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ITERATIVE APPROXIMATION WITH ERRORS OF ZERO
POINTS OF MAXIMAL MONOTONE OPERATORS
IN A HILBERT SPACE

TAKANORI IBARAKI

ABSTRACT. In this paper, we study the shrinking projection method with error
introduced by Kimura [8]. We obtain an iterative approximation of a zero point
of a maximal monotone operator generated by the shrinking projection method
with errors in a Hilbert space. Using our result, we discuss some applications.

1. INTRODUCTION

Let H be a real Hilbert space and let A C H x H be a maximal monotone
operator. Then, the zero point problem is to find v € H such that

(1.1) 0 € Au.

Such a u € H is called a zero point (or a zero) of A. The set of zero points of
A is denoted by A=10. This problem is connected with many problems in Nonlin-
ear Analysis and Optimization, that is, convex minimization problems, variational
inequality problems, equilibrium problems and so on. A well-known method for
solving (1.1) is the proximal point algorithm: x; € H and

(1.2) Tnt1 = Jp,Tn, n=12,...,

where {r,} C]0,00[ and J,, = (I +r,A)~!. This algorithm was first introduced by
Martinet [12]. In 1976, Rockafellar [17] proved that if liminf,, r, > 0 and A=0 # (),
then the sequence {z,} defined by (1.2) converges weakly to a solution of the zero
point problem. Later, many researchers have studied this problem; see [5-7,10,11,
13,18] and others.

Recently, Kimura [8] introduced the following iterative scheme for finding a fixed
point of a nonexpansive mapping by the shrinking projection method with error in
a Hilbert space:
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Theorem 1.1 (Kimura [8]). Let C' be a bounded closed convex subset of a Hilbert
space H with D = diamC = sup, e |7 — yl| < oo, and let T : C — H be a
nonezpansive mapping having a fized point. Let {€,} be a nonnegative real sequence
such that g = limsup,, €, < co. For a given point uw € H, generate an iterative
sequence {xyn} as follows: x1 € C such that ||x; —u|| < €1, C1 =C,

Cnt1={2€C:|lz—Tx,| < ||z — 2|} N Ch,
Tns1 € Cpgr such that ||[u — zpq1||? < d(u, Cny1)? + €24

for all n € N. Then,

limsup ||z, — Tz,|| < 2¢.
n—0o0

Further, if o = 0, then {zy,} converges strongly to Ppiryu € F(T).

We remark that the original result of the theorem above deals with a family of
nonexpansive mappings, and the shrinking projection method was first introduced
by Takahashi, Takeuchi and Kubota [22].

In this paper, we study the shrinking projection method with error introduced
by Kimura [8] (see also [9]). We obtain an iterative approximation of a zero point of
a maximal monotone operator generated by the shrinking projection method with
errors in a Hilbert space. Using our result, we discuss the convex minimization prob-
lem, the variational inequality problem and the equilibrium problem in a Hilbert
space.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. We denote
strong convergence and weak convergence of a sequence {z,} to x in H by x,, — x
and x, — x, respectively. In a real Hilbert space H, we have from [21]

(2.1) Az + (1= Nyl? = Nz ]|* + (1 = Nllyl® = A1 = Nz — gl

for all x,y € H and A € R.

Let C be a nonempty closed convex subset of H. For any x € H, there exists a
unique nearest point in C, denoted by Pox, such that ||z — Pox| < ||z — y|| for all
y € C. Such a P¢ is called the metric projection of H onto C. It is also known that
y = Pox is equivalent to (z —y,y — z) > 0 for all z € C.

A multi-valued operator A C H x H with domain D(A) = {z € H : Ax # ()} and
range R(A) = U{Ax : x € D(A)} is said to be monotone if (x1 — z2,y1 —y2) > 0 for
any (z1,41), (z2,y2) € A. A monotone operator A is said to be maximal if A = B
whenever B C H x H is a monotone operator such that A C B. We know that a
monotone operator A is maximal if and only if R(I +rA) = H for all » > 0, where
I is the identity operator on H.

Let A C H x H be a maximal monotone operator. It is known that A0 is
closed and convex, where A=10 = {u € H : 0 € Au}. We can define, for each r > 0,
a single-valued mapping (I +rA4)~! : H — D(A) by J, = (I +rA)~L. It is called
the resolvent of A for r» > 0. It is known that

z— Jyx

(2.2) ——c AJx

r
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for all z € H and r > 0 (see [15,16,21] for more details).
The following Lemma is easily deduced from the theorem proved by Tsukada [23]
(see also [8]).

Lemma 2.1 (Tsukada [23]). Let {Cy} be a sequence of nonempty closed convex
subsets of a Hilbert space H such that Cpy1 C Cp for every n € N. Let u be
a point of H. Then, if Co = N°2,C, is nonempty, then the sequence {Pc,u}
converges strongly to Pc,u, where Pc, is the metric projection of E onto C; for

each i € NU{0}.
3. MAIN RESULT

In this section, we obtain an iterative approximation of a zero point of a maximal
monotone operator generated by the shrinking projection method with errors [8] in
a Hilbert space.

