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Taking [4] into account, we provide an equivalent condition for strong nonexpan-
siveness as follows (see also Corollary 4.5):

Lemma 2.1. Let T be a mapping of C into E. Then the following are equivalent:

(1) T is strongly nonexpansive;
(2) for each M > 0 and ϵ > 0 there exists δ > 0 such that

(2.2) u, v ∈ C, ∥u− v∥ ≤ M, ∥u− v∥ − ∥Tu− Tv∥ < δ

⇒ ∥u− v − (Tu− Tv)∥ < ϵ.

Proof. We first show that (2) implies (1). Let x, y ∈ C. If x − y = Tx − Ty,
then ∥Tx− Ty∥ ≤ ∥x− y∥ holds clearly. Thus we assume that x − y ̸= Tx − Ty
and set M = ∥x− y∥ and ϵ = ∥x− y − (Tx− Ty)∥. Then it is obvious that M >
0 and ϵ > 0. By assumption, there exists δ > 0 such that (2.2) holds. Thus
∥x− y∥−∥Tx− Ty∥ ≥ δ and hence ∥Tx− Ty∥ ≤ ∥x− y∥. Therefore we know that
T is nonexpansive. Let {xn} and {yn} be sequences in C such that {xn − yn} is
bounded and ∥xn − yn∥−∥Txn − Tyn∥ → 0. SetM = supn ∥xn − yn∥. Without loss
of generality, we may assume that M > 0. Let ϵ > 0. Then there exists δ > 0 such
that (2.2) holds. Since ∥xn − yn∥−∥Txn − Tyn∥ → 0, there exists N ∈ N such that
∥xn − yn∥−∥Txn − Tyn∥ < δ for all n ≥ N and hence ∥xn − yn − (Txn − Tyn)∥ < ϵ
for all n ≥ N . This means that ∥xn − yn − (Txn − Tyn)∥ → 0. Consequently, we
conclude that T is strongly nonexpansive.

We next show that (1) implies (2). Suppose that T is strongly nonexpansive and
(2) does not hold. Then there exist M > 0, ϵ > 0, and sequences {xn} and {yn} in
C such that

∥xn − yn∥ ≤ M, ∥xn − yn∥ − ∥Txn − Tyn∥ < 1/n,

and ∥xn − yn − (Txn − Tyn)∥ ≥ ϵ.

Since T is strongly nonexpansive, it follows that ∥xn − yn∥−∥Txn − Tyn∥ → 0 and
∥xn − yn − (Txn − Tyn)∥ → 0, which is a contradiction. �

A sequence {Tn} of mappings of C into E is said to be a strongly nonexpansive
sequence [1, 2] if each Tn is nonexpansive and

lim
n→∞

∥xn − yn − (Tnxn − Tnyn)∥ = 0

whenever {xn} and {yn} are two sequences in C such that {xn − yn} is bounded
and ∥xn − yn∥ − ∥Tnxn − Tnyn∥ → 0.

We need the following lemma:

Lemma 2.2 ( [2, Lemma 2.1]). Let {xn} and {yn} be two bounded sequences in
a uniformly convex Banach space E and {λn} a sequence in [0, 1]. Suppose that
lim infn→∞ λn > 0 and

λn ∥xn∥2 + (1− λn) ∥yn∥2 − ∥λnxn + (1− λn)yn∥2 → 0.

Then (1− λn) ∥xn − yn∥ → 0.
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The rest of this section, let H be a real Hilbert space with inner product ⟨ · , · ⟩
and induced norm ∥ · ∥, and D a nonempty subset of H. A mapping A : D → H is
said to be inverse-strongly-monotone if there exists α > 0 such that

⟨x− y,Ax−Ay⟩ ≥ α ∥Ax−Ay∥2

for all x, y ∈ D. In this case, A is called an α-inverse-strongly-monotone map-
ping. Let α be a positive real number, A : D → H an α-inverse-strongly-monotone
mapping, and I the identity mapping on H. It is known that

(2.3) ∥(I − λA)x− (I − λA)y∥2 ≤ ∥x− y∥2 − λ(2α− λ) ∥Ax−Ay∥2

holds for all x, y ∈ D and λ ≥ 0; see, for example, [7]. Thus it follows from (2.3)
that I − λA is nonexpansive for λ ∈ [0, 2α].

3. Uniformly nonexpansive sequences

Throughout this section, let C be a nonempty subset of a Banach space E.
Inspired by [1, 2, 4], we introduce a uniformly nonexpansive sequence as follows:
A sequence {Tn} of mappings of C into E is said to be a uniformly nonexpansive
sequence if for each M > 0 and ϵ > 0 there exists δ > 0 such that

(3.1) n ∈ N, x, y ∈ C, ∥x− y∥ ≤ M, ∥x− y∥ − ∥Tnx− Tny∥ < δ

⇒ ∥x− y − (Tnx− Tny)∥ < ϵ.

Remark 3.1. It is clear from Lemma 2.1 that if {Tn} is a uniformly nonexpansive
sequence, then each Tn is (strongly) nonexpansive.

A uniformly nonexpansive sequence is an example of a strongly nonexpansive
sequence:

Lemma 3.2. Let {Tn} be a sequence of mappings of C into E. Suppose that {Tn} is
a uniformly nonexpansive sequence. Then {Tn} is a strongly nonexpansive sequence.

Proof. Let {xn} and {yn} be sequences in C such that {xn − yn} is bounded and

(3.2) ∥xn − yn∥ − ∥Tnxn − Tnyn∥ → 0.

Set M = supn ∥xn − yn∥ + 1 and let ϵ > 0 be given. Since {Tn} is a uniformly
nonexpansive sequence, there exists δ > 0 such that (3.1) holds. From (3.2), we
see that there exists N ∈ N such that ∥xn − yn∥ − ∥Tnxn − Tnyn∥ < δ for all
n ≥ N . Thus it follows from (3.1) that ∥xn − yn − (Tnxn − Tnyn)∥ < ϵ for all
n ≥ N , and hence ∥xn − yn − (Tnxn − Tnyn)∥ → 0. Since each Tn is nonexpansive
by Remark 3.1, we conclude that {Tn} is a strongly nonexpansive sequence. �

We deal with some examples of uniformly nonexpansive sequences and strongly
nonexpansive sequences.

Example 3.3. Let S : C → E be a strongly nonexpansive mapping. Set Tn = S
for n ∈ N. Then {Tn} is a uniformly nonexpansive sequence by Lemma 2.1.

The following example shows that the converse of Lemma 3.2 is not true.
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Example 3.4. Let T : E → E be a mapping defined by Tx = −x for x ∈ E. Set
S1 = T and Sn = I for n ≥ 2, where I is the identity mapping on E. Then it is
easy to check that {Sn} is a strongly nonexpansive sequence and is not a uniformly
nonexpansive sequence.

A sequence of firmly nonexpansive mappings is a typical example of a uniformly
nonexpansive sequence.

Lemma 3.5. Let {Tn} be a sequence of firmly nonexpansive mappings of C into
a uniformly convex Banach space E. Then {Tn} is a uniformly nonexpansive se-
quence.

Proof. Suppose that {Tn} is not a uniformly nonexpansive sequence. Then there
exist M > 0 and ϵ > 0 such that for each m ∈ N there exist xm, ym ∈ C and nm ∈ N
such that

(3.3) ∥xm − ym∥ ≤ M, ∥xm − ym∥ − ∥Tnmxm − Tnmym∥ < 1/m,

and ∥xm − ym − (Tnmxm − Tnmym)∥ ≥ ϵ.

Let r ∈ (0, 1) be fixed. Since each Tnm is firmly nonexpansive, it follows from (2.1)
that

r ∥xm − ym∥2 + (1− r) ∥Tnmxm − Tnmym∥2

− ∥r(xm − ym) + (1− r)(Tnmxm − Tnmym)∥2

≤ r
(
∥xm − ym∥2 − ∥Tnmxm − Tnmym∥2

)
= r(∥xm − ym∥+ ∥Tnmxm − Tnmym∥)(∥xm − ym∥ − ∥Tnmxm − Tnmym∥)

≤ 2rM

m
→ 0

as m → ∞. Thus Lemma 2.2 implies that ∥xm − ym − (Tnmxm − Tnmym)∥ → 0,
which is a contradiction. Therefore, {Tn} is a uniformly nonexpansive sequence. �

The following is an example using a monotone mapping in a Hilbert space.

Example 3.6. Let α be a positive real number, D a nonempty subset of a real
Hilbert space H, A an α-inverse-strongly-monotone mapping of D into H, I the
identity mapping on H, and {λn} a sequence in [0, 2α) such that 0 < supn λn < 2α.
Set Tn = I − λnA for n ∈ N. Then {Tn} is a uniformly nonexpansive sequence.
Indeed, (2.3) and the nonexpansiveness of Tn imply that

∥(I − Tn)x− (I − Tn)y∥2 = λ2
n ∥Ax−Ay∥2

≤ λn

2α− λn

(
∥x− y∥2 − ∥Tnx− Tny∥2

)
≤ 2 ∥x− y∥ supn λn

2α− supn λn
(∥x− y∥ − ∥Tnx− Tny∥)

for all x, y ∈ D. This shows that {Tn} is a uniformly nonexpansive sequence.

We know that the composition of two strongly nonexpansive sequences is a
strongly nonexpansive sequence; see [1, Theorem 3.4] and [2, Theorem 3.2]. Uni-
formly nonexpansive sequences have a similar property as follows:
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Theorem 3.7. Let C and D be two nonempty subsets of a Banach space E. Let
{Sn} be a sequence of mappings of D into E and {Tn} a sequence of mappings of C
into E. Suppose that both {Sn} and {Tn} are uniformly nonexpansive sequences and
Tn(C) ⊂ D for each n ∈ N. Then {SnTn} is a uniformly nonexpansive sequence.

Proof. Let M > 0 and ϵ > 0 be given. By assumption, there exist δ > 0 such that

n ∈ N, x, y ∈ D, ∥x− y∥ ≤ M, ∥x− y∥ − ∥Snx− Sny∥ < δ

⇒ ∥x− y − (Snx− Sny)∥ < ϵ/2

and

n ∈ N, x, y ∈ C, ∥x− y∥ ≤ M, ∥x− y∥ − ∥Tnx− Tny∥ < δ

⇒ ∥x− y − (Tnx− Tny)∥ < ϵ/2.

Suppose that u, v ∈ C, ∥u− v∥ ≤ M , and ∥u− v∥ − ∥SnTnu− SnTnv∥ < δ. Since
Sn and Tn are nonexpansive, we have

∥u− v∥ − ∥Tnu− Tnu∥ < δ, ∥Tnu− Tnv∥ ≤ ∥u− v∥ ≤ M,

and ∥Tnu− Tnv∥ − ∥SnTnu− SnTnu∥ < δ.

Therefore we have

∥u− v − (SnTnu− SnTnv)∥
≤ ∥u− v − (Tnu− Tnv)∥+ ∥Tnu− Tnv − (SnTnu− SnTnv)∥ < ϵ.

This shows that {SnTn} is a uniformly nonexpansive sequence. �
Example 3.8. Let α, D, H, A, I, {λn}, and {Tn} be the same as in Example 3.6.
Suppose thatD is closed and convex. Set Sn = PD for n ∈ N, where PD is the metric
projection of D onto H. Since PD is firmly nonexpansive (see [6]), PD is strongly
nonexpansive. Thus Example 3.3 shows that {Sn} is a uniformly nonexpansive
sequence. Therefore Example 3.6 and Theorem 3.7 imply that {SnTn} = {PD(I −
λnA)} is a uniformly nonexpansive sequence.

A uniformly nonexpansive sequence can be generated by a sequence of nonex-
pansive mappings as follows:

Lemma 3.9. Let {αn} be a sequence in (0, 1], {Sn} a sequence of nonexpansive
mappings of C into E, and I the identity mapping on E. Suppose that infn αn > 0
and E is uniformly convex. Set Tn = αnI + (1− αn)Sn for n ∈ N. Then {Tn} is a
uniformly nonexpansive sequence.

Remark 3.10. Under the assumptions of Lemma 3.9, it is clear that if αn ̸= 1,
then the fixed-point set of Sn is equal to that of Tn.

Lemma 3.9 is a direct consequence of the following theorem; see [1, Theorem 3.11]
and [2, Theorem 3.7]:

Theorem 3.11. Let {αn} be a sequence in (0, 1], {Sn} a sequence of nonexpansive
mappings of C into E, and {Un} a sequence of mappings of C into E. Suppose that
infn αn > 0, E is uniformly convex, and {Un} is a uniformly nonexpansive sequence.
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Set Tn = αnUn + (1 − αn)Sn for n ∈ N. Then {Tn} is a uniformly nonexpansive
sequence.

Proof. Suppose that {Tn} is not a uniformly nonexpansive sequence. Then there
exist M > 0 and ϵ > 0 such that for each m ∈ N there exist xm, ym ∈ C and
nm ∈ N such that (3.3) holds. Since Sn and Un are nonexpansive, it is clear from
the definition of Tn that

0 ≤ αn (∥x− y∥ − ∥Unx− Uny∥) ≤ ∥x− y∥ − ∥Tnx− Tny∥

for all x, y ∈ C and n ∈ N. Taking into account infn αn > 0 and (3.3), we know
that ∥xm − ym∥ − ∥Unmxm − Unmym∥ → 0, and hence

(3.4) ∥xm − ym − (Unmxm − Unmym)∥ → 0

because {Un} is a uniformly nonexpansive sequence. On the other hand, since Sn,
Un, and Tn are nonexpansive,

αn ∥Unx− Uny∥2 + (1− αn) ∥Snx− Sny∥2 − ∥Tnx− Tny∥2

≤ ∥x− y∥2 − ∥Tnx− Tny∥2

≤ 2 ∥x− y∥ (∥x− y∥ − ∥Tnx− Tny∥)

for all x, y ∈ C and n ∈ N. Thus, (3.3) and Lemma 2.2 imply that

(3.5) (1− αnm) ∥Unmxm − Unmym − (Snmxm − Snmym)∥ → 0.

Using (3.4) and (3.5), we conclude that

∥xm − ym − (Tnmxm − Tnmym)∥
≤ ∥xm − ym − (Unmxm − Unmym)∥

+ ∥Unmxm − Unmym − (Tnmxm − Tnmym)∥
= ∥xm − ym − (Unmxm − Unmym)∥

+ (1− αnm) ∥Unmxm − Unmym − (Snmxm − Snmym)∥ → 0

as m → ∞, which contradicts (3.3). Therefore, {Tn} is a uniformly nonexpansive
sequence. �

Proof of Lemma 3.9. Set Un = I for n ∈ N. Since I is strongly nonexpansive, Exam-
ple 3.3 shows that {Un} is a uniformly nonexpansive sequence. Thus Theorem 3.11
implies the conclusion. �

4. A characterization for a uniformly nonexpansive sequence

In [5], Bruck and Reich provided an equivalent condition for strong nonexpan-
siveness; see Corollary 4.5 below. Inspired by the condition, we prove the following:

Theorem 4.1. Let C be a nonempty subset of a Banach space E and {Tn} a
sequence of mappings of C into E. Then the following are equivalent:

(1) {Tn} is a uniformly nonexpansive sequence;
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(2) for any M > 0 there exists a nondecreasing function γ : [0, 2M ] → [0,M ]
such that γ(t) > 0 for all t ∈ (0, 2M ] and

(4.1) γ(∥x− y − (Tnx− Tny)∥) ≤ ∥x− y∥ − ∥Tