
√

x2 + y2 − y = 0, x = 0, y ∈ R}
= {(x, y) ∈ A | x = 0, y = 0}
= A

= S.

Hence Theorem 6.1 holds.
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Example 6.3. Let f(x, y) =

{
y, x 5 1,

x− 1 + y, x > 1
and g(x, y) =

√
x2 + y2 − x.

Consider the following convex optimization problem:

(CP) min f(x, y)

s.t. (x, y) ∈ A := {(x, y) ∈ R2 | g(x, y) 5 0}.
Then A = {(x, y) ∈ R2 | x = 0, y = 0} and S = {(x, y) ∈ R2 | 0 5 x 5 1, y = 0},
where S is the set of all optimal solutions of (CP). Let (x̄, ȳ) = (1, 0). Then
(x̄, ȳ) ∈ S. For each k ∈ N, we let ϵk = 1

k , λk = 1
2(k+

2
k )+1 and vk = (− 1

k ,−1− 1
k ).

Then vk ∈ ∂ϵk(λkg)(x̄, ȳ) k ∈ N. Let u = (0, 1). Then u ∈ ∂f(0, 1). Moreover,
u+ vk → 0 as k → ∞, ϵk → 0 as k → ∞ and λkg(x̄, ȳ) = 0, k ∈ N. We have

{(x, y) ∈ A | lim inf
k→∞

(λkg) (x, y) = 0, u ∈ ∂f(x, y), uT ((x, y)− (x̄, ȳ)) = 0}

= {(x, y) ∈ A | g(x, y) = 0, x 5 1, y − ȳ = 0}
= {(x, y) ∈ A | 0 5 x 5 1, y = 0}
= S.

Hence Theorem 6.1 holds.
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