Theorem 3.1. Let H be a Hilbert space and let A C H x H be a maximal monotone
operator with A=*0 # (. Let {5, } be a bounded nonnegative real sequence such that
dp = limsup,, 6, and let {r,} be a positive real sequence such that liminf,, r, > 0.
For a given point u € H, generate a sequence {x,} by x1 =x € H, C1 = H, and

Yn = Jrnxna
Cor1={2€H:{yp— 2,2y —yn) >0} NCp,
Tny1 € {z € H : |lu—z||? <d(u,Cny1)? + 62,1} N Cia

for allm € N. Then
limsup ||z, — ynll < do.

n—oo
Moreover, if 5o = 0, then {x,} converges strongly to Ps-1yu.

Proof. We fist show by induction that A0 C C,, for each n € N. It is clear
that A=10 ¢ H = C;. Suppose that A710 C C}, for some k € N. Since A0 is
nonempty, we have from (2.2) that for each (z,0) € A

<yk_z,$k—yk_o>20,
Tk

So, we get (yr — 2,2 — yx) > 0. Hence we have that A='0 C Cj,1. This implies
that A='0 c C,, for all n € N.

Since C,, includes A710 for all n € N, {C,} is a sequence of nonempty closed
convex subsets and, by definition, it is decreasing with respect to inclusion. Let
pn = Po,u for all n € N. Then, by Theorem 2.1, we have that {p,} converges
strongly to po = Pc,u, where Cyp = (o—; C,, and hence {p,} is bounded. Since
zn € Cp and d(u, Cp) = ||lu — ppl|, we have that

lu = 2nl® < flu = pal® + 57

for every n € N\ {1}. Therefore, we have that {z,} is bounded. Then, by (2.1), we
have that for any A €]0, 1]

I = ull® < [Apn + (1 = Nay — ul?
= Alpe = ull? + (1 = Nlzn =l = A1 = N |pa — za®
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and thus
Alpn — anZ <l — qu —|lpn — U”2 < 5721-

Tending A — 1, we have that ||p, — x,||* < 02 and thus |[p, — 2| < 6,. Using the
definition of p,,, we have that p,+1 € Cp+1. Thus we have

(Yn = Pn+1,%n — Yn) 20
and hence
(T = Pnt1,Tn — Yn) 2> ||o0 — ynH2
Then we obtain that
20 = ynll < ll2n = poall < [[2n = pull + Pn = Priall < 6n + llpn — P
for every n € N\ {1}. From lim,, p, = pp and limsup,, d,, = dy, we have that

lim sup [ — yal| < do.
n—oo

For the latter part of the theorem, suppose that §o = 0. Then we have that

limsup [|lzn — yn < 0

n—oo
and
limsup ||z, — pr|| < limsupd, = 0.
n—oo n—oo
Therefore, we obtain that
lim ||z, —yn||=0and lim ||z, —p,|| =0
n—oo n—oo
and hence
lim x, =pg and lim y, = pg.
n—oo n—o0
From liminf,, r,, > 0, we obtain that

Tn — Yn
Tn

lim =0.
n—oo

For each (u,v) € A, we obtain from (2.2) that

<u_ymv_fvn—yn>§&

Tn
for each n € N\ {1}. Tending n — oo, we have that
(u—po,v—0) = 0.

By the maximality of A, this implies that py € A710. Since A=10 C Cy, we get that
po = Pcyu = Pp-19u, which completes the proof. O
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4. APPLICATIONS

In this section, using Theorem 3.1, we give three applications. We first consider
the convex minimization problem: Let H be a Hilbert space and let f : H —
| — 00,00] be a proper lower semicontinuous convex function. Then, the convex
minimization problem is to find x¢y € H such that

f(@o) = min f(2).
The subdifferential df of f is defined as follows:

Of(x) ={z€ H: f(z)+(y—=,2) < f(y), Yy € H}

for all x € H. Then we know that the subdifferential 0f C H x H of f is maximal
monotone. It is easy to see that (9f)7!0 = argmin{f(x) : z € H}. If J, is the
resolvent of Jf for r > 0, then we also know that

1
Jrx = argmin {f(z) + —z— 93”2}
2€H 2r
for all x € H (see [14,15,21] for more details).
As a direct consequence of Theorem 3.1, we can show the following result.

Corollary 4.1. Let H be a Hilbert space and let f : H —] — 00, 00| be a proper
lower semicontinuous convex function with (0f)~10 # 0. Let {6,} be a bounced
nonnegative real sequence such that 6y = limsup,, 0, and let {r,} be a positive real
sequence such that liminf, r, > 0. For a given point u € H, generate a sequence
{zp} by =x€ H,Cr = H, and

. 1
Yp, = argmin {f(z) + 2—Hz — anQ} ,
z€H Tn

Cn+1 :{ZEH: <ynfza$n*yn> Zo}mcna
Tni1 € {2z € H : |Ju—z||* < d(u,Cny1)? + 62,1} N Chia

for alln € N. Then
limsup ||z, — Y| < do.

n—oo

Moreover, if 5o = 0, then {x,} converges strongly to Piop-1ou.

Next, we consider the variational inequality problem: Let C be a nonempty closed
convex subset of a Hilbert space H and let T': C'— H be a single-valued mapping.
Then, the variational inequality problem is to find x¢ € C such that

(4.1) (y — xo, Txo) >0

for each y € C. The set of such solutions is denoted by VI(C,T).

A single-valued mapping 7T is said to be hemicontinuous if 7" is continuous from
each line segment of C' to H with the weak topology. Let T be a single-valued,
monotone and hemicontinuous operator of C' to H and let N¢(z) be the normal
cone to C' at x € H, that is,

Ne(z) :={2€ H:{(zx—y,z) >0, VyeC}.
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We define the multi-valued operator A C H x H by
| Tz+ N¢(z), =ze€C,
Az = { 0, z ¢ C.
Then, A is maximal monotone and A~10 = VI(C,T) (see [16,21]). We also know
that, for each » > 0 and z € H,

= (I+rA) ' = VI(C,Toy),

where T,z := Tz + (2 — x)/r for each z € C' (see [21] for more details) .
As a direct consequence of Theorem 3.1, we can show the following result.

Corollary 4.2. Let C be a nonempty closed convex subset of a Hilbert space H
and let T be a single-valued, monotone and hemicontinuous operator of C' to H.
Let {6,} be a bounded nonnegative real sequence such that o = limsup,, 6, and let
{rn} be a positive real sequence such that liminf,, r,, > 0. For a given point u € H,
generate a sequence {x,} by x1 =x € H, C;y = H, and

Yn = VI(C, Trn,xn)7

Cnt1=4{2z€ H: (yp — 2,2 — yn) > 0} N Cy,

Tnt1 €{z € H : |lu—z|? < d(u,Cny1)* + 62,1} N Cpta
forallm € N. If VI(C,T) is nonempty, then

lim sup |12 — yal| < do.
n—0o0

Moreover, if do = 0, then {x,} converges strongly to Py cryu.

Finally, we consider the equilibrium problem: Let C' be a nonempty closed convex
subset of a Hilbert space H and let f be a bifunction from C x C to R, where R is
the set of real numbers. Then, the equilibrium problem for f is to find zg € C such
that

f(xo,y) >0
for all y € C. The set of such solutions is denoted by EP(f) (see [2,4,19] for
more details). For solving the equilibrium problem, let us assume that a bifunction
f:C x C — R satisfies the following conditions:

(Al) f(z,z) =0 for all z € C;

(A2) f is monotone, i.e., f(z,y) + f(y,x) <0 for all z,y € C;

(A3) for each z,y,z € C,

limsup f(tz + (1 — t)z,y) < f(x,y);
0

(A4) f(z,-) is convex and lower semicontinuous for all z € C.

Let f be a bifunction from C' x C to R satisfying (A1)-(A4) and let » > 0 and
x € H. We define the F,z by

Ro={seCifen+ Hu-sz-a 20 weo}.
T

Then, F,.x is consists of at most one point. That is, F,. : H — C' is single-valued
mapping. Such a F, is called the resolvent of f for r (see [2,3,19] for more details).
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Let Ay C H x H be a multi-valued operator define by
Aop = 4 1ZEH f(@y) = (y—m2), WyeC} zeC,
U ) z¢C.

We know that EP(f) = A;lo and Ay is maximal monotone. We also know that

the resolvent F, of f coincides with the resolvent (I +rAf)~t of A for each r > 0,
that is, F, = (I +rAs)~! (see [1,20] for more details) .
As a direct consequence of Theorem 3.1, we can show the following result.

Corollary 4.3. Let C' be a nonempty closed convex subset of a Hilbert space H and
let f be a bifunction from C x C to R satisfying (A1)-(A4). Let {6,} be a bounded
nonnegative real sequence such that 6y = limsup,, 0, and let {r,} be a positive real
sequence such that liminf, r, > 0. For a given point u € H, generate a sequence
{zp} by =2 € H,Cr = H, and

Yn = Frn Tn,

Cnt1={2z€ H: (yp — 2,2n — yn) > 0} N Cy,

Tpa1 € {z € H: |lu—2]* < d(u,Cpy1)* + 6721+1} N Cntr
for alln € N. If EP(f) is nonempty, then

limsup ||z, — ynll < do.
n—oo

Moreover, if o = 0, then {z,} converges strongly to Prp(pu.
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