

ITERATIVE APPROXIMATION WITH ERRORS OF ZERO POINTS OF MAXIMAL MONOTONE OPERATORS IN A HILBERT SPACE

TAKANORI IBARAKI

ABSTRACT. In this paper, we study the shrinking projection method with error introduced by Kimura [8]. We obtain an iterative approximation of a zero point of a maximal monotone operator generated by the shrinking projection method with errors in a Hilbert space. Using our result, we discuss some applications.

1. INTRODUCTION

Let H be a real Hilbert space and let $A \subset H \times H$ be a maximal monotone operator. Then, the zero point problem is to find $u \in H$ such that

 $(1.1) 0 \in Au.$

Such a $u \in H$ is called a zero point (or a zero) of A. The set of zero points of A is denoted by $A^{-1}0$. This problem is connected with many problems in Nonlinear Analysis and Optimization, that is, convex minimization problems, variational inequality problems, equilibrium problems and so on. A well-known method for solving (1.1) is the proximal point algorithm: $x_1 \in H$ and

(1.2)
$$x_{n+1} = J_{r_n} x_n, \quad n = 1, 2, \dots,$$

where $\{r_n\} \subset [0, \infty[$ and $J_{r_n} = (I + r_n A)^{-1}$. This algorithm was first introduced by Martinet [12]. In 1976, Rockafellar [17] proved that if $\liminf_n r_n > 0$ and $A^{-1}0 \neq \emptyset$, then the sequence $\{x_n\}$ defined by (1.2) converges weakly to a solution of the zero point problem. Later, many researchers have studied this problem; see [5–7, 10, 11, 13, 18] and others.

Recently, Kimura [8] introduced the following iterative scheme for finding a fixed point of a nonexpansive mapping by the shrinking projection method with error in a Hilbert space:

²⁰¹⁰ Mathematics Subject Classification. 47H05, 47J25.

Key words and phrases. Maximal monotone operator, metric projection, zero point problems, error term.

The author is supported by Grant-in-Aid for Young Scientific (B) No. 24740075 from Japan Society for the Promotion of Science.

TAKANORI IBARAKI

Theorem 1.1 (Kimura [8]). Let C be a bounded closed convex subset of a Hilbert space H with $D = \operatorname{diam} C = \sup_{x,y \in C} ||x - y|| < \infty$, and let $T : C \to H$ be a nonexpansive mapping having a fixed point. Let $\{\epsilon_n\}$ be a nonnegative real sequence such that $\epsilon_0 = \limsup_n \epsilon_n < \infty$. For a given point $u \in H$, generate an iterative sequence $\{x_n\}$ as follows: $x_1 \in C$ such that $||x_1 - u|| < \epsilon_1, C_1 = C$,

$$\begin{cases} C_{n+1} = \{ z \in C : \|z - Tx_n\| \le \|z - x_n\| \} \cap C_n, \\ x_{n+1} \in C_{n+1} \text{ such that } \|u - x_{n+1}\|^2 \le d(u, C_{n+1})^2 + \epsilon_{n+1}^2 \end{cases}$$

for all $n \in \mathbb{N}$. Then,

$$\limsup_{n \to \infty} \|x_n - Tx_n\| \le 2\epsilon_0$$

Further, if $\epsilon_0 = 0$, then $\{x_n\}$ converges strongly to $P_{F(T)}u \in F(T)$.

We remark that the original result of the theorem above deals with a family of nonexpansive mappings, and the shrinking projection method was first introduced by Takahashi, Takeuchi and Kubota [22].

In this paper, we study the shrinking projection method with error introduced by Kimura [8] (see also [9]). We obtain an iterative approximation of a zero point of a maximal monotone operator generated by the shrinking projection method with errors in a Hilbert space. Using our result, we discuss the convex minimization problem, the variational inequality problem and the equilibrium problem in a Hilbert space.

2. Preliminaries

Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. We denote strong convergence and weak convergence of a sequence $\{x_n\}$ to x in *H* by $x_n \to x$ and $x_n \to x$, respectively. In a real Hilbert space *H*, we have from [21]

(2.1)
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2$$

for all $x, y \in H$ and $\lambda \in \mathbb{R}$.

Let C be a nonempty closed convex subset of H. For any $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that $||x - P_C x|| \le ||x - y||$ for all $y \in C$. Such a P_C is called the metric projection of H onto C. It is also known that $y = P_C x$ is equivalent to $\langle x - y, y - z \rangle \ge 0$ for all $z \in C$.

