

UNIFORMLY NONEXPANSIVE SEQUENCES

KOJI AOYAMA

ABSTRACT. The aim of this paper is to introduce a uniformly nonexpansive sequence and to give some properties and a characterization of the sequence.

1. INTRODUCTION

The aim of this paper is to introduce and study a notion of a sequence of nonexpansive mappings in a Banach space, which is called a uniformly nonexpansive sequence.

This paper is organized as follows: In the third section we see that a uniformly nonexpansive sequence is similar to a strongly nonexpansive sequence discussed in [1, 2]. Indeed, we show that the class of uniformly nonexpansive sequences is properly contained in that of strongly nonexpansive sequences; the uniform nonexpansiveness is preserved under the composition; every sequence of firmly nonexpansive mappings is a uniformly nonexpansive sequence. In the forth section we provide a characterization of a uniformly nonexpansive sequence.

2. Preliminaries

Throughout this paper, E denotes a real Banach space with norm $\|\cdot\|$, C a nonempty subset of E, and \mathbb{N} the set of positive integers.

A mapping $T: C \to E$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. A mapping $T: C \to E$ is said to be firmly nonexpansive [3] if

(2.1)
$$||Tx - Ty|| \le ||r(x - y) + (1 - r)(Tx - Ty)||$$

for all $x, y \in C$ and r > 0. A mapping $T: C \to E$ is said to be strongly nonexpansive [5] if it is nonexpansive and

$$\lim_{n \to \infty} \|x_n - y_n - (Tx_n - Ty_n)\| = 0$$

whenever $\{x_n\}$ and $\{y_n\}$ are two sequences in C such that $\{x_n - y_n\}$ is bounded and $||x_n - y_n|| - ||Tx_n - Ty_n|| \to 0$. It is clear that the identity mapping on E is firmly nonexpansive and strongly nonexpansive; it is also clear that every firmly nonexpansive mapping is nonexpansive. It is known that every firmly nonexpansive mapping is strongly nonexpansive if E is uniformly convex; see [5, Proposition 2.1].

²⁰¹⁰ Mathematics Subject Classification. 47H09, 47H10, 41A65.

 $Key\ words\ and\ phrases.$ Uniformly nonexpansive sequence, strongly nonexpansive mapping, nonexpansive mapping.

Taking [4] into account, we provide an equivalent condition for strong nonexpansiveness as follows (see also Corollary 4.5):

Lemma 2.1. Let T be a mapping of C into E. Then the following are equivalent:

- (1) T is strongly nonexpansive;
- (2) for each M > 0 and $\epsilon > 0$ there exists $\delta > 0$ such that
- $(2.2) \quad u, v \in C, \ \|u v\| \le M, \ \|u v\| \|Tu Tv\| < \delta$

 $\Rightarrow \|u - v - (Tu - Tv)\| < \epsilon.$

Proof. We first show that (2) implies (1). Let $x, y \in C$. If x - y = Tx - Ty, then $||Tx - Ty|| \leq ||x - y||$ holds clearly. Thus we assume that $x - y \neq Tx - Ty$ and set M = ||x - y|| and $\epsilon = ||x - y - (Tx - Ty)||$. Then it is obvious that M > 0 and $\epsilon > 0$. By assumption, there exists $\delta > 0$ such that (2.2) holds. Thus $||x - y|| - ||Tx - Ty|| \geq \delta$ and hence $||Tx - Ty|| \leq ||x - y||$. Therefore we know that T is nonexpansive. Let $\{x_n\}$ and $\{y_n\}$ be sequences in C such that $\{x_n - y_n\}$ is bounded and $||x_n - y_n|| - ||Tx_n - Ty_n|| \to 0$. Set $M = \sup_n ||x_n - y_n||$. Without loss of generality, we may assume that M > 0. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that (2.2) holds. Since $||x_n - y_n|| - ||Tx_n - Ty_n|| \to 0$, there exists $N \in \mathbb{N}$ such that $||x_n - y_n|| - ||Tx_n - Ty_n|| < \delta$ for all $n \geq N$ and hence $||x_n - y_n - (Tx_n - Ty_n)|| < \epsilon$ for all $n \geq N$. This means that $||x_n - y_n - (Tx_n - Ty_n)|| \to 0$. Consequently, we conclude that T is strongly nonexpansive.

We next show that (1) implies (2). Suppose that T is strongly nonexpansive and (2) does not hold. Then there exist M > 0, $\epsilon > 0$, and sequences $\{x_n\}$ and $\{y_n\}$ in C such that

$$||x_n - y_n|| \le M, ||x_n - y_n|| - ||Tx_n - Ty_n|| < 1/n,$$

and $||x_n - y_n - (Tx_n - Ty_n)|| \ge \epsilon.$

Since T is strongly nonexpansive, it follows that $||x_n - y_n|| - ||Tx_n - Ty_n|| \to 0$ and $||x_n - y_n - (Tx_n - Ty_n)|| \to 0$, which is a contradiction.

A sequence $\{T_n\}$ of mappings of C into E is said to be a strongly nonexpansive sequence [1,2] if each T_n is nonexpansive and

$$\lim_{n \to \infty} \|x_n - y_n - (T_n x_n - T_n y_n)\| = 0$$

whenever $\{x_n\}$ and $\{y_n\}$ are two sequences in C such that $\{x_n - y_n\}$ is bounded and $||x_n - y_n|| - ||T_n x_n - T_n y_n|| \to 0.$

We need the following lemma:

Lemma 2.2 ([2, Lemma 2.1]). Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in a uniformly convex Banach space E and $\{\lambda_n\}$ a sequence in [0,1]. Suppose that $\liminf_{n\to\infty} \lambda_n > 0$ and

$$\lambda_n \|x_n\|^2 + (1 - \lambda_n) \|y_n\|^2 - \|\lambda_n x_n + (1 - \lambda_n) y_n\|^2 \to 0.$$

Then $(1 - \lambda_n) ||x_n - y_n|| \to 0.$

The rest of this section, let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$, and D a nonempty subset of H. A mapping $A: D \to H$ is said to be inverse-strongly-monotone if there exists $\alpha > 0$ such that

$$\langle x - y, Ax - Ay \rangle \ge \alpha ||Ax - Ay||^2$$

for all $x, y \in D$. In this case, A is called an α -inverse-strongly-monotone mapping. Let α be a positive real number, $A: D \to H$ an α -inverse-strongly-monotone mapping, and I the identity mapping on H. It is known that

(2.3)
$$||(I - \lambda A)x - (I - \lambda A)y||^2 \le ||x - y||^2 - \lambda(2\alpha - \lambda) ||Ax - Ay||^2$$

holds for all $x, y \in D$ and $\lambda \ge 0$; see, for example, [7]. Thus it follows from (2.3) that $I - \lambda A$ is nonexpansive for $\lambda \in [0, 2\alpha]$.

3. Uniformly nonexpansive sequences

Throughout this section, let C be a nonempty subset of a Banach space E. Inspired by [1, 2, 4], we introduce a uniformly nonexpansive sequence as follows: A sequence $\{T_n\}$ of mappings of C into E is said to be a *uniformly nonexpansive* sequence if for each M > 0 and $\epsilon > 0$ there exists $\delta > 0$ such that

(3.1)
$$n \in \mathbb{N}, x, y \in C, ||x - y|| \le M, ||x - y|| - ||T_n x - T_n y|| < \delta$$

$$\Rightarrow ||x - y - (T_n x - T_n y)|| < \epsilon.$$

Remark 3.1. It is clear from Lemma 2.1 that if $\{T_n\}$ is a uniformly nonexpansive sequence, then each T_n is (strongly) nonexpansive.

A uniformly nonexpansive sequence is an example of a strongly nonexpansive sequence:

Lemma 3.2. Let $\{T_n\}$ be a sequence of mappings of C into E. Suppose that $\{T_n\}$ is a uniformly nonexpansive sequence. Then $\{T_n\}$ is a strongly nonexpansive sequence.

Proof. Let $\{x_n\}$ and $\{y_n\}$ be sequences in C such that $\{x_n - y_n\}$ is bounded and

(3.2)
$$||x_n - y_n|| - ||T_n x_n - T_n y_n|| \to 0$$

Set $M = \sup_n ||x_n - y_n|| + 1$ and let $\epsilon > 0$ be given. Since $\{T_n\}$ is a uniformly nonexpansive sequence, there exists $\delta > 0$ such that (3.1) holds. From (3.2), we see that there exists $N \in \mathbb{N}$ such that $||x_n - y_n|| - ||T_n x_n - T_n y_n|| < \delta$ for all $n \ge N$. Thus it follows from (3.1) that $||x_n - y_n - (T_n x_n - T_n y_n)|| < \epsilon$ for all $n \ge N$, and hence $||x_n - y_n - (T_n x_n - T_n y_n)|| \to 0$. Since each T_n is nonexpansive by Remark 3.1, we conclude that $\{T_n\}$ is a strongly nonexpansive sequence. \Box

We deal with some examples of uniformly nonexpansive sequences and strongly nonexpansive sequences.

Example 3.3. Let $S: C \to E$ be a strongly nonexpansive mapping. Set $T_n = S$ for $n \in \mathbb{N}$. Then $\{T_n\}$ is a uniformly nonexpansive sequence by Lemma 2.1.

The following example shows that the converse of Lemma 3.2 is not true.

KOJI AOYAMA

Example 3.4. Let $T: E \to E$ be a mapping defined by Tx = -x for $x \in E$. Set $S_1 = T$ and $S_n = I$ for $n \ge 2$, where I is the identity mapping on E. Then it is easy to check that $\{S_n\}$ is a strongly nonexpansive sequence and is not a uniformly nonexpansive sequence.

A sequence of firmly nonexpansive mappings is a typical example of a uniformly nonexpansive sequence.

Lemma 3.5. Let $\{T_n\}$ be a sequence of firmly nonexpansive mappings of C into a uniformly convex Banach space E. Then $\{T_n\}$ is a uniformly nonexpansive sequence.

Proof. Suppose that $\{T_n\}$ is not a uniformly nonexpansive sequence. Then there exist M > 0 and $\epsilon > 0$ such that for each $m \in \mathbb{N}$ there exist $x_m, y_m \in C$ and $n_m \in \mathbb{N}$ such that

(3.3)
$$||x_m - y_m|| \le M, ||x_m - y_m|| - ||T_{n_m}x_m - T_{n_m}y_m|| < 1/m,$$

and $||x_m - y_m - (T_{n_m}x_m - T_{n_m}y_m)|| \ge \epsilon.$

Let $r \in (0, 1)$ be fixed. Since each T_{n_m} is firmly nonexpansive, it follows from (2.1) that

$$r \|x_m - y_m\|^2 + (1 - r) \|T_{n_m} x_m - T_{n_m} y_m\|^2 - \|r(x_m - y_m) + (1 - r)(T_{n_m} x_m - T_{n_m} y_m)\|^2 \leq r \left(\|x_m - y_m\|^2 - \|T_{n_m} x_m - T_{n_m} y_m\|^2\right) = r(\|x_m - y_m\| + \|T_{n_m} x_m - T_{n_m} y_m\|)(\|x_m - y_m\| - \|T_{n_m} x_m - T_{n_m} y_m\|) \leq \frac{2rM}{m} \to 0$$

as $m \to \infty$. Thus Lemma 2.2 implies that $||x_m - y_m - (T_{n_m}x_m - T_{n_m}y_m)|| \to 0$, which is a contradiction. Therefore, $\{T_n\}$ is a uniformly nonexpansive sequence. \Box

The following is an example using a monotone mapping in a Hilbert space.

Example 3.6. Let α be a positive real number, D a nonempty subset of a real Hilbert space H, A an α -inverse-strongly-monotone mapping of D into H, I the identity mapping on H, and $\{\lambda_n\}$ a sequence in $[0, 2\alpha)$ such that $0 < \sup_n \lambda_n < 2\alpha$. Set $T_n = I - \lambda_n A$ for $n \in \mathbb{N}$. Then $\{T_n\}$ is a uniformly nonexpansive sequence. Indeed, (2.3) and the nonexpansiveness of T_n imply that

$$\begin{aligned} \|(I-T_n)x - (I-T_n)y\|^2 &= \lambda_n^2 \|Ax - Ay\|^2 \\ &\leq \frac{\lambda_n}{2\alpha - \lambda_n} \left(\|x - y\|^2 - \|T_n x - T_n y\|^2 \right) \\ &\leq 2 \|x - y\| \frac{\sup_n \lambda_n}{2\alpha - \sup_n \lambda_n} (\|x - y\| - \|T_n x - T_n y\|) \end{aligned}$$

for all $x, y \in D$. This shows that $\{T_n\}$ is a uniformly nonexpansive sequence.

We know that the composition of two strongly nonexpansive sequences is a strongly nonexpansive sequence; see [1, Theorem 3.4] and [2, Theorem 3.2]. Uniformly nonexpansive sequences have a similar property as follows:

Theorem 3.7. Let C and D be two nonempty subsets of a Banach space E. Let $\{S_n\}$ be a sequence of mappings of D into E and $\{T_n\}$ a sequence of mappings of C into E. Suppose that both $\{S_n\}$ and $\{T_n\}$ are uniformly nonexpansive sequences and $T_n(C) \subset D$ for each $n \in \mathbb{N}$. Then $\{S_nT_n\}$ is a uniformly nonexpansive sequence.

Proof. Let M > 0 and $\epsilon > 0$ be given. By assumption, there exist $\delta > 0$ such that

$$n \in \mathbb{N}, \, x, y \in D, \, \|x - y\| \le M, \, \|x - y\| - \|S_n x - S_n y\| < \delta$$
$$\Rightarrow \|x - y - (S_n x - S_n y)\| < \epsilon/2$$

and

$$n \in \mathbb{N}, \, x, y \in C, \, \|x - y\| \le M, \, \|x - y\| - \|T_n x - T_n y\| < \delta$$
$$\Rightarrow \|x - y - (T_n x - T_n y)\| < \epsilon/2.$$

Suppose that $u, v \in C$, $||u - v|| \leq M$, and $||u - v|| - ||S_n T_n u - S_n T_n v|| < \delta$. Since S_n and T_n are nonexpansive, we have

$$\begin{aligned} \|u - v\| - \|T_n u - T_n u\| &< \delta, \ \|T_n u - T_n v\| \le \|u - v\| \le M, \\ \text{and} \ \|T_n u - T_n v\| - \|S_n T_n u - S_n T_n u\| < \delta. \end{aligned}$$

Therefore we have

$$\|u - v - (S_n T_n u - S_n T_n v)\|$$

$$\leq \|u - v - (T_n u - T_n v)\| + \|T_n u - T_n v - (S_n T_n u - S_n T_n v)\| < \epsilon.$$

This shows that $\{S_n T_n\}$ is a uniformly nonexpansive sequence.

Example 3.8. Let α , D, H, A, I, $\{\lambda_n\}$, and $\{T_n\}$ be the same as in Example 3.6. Suppose that D is closed and convex. Set $S_n = P_D$ for $n \in \mathbb{N}$, where P_D is the metric projection of D onto H. Since P_D is firmly nonexpansive (see [6]), P_D is strongly nonexpansive. Thus Example 3.3 shows that $\{S_n\}$ is a uniformly nonexpansive sequence. Therefore Example 3.6 and Theorem 3.7 imply that $\{S_nT_n\} = \{P_D(I - \lambda_nA)\}$ is a uniformly nonexpansive sequence.

A uniformly nonexpansive sequence can be generated by a sequence of nonexpansive mappings as follows:

Lemma 3.9. Let $\{\alpha_n\}$ be a sequence in (0,1], $\{S_n\}$ a sequence of nonexpansive mappings of C into E, and I the identity mapping on E. Suppose that $\inf_n \alpha_n > 0$ and E is uniformly convex. Set $T_n = \alpha_n I + (1 - \alpha_n)S_n$ for $n \in \mathbb{N}$. Then $\{T_n\}$ is a uniformly nonexpansive sequence.

Remark 3.10. Under the assumptions of Lemma 3.9, it is clear that if $\alpha_n \neq 1$, then the fixed-point set of S_n is equal to that of T_n .

Lemma 3.9 is a direct consequence of the following theorem; see [1, Theorem 3.11] and [2, Theorem 3.7]:

Theorem 3.11. Let $\{\alpha_n\}$ be a sequence in (0, 1], $\{S_n\}$ a sequence of nonexpansive mappings of C into E, and $\{U_n\}$ a sequence of mappings of C into E. Suppose that $\inf_n \alpha_n > 0$, E is uniformly convex, and $\{U_n\}$ is a uniformly nonexpansive sequence.

KOJI AOYAMA

Set $T_n = \alpha_n U_n + (1 - \alpha_n) S_n$ for $n \in \mathbb{N}$. Then $\{T_n\}$ is a uniformly nonexpansive sequence.

Proof. Suppose that $\{T_n\}$ is not a uniformly nonexpansive sequence. Then there exist M > 0 and $\epsilon > 0$ such that for each $m \in \mathbb{N}$ there exist $x_m, y_m \in C$ and $n_m \in \mathbb{N}$ such that (3.3) holds. Since S_n and U_n are nonexpansive, it is clear from the definition of T_n that

$$0 \le \alpha_n \left(\|x - y\| - \|U_n x - U_n y\| \right) \le \|x - y\| - \|T_n x - T_n y\|$$

for all $x, y \in C$ and $n \in \mathbb{N}$. Taking into account $\inf_n \alpha_n > 0$ and (3.3), we know that $||x_m - y_m|| - ||U_{n_m}x_m - U_{n_m}y_m|| \to 0$, and hence

(3.4)
$$||x_m - y_m - (U_{n_m} x_m - U_{n_m} y_m)|| \to 0$$

because $\{U_n\}$ is a uniformly nonexpansive sequence. On the other hand, since S_n , U_n , and T_n are nonexpansive,

$$\alpha_n \|U_n x - U_n y\|^2 + (1 - \alpha_n) \|S_n x - S_n y\|^2 - \|T_n x - T_n y\|^2$$

$$\leq \|x - y\|^2 - \|T_n x - T_n y\|^2$$

$$\leq 2 \|x - y\| (\|x - y\| - \|T_n x - T_n y\|)$$

for all $x, y \in C$ and $n \in \mathbb{N}$. Thus, (3.3) and Lemma 2.2 imply that

(3.5)
$$(1 - \alpha_{n_m}) \|U_{n_m} x_m - U_{n_m} y_m - (S_{n_m} x_m - S_{n_m} y_m)\| \to 0.$$

Using (3.4) and (3.5), we conclude that

$$\begin{aligned} \|x_m - y_m - (T_{n_m} x_m - T_{n_m} y_m)\| \\ &\leq \|x_m - y_m - (U_{n_m} x_m - U_{n_m} y_m)\| \\ &+ \|U_{n_m} x_m - U_{n_m} y_m - (T_{n_m} x_m - T_{n_m} y_m)\| \\ &= \|x_m - y_m - (U_{n_m} x_m - U_{n_m} y_m)\| \\ &+ (1 - \alpha_{n_m}) \|U_{n_m} x_m - U_{n_m} y_m - (S_{n_m} x_m - S_{n_m} y_m)\| \to 0 \end{aligned}$$

as $m \to \infty$, which contradicts (3.3). Therefore, $\{T_n\}$ is a uniformly nonexpansive sequence.

Proof of Lemma 3.9. Set $U_n = I$ for $n \in \mathbb{N}$. Since I is strongly nonexpansive, Example 3.3 shows that $\{U_n\}$ is a uniformly nonexpansive sequence. Thus Theorem 3.11 implies the conclusion.

4. A CHARACTERIZATION FOR A UNIFORMLY NONEXPANSIVE SEQUENCE

In [5], Bruck and Reich provided an equivalent condition for strong nonexpansiveness; see Corollary 4.5 below. Inspired by the condition, we prove the following:

Theorem 4.1. Let C be a nonempty subset of a Banach space E and $\{T_n\}$ a sequence of mappings of C into E. Then the following are equivalent:

(1) $\{T_n\}$ is a uniformly nonexpansive sequence;

(2) for any M > 0 there exists a nondecreasing function $\gamma \colon [0, 2M] \to [0, M]$ such that $\gamma(t) > 0$ for all $t \in (0, 2M]$ and

(4.1)
$$\gamma(\|x - y - (T_n x - T_n y)\|) \le \|x - y\| - \|T_n x - T_n y\|$$

for all $n \in \mathbb{N}$ and $x, y \in C$ with $||x - y|| \leq M$.

Before proving Theorem 4.1, we show some lemmas. The rest of this section, let C be a nonempty subset of a Banach space E and $\{T_n\}$ a sequence of nonexpansive mappings of C into E.

The following lemma is clear from the nonexpansiveness of T_n .

Lemma 4.2. Suppose that M > 0 and set

(4.2) $L_M = \sup\{\|x - y - (T_n x - T_n y)\| : x, y \in C, \|x - y\| \le M, n \in \mathbb{N}\}.$ Then $0 \le L_M \le 2M.$

Lemma 4.3. Suppose that M > 0 and $L_M = 0$, where L_M is defined by (4.2). Let $\gamma: [0, 2M] \rightarrow [0, M]$ be a function defined by $\gamma(t) = t/2$ for $t \in [0, 2M]$. Then (4.1) holds for all $n \in \mathbb{N}$ and $x, y \in C$ with $||x - y|| \leq M$.

Proof. Let $x, y \in C$ with $||x - y|| \leq M$. Then $||x - y - (T_n x - T_n y)|| \leq L_M = 0$. Since T_n is nonexpansive, it follows that $\gamma(||x - y - (T_n x - T_n y)||) = 0 \leq ||x - y|| - ||T_n x - T_n y||$ for all $n \in \mathbb{N}$.

Lemma 4.4. Suppose that M > 0, $\{T_n\}$ is a uniformly nonexpansive sequence, and $L_M > 0$, where L_M is defined by (4.2). Let $\gamma: [0, L_M) \to [0, M]$ be a function defined by

(4.3)
$$\gamma(t) = \inf\{\|u - v\| - \|T_n u - T_n v\|:$$

 $n \in \mathbb{N}, u, v \in C, \|u - v\| \le M, \|u - v - (T_n u - T_n v)\| \ge t\}$

for $t \in [0, L_M)$. Then the following hold:

- (1) $0 \leq \gamma(t) \leq M$ for all $t \in [0, L_M)$;
- (2) γ is nondecreasing;
- (3) (4.1) holds if $n \in \mathbb{N}$, $x, y \in C$, $||x y|| \le M$, and $||x y (T_n x T_n y)|| < L_M$;
- (4) $\gamma(0) = 0 \text{ and } \gamma(t) > 0 \text{ if } t \in (0, L_M).$

Proof. Let $t \in [0, L_M)$ be fixed. Then, by the definition of L_M , there exist $x, y \in C$ and $n \in \mathbb{N}$ such that $||x - y|| \leq M$ and $||x - y - (T_n x - T_n y)|| > t$. Thus $\gamma(t) < \infty$. Since T_n is nonexpansive, it is clear that

$$0 \le \gamma(t) \le ||x - y|| - ||T_n x - T_n y|| \le ||x - y|| \le M.$$

Therefore, (1) holds.

(2) and (3) follow from the definition of γ .

Lastly, we show (4). It is easy to verify that $\gamma(0) = 0$. Suppose that there exists $t \in (0, L_M)$ with $\gamma(t) = 0$. By the definition of γ , for each $m \in \mathbb{N}$, there exist $u_m, v_m \in C$ and $n_m \in \mathbb{N}$ such that

$$\begin{aligned} \|u_m - v_m\| &\leq M, \ \|u_m - v_m - (T_{n_m}u_m - T_{n_m}v_m)\| \geq t, \\ \text{and} \ \|u_m - v_m\| - \|T_{n_m}u_m - T_{n_m}v_m\| < 1/m. \end{aligned}$$

KOJI AOYAMA

Since $\{T_n\}$ is a uniformly nonexpansive sequence, there exists $\delta > 0$ such that

$$n \in \mathbb{N}, ||x - y|| \le M, ||x - y|| - ||T_n x - T_n y|| < \delta$$

 $\Rightarrow ||x - y - (T_n x - T_n y)|| < t/2.$

Choosing $m \in \mathbb{N}$ satisfying that $1/m < \delta$, we have $||u_m - v_m|| \le M$, $||u_m - v_m|| - ||T_{n_m}u_m - T_{n_m}v_m|| < \delta$, and

$$t \le ||u_m - v_m - (T_{n_m}u_m - T_{n_m}v_m)|| < t/2,$$

which is a contradiction. Therefore, (4) holds.

Using lemmas above, we can prove Theorem 4.1.

Proof of Theorem 4.1. We first show that (1) implies (2). Let M be a positive real number and L_M a real number defined by (4.2). Lemma 4.2 shows that $0 \le L_M \le$ 2M. If $L_M = 0$, then the assertion follows from Lemma 4.3. Suppose that $L_M > 0$ and γ is a function defined by (4.3) for $t \in [0, L_M)$. Lemma 4.4 implies that γ can be extended to a function defined on [0, 2M] as follows:

$$\gamma(t) = \sup\{\gamma(s) : 0 \le s < L_M\} \text{ for } t \in [L_M, 2M].$$

Using Lemma 4.4, we know that the extended γ is the desired function.

We next show that (2) implies (1). Suppose that $\{T_n\}$ is not a uniformly nonexpansive sequence. Then there exist M > 0 and $\epsilon > 0$ such that for each $m \in \mathbb{N}$ there exist $x_m, y_m \in C$ and $n_m \in \mathbb{N}$ such that (3.3) holds. By (2), there exists a nondecreasing function $\gamma: [0, 2M] \to [0, M]$ such that $\gamma(t) > 0$ for all $t \in (0, 2M]$ and (4.1) holds for all $n \in \mathbb{N}$ and $x, y \in C$ with $||x - y|| \leq M$. Thus it follows that

$$0 < \gamma(\epsilon) \le \gamma(\|x_m - y_m - (T_{n_m}x_m - T_{n_m}y_m)\|)$$

$$\le \|x_m - y_m\| - \|T_{n_m}x_m - T_{n_m}y_m\| < 1/m \to 0$$

as $m \to \infty$, which is a contradiction. Therefore, $\{T_n\}$ is a uniformly nonexpansive sequence.

Using Theorem 4.1, we obtain the following:

Corollary 4.5 ([5]). Let C be a nonempty subset of a Banach space E and T a mapping of C into E. Then the following are equivalent:

- (1) T is strongly nonexpansive;
- (2) for any M > 0, there exists a nondecreasing function $\gamma \colon [0, 2M] \to [0, M]$ such that $\gamma(t) > 0$ for all $t \in (0, 2M]$ and

$$\gamma(\|x - y - (Tx - Ty)\|) \le \|x - y\| - \|Tx - Ty\|$$

for all $x, y \in C$ with $||x - y|| \leq M$.

186

References

- K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal. 8 (2007), 471–489.
- [2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Strongly nonexpansive sequences and their applications in Banach spaces in: Fixed Point Theory and its Applications, Yokohama Publ., Yokohama, 2008, pp. 1–18.
- [3] R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 47 (1973), 341–355.
- [4] R. E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), 319–332.
- [5] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459–470.
- [6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
- [7] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.

Manuscript received 2 March 2015 revised 4 November 2015

Којі Аоуама

Department of Economics, Chiba University, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522 Japan

E-mail address: aoyama@le.chiba-u.ac.jp