A multi-valued operator $A \subset H \times H$ with domain $D(A) = \{x \in H : Ax \neq \emptyset\}$ and range $R(A) = \bigcup \{Ax : x \in D(A)\}$ is said to be monotone if $\langle x_1 - x_2, y_1 - y_2 \rangle \ge 0$ for any $(x_1, y_1), (x_2, y_2) \in A$. A monotone operator A is said to be maximal if A = Bwhenever $B \subset H \times H$ is a monotone operator such that $A \subset B$. We know that a monotone operator A is maximal if and only if R(I + rA) = H for all r > 0, where I is the identity operator on H.

Let $A \subset H \times H$ be a maximal monotone operator. It is known that $A^{-1}0$ is closed and convex, where $A^{-1}0 = \{u \in H : 0 \in Au\}$. We can define, for each r > 0, a single-valued mapping $(I + rA)^{-1} : H \to D(A)$ by $J_r = (I + rA)^{-1}$. It is called the resolvent of A for r > 0. It is known that

(2.2)
$$\frac{x - J_r x}{r} \in A J_r x$$

for all $x \in H$ and r > 0 (see [15, 16, 21] for more details).

The following Lemma is easily deduced from the theorem proved by Tsukada [23] (see also [8]).

Lemma 2.1 (Tsukada [23]). Let $\{C_n\}$ be a sequence of nonempty closed convex subsets of a Hilbert space H such that $C_{n+1} \subset C_n$ for every $n \in \mathbb{N}$. Let u be a point of H. Then, if $C_0 = \bigcap_{n=1}^{\infty} C_n$ is nonempty, then the sequence $\{P_{C_n}u\}$ converges strongly to $P_{C_0}u$, where P_{C_i} is the metric projection of E onto C_i for each $i \in \mathbb{N} \cup \{0\}$.

3. MAIN RESULT

In this section, we obtain an iterative approximation of a zero point of a maximal monotone operator generated by the shrinking projection method with errors [8] in a Hilbert space.

Theorem 3.1. Let H be a Hilbert space and let $A \subset H \times H$ be a maximal monotone operator with $A^{-1}0 \neq \emptyset$. Let $\{\delta_n\}$ be a bounded nonnegative real sequence such that $\delta_0 = \limsup_n \delta_n$ and let $\{r_n\}$ be a positive real sequence such that $\liminf_n r_n > 0$. For a given point $u \in H$, generate a sequence $\{x_n\}$ by $x_1 = x \in H$, $C_1 = H$, and

$$\begin{cases} y_n = J_{r_n} x_n, \\ C_{n+1} = \{ z \in H : \langle y_n - z, x_n - y_n \rangle \ge 0 \} \cap C_n, \\ x_{n+1} \in \{ z \in H : \|u - z\|^2 \le d(u, C_{n+1})^2 + \delta_{n+1}^2 \} \cap C_{n+1} \end{cases}$$

for all $n \in \mathbb{N}$. Then

$$\limsup_{n \to \infty} \|x_n - y_n\| \le \delta_0$$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{A^{-1}0}u$.

Proof. We fist show by induction that $A^{-1}0 \subset C_n$ for each $n \in \mathbb{N}$. It is clear that $A^{-1}0 \subset H = C_1$. Suppose that $A^{-1}0 \subset C_k$ for some $k \in \mathbb{N}$. Since $A^{-1}0$ is nonempty, we have from (2.2) that for each $(z, 0) \in A$

$$\left\langle y_k - z, \frac{x_k - y_k}{r_k} - 0 \right\rangle \ge 0.$$

So, we get $\langle y_k - z, x_k - y_k \rangle \ge 0$. Hence we have that $A^{-1}0 \subset C_{k+1}$. This implies that $A^{-1}0 \subset C_n$ for all $n \in \mathbb{N}$.

Since C_n includes $A^{-1}0$ for all $n \in \mathbb{N}$, $\{C_n\}$ is a sequence of nonempty closed convex subsets and, by definition, it is decreasing with respect to inclusion. Let $p_n = P_{C_n}u$ for all $n \in \mathbb{N}$. Then, by Theorem 2.1, we have that $\{p_n\}$ converges strongly to $p_0 = P_{C_0}u$, where $C_0 = \bigcap_{n=1}^{\infty} C_n$ and hence $\{p_n\}$ is bounded. Since $x_n \in C_n$ and $d(u, C_n) = ||u - p_n||$, we have that

$$||u - x_n||^2 \le ||u - p_n||^2 + \delta_n^2$$

for every $n \in \mathbb{N} \setminus \{1\}$. Therefore, we have that $\{x_n\}$ is bounded. Then, by (2.1), we have that for any $\lambda \in]0, 1[$

$$||p_n - u||^2 \le ||\lambda p_n + (1 - \lambda)x_n - u||^2$$

= $\lambda ||p_n - u||^2 + (1 - \lambda)||x_n - u||^2 - \lambda(1 - \lambda)||p_n - x_n||^2$

TAKANORI IBARAKI

and thus

$$\lambda \|p_n - x_n\|^2 \le \|x_n - u\|^2 - \|p_n - u\|^2 \le \delta_n^2.$$

Tending $\lambda \to 1$, we have that $\|p_n - x_n\|^2 \leq \delta_n^2$ and thus $\|p_n - x_n\| \leq \delta_n$. Using the definition of p_n , we have that $p_{n+1} \in C_{n+1}$. Thus we have

$$\langle y_n - p_{n+1}, x_n - y_n \rangle \ge 0$$

and hence

$$\langle x_n - p_{n+1}, x_n - y_n \rangle \ge ||x_n - y_n||^2.$$

Then we obtain that

$$||x_n - y_n|| \le ||x_n - p_{n+1}|| \le ||x_n - p_n|| + ||p_n - p_{n+1}|| \le \delta_n + ||p_n - p_{n+1}||$$

for every $n \in \mathbb{N} \setminus \{1\}$. From $\lim_{n \to \infty} p_n = p_0$ and $\lim_{n \to \infty} \sup_n \delta_n = \delta_0$, we have that

$$\limsup_{n \to \infty} \|x_n - y_n\| \le \delta_0.$$

For the latter part of the theorem, suppose that $\delta_0 = 0$. Then we have that

$$\limsup_{n \to \infty} \|x_n - y_n\| \le 0$$

and

$$\limsup_{n \to \infty} \|x_n - p_n\| \le \limsup_{n \to \infty} \delta_n = 0.$$

Therefore, we obtain that

$$\lim_{n \to \infty} ||x_n - y_n|| = 0 \text{ and } \lim_{n \to \infty} ||x_n - p_n|| = 0$$

and hence

$$\lim_{n \to \infty} x_n = p_0 \text{ and } \lim_{n \to \infty} y_n = p_0.$$

From $\liminf_n r_n > 0$, we obtain that

$$\lim_{n \to \infty} \left\| \frac{x_n - y_n}{r_n} \right\| = 0.$$

For each $(u, v) \in A$, we obtain from (2.2) that

$$\left\langle u - y_n, v - \frac{x_n - y_n}{r_n} \right\rangle \ge 0.$$

for each $n \in \mathbb{N} \setminus \{1\}$. Tending $n \to \infty$, we have that

$$\langle u - p_0, v - 0 \rangle \ge 0.$$

By the maximality of A, this implies that $p_0 \in A^{-1}0$. Since $A^{-1}0 \subset C_0$, we get that $p_0 = P_{C_0}u = P_{A^{-1}0}u$, which completes the proof.

4. Applications

In this section, using Theorem 3.1, we give three applications. We first consider the convex minimization problem: Let H be a Hilbert space and let $f : H \to [-\infty, \infty]$ be a proper lower semicontinuous convex function. Then, the convex minimization problem is to find $x_0 \in H$ such that

$$f(x_0) = \min_{z \in H} f(z).$$

The subdifferential ∂f of f is defined as follows:

$$\partial f(x) = \{ z \in H : f(x) + \langle y - x, z \rangle \le f(y), \ \forall y \in H \}$$

for all $x \in H$. Then we know that the subdifferential $\partial f \subset H \times H$ of f is maximal monotone. It is easy to see that $(\partial f)^{-1}0 = \operatorname{argmin}\{f(x) : x \in H\}$. If J_r is the resolvent of ∂f for r > 0, then we also know that

$$J_r x = \operatorname*{argmin}_{z \in H} \left\{ f(z) + \frac{1}{2r} \|z - x\|^2 \right\}$$

for all $x \in H$ (see [14, 15, 21] for more details).

As a direct consequence of Theorem 3.1, we can show the following result.

Corollary 4.1. Let H be a Hilbert space and let $f : H \to] -\infty, \infty]$ be a proper lower semicontinuous convex function with $(\partial f)^{-1}0 \neq \emptyset$. Let $\{\delta_n\}$ be a bounced nonnegative real sequence such that $\delta_0 = \limsup_n \delta_n$ and let $\{r_n\}$ be a positive real sequence such that $\liminf_n r_n > 0$. For a given point $u \in H$, generate a sequence $\{x_n\}$ by $x_1 = x \in H$, $C_1 = H$, and

$$\begin{cases} y_n = \underset{z \in H}{\operatorname{argmin}} \left\{ f(z) + \frac{1}{2r_n} \| z - x_n \|^2 \right\}, \\ C_{n+1} = \left\{ z \in H : \langle y_n - z, x_n - y_n \rangle \ge 0 \right\} \cap C_n, \\ x_{n+1} \in \left\{ z \in H : \| u - z \|^2 \le d(u, C_{n+1})^2 + \delta_{n+1}^2 \right\} \cap C_{n+1} \end{cases}$$

for all $n \in \mathbb{N}$. Then

$$\limsup_{n \to \infty} \|x_n - y_n\| \le \delta_0.$$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{(\partial f)^{-1}0}u$.

Next, we consider the variational inequality problem: Let C be a nonempty closed convex subset of a Hilbert space H and let $T: C \to H$ be a single-valued mapping. Then, the variational inequality problem is to find $x_0 \in C$ such that

$$(4.1)\qquad \qquad \langle y - x_0, Tx_0 \rangle \ge 0$$

for each $y \in C$. The set of such solutions is denoted by VI(C,T).

A single-valued mapping T is said to be hemicontinuous if T is continuous from each line segment of C to H with the weak topology. Let T be a single-valued, monotone and hemicontinuous operator of C to H and let $N_C(x)$ be the normal cone to C at $x \in H$, that is,

$$N_C(x) := \{ z \in H : \langle x - y, z \rangle \ge 0, \quad \forall y \in C \}.$$

We define the multi-valued operator $A \subset H \times H$ by

$$Az := \begin{cases} Tz + N_C(z), & z \in C, \\ \emptyset, & z \notin C. \end{cases}$$

Then, A is maximal monotone and $A^{-1}0 = VI(C,T)$ (see [16,21]). We also know that, for each r > 0 and $x \in H$,

$$J_r x = (I + rA)^{-1} x = VI(C, T_{r,x})$$

where $T_{r,x}z := Tz + (z - x)/r$ for each $z \in C$ (see [21] for more details).

As a direct consequence of Theorem 3.1, we can show the following result.

Corollary 4.2. Let C be a nonempty closed convex subset of a Hilbert space H and let T be a single-valued, monotone and hemicontinuous operator of C to H. Let $\{\delta_n\}$ be a bounded nonnegative real sequence such that $\delta_0 = \limsup_n \delta_n$ and let $\{r_n\}$ be a positive real sequence such that $\lim_n r_n > 0$. For a given point $u \in H$, generate a sequence $\{x_n\}$ by $x_1 = x \in H$, $C_1 = H$, and

$$\begin{cases} y_n = VI(C, T_{r_n, x_n}), \\ C_{n+1} = \{ z \in H : \langle y_n - z, x_n - y_n \rangle \ge 0 \} \cap C_n, \\ x_{n+1} \in \{ z \in H : ||u - z||^2 \le d(u, C_{n+1})^2 + \delta_{n+1}^2 \} \cap C_{n+1} \end{cases}$$

for all $n \in \mathbb{N}$. If VI(C,T) is nonempty, then

$$\limsup_{n \to \infty} \|x_n - y_n\| \le \delta_0.$$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{VI(C,T)}u$.

Finally, we consider the equilibrium problem: Let C be a nonempty closed convex subset of a Hilbert space H and let f be a bifunction from $C \times C$ to \mathbb{R} , where \mathbb{R} is the set of real numbers. Then, the equilibrium problem for f is to find $x_0 \in C$ such that

$$f(x_0, y) \ge 0$$

for all $y \in C$. The set of such solutions is denoted by EP(f) (see [2, 4, 19] for more details). For solving the equilibrium problem, let us assume that a bifunction $f: C \times C \to \mathbb{R}$ satisfies the following conditions:

- (A1) f(x, x) = 0 for all $x \in C$;
- (A2) f is monotone, i.e., $f(x, y) + f(y, x) \le 0$ for all $x, y \in C$;
- (A3) for each $x, y, z \in C$,

$$\limsup_{t \downarrow 0} f(tz + (1-t)x, y) \le f(x, y);$$

(A4) $f(x, \cdot)$ is convex and lower semicontinuous for all $x \in C$.

Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let r > 0 and $x \in H$. We define the $F_r x$ by

$$F_r x = \left\{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \ \forall y \in C \right\}$$

Then, $F_r x$ is consists of at most one point. That is, $F_r : H \to C$ is single-valued mapping. Such a F_r is called the resolvent of f for r (see [2,3,19] for more details).

Let $A_f \subset H \times H$ be a multi-valued operator define by

$$A_f x = \begin{cases} \{z \in H : f(x, y) \ge \langle y - x, z \rangle, \ \forall y \in C\} & x \in C, \\ \emptyset & x \notin C. \end{cases}$$

We know that $EP(f) = A_f^{-1}0$ and A_f is maximal monotone. We also know that the resolvent F_r of f coincides with the resolvent $(I + rA_f)^{-1}$ of A_f for each r > 0, that is, $F_r = (I + rA_f)^{-1}$ (see [1,20] for more details).

As a direct consequence of Theorem 3.1, we can show the following result.

Corollary 4.3. Let C be a nonempty closed convex subset of a Hilbert space H and let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $\{\delta_n\}$ be a bounded nonnegative real sequence such that $\delta_0 = \limsup_n \delta_n$ and let $\{r_n\}$ be a positive real sequence such that $\liminf_n r_n > 0$. For a given point $u \in H$, generate a sequence $\{x_n\}$ by $x_1 = x \in H$, $C_1 = H$, and

$$\begin{cases} y_n = F_{r_n} x_n, \\ C_{n+1} = \{ z \in H : \langle y_n - z, x_n - y_n \rangle \ge 0 \} \cap C_n, \\ x_{n+1} \in \{ z \in H : \|u - z\|^2 \le d(u, C_{n+1})^2 + \delta_{n+1}^2 \} \cap C_{n+1} \end{cases}$$

for all $n \in \mathbb{N}$. If EP(f) is nonempty, then

$$\limsup_{n \to \infty} \|x_n - y_n\| \le \delta_0.$$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{EP(f)}u$.

References

- K. Aoyama, Y. Kimura and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395–409.
- [2] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- [3] P. L. Combettes and S. A. Hirstoaga Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program. 78 (1997), 29–41.
- [5] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403–419.
- [6] T. Ibaraki, Strong convergence theorems for zero point problems and equilibrium problems in a Banach space, in Nonlinear Analysis and Convex Analysis I, Yokohama Publishers, 2013, 115–126.
- [7] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), 226–240.
- [8] Y. Kimura, Approximation of a common fixed point of a finite family of nonexpansive mappings with nonsummable errors in a Hilbert space, J. Nonlinear Convex Anal. 15 (2014), 429–436.
- [9] Y. Kimura, Approximation of a fixed point of nonlinear mappings with nonsummable errors in a Banach space, in Banach and Function Spaces IV, Yokohama Publishers, 2014, 303–311.
- [10] Y. Kimura and W. Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in a Banach space, J. Math. Anal. Appl. 357 (2009), 356–363.
- [11] P. L. Lions, Une méthode itérative de résolution d'une inéquation variationnelle Israel J. Math. 31 (1978), 204–208.

TAKANORI IBARAKI

- [12] B. Martinet, Régularsation d'inéquations variationnells par approximations successives (in French), Rev. Francaise Informat. Recherche Opérationnelles 4 (1970), 154–158. 383–390.
- [13] S. Ohsawa and W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. 81 (2003), 439–445.
- [14] R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497–510.
- [15] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216.
- [16] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88.
- [17] R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control. Optim. 14 (1976), 877–898.
- [18] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A. 87 (2000), 189–202.
- [19] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007), 359–370.
- [20] S. Takahashi, W. Takahashi, and M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27–41.
- [21] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, 2009.
- [22] W. Takahashi, Y Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), 276–286.
- [23] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), 301–309.

Manuscript received 2 March 2015 revised 26 January 2017

T. Ibaraki

Department of Mathematics Education, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

E-mail address: ibaraki@ynu.ac.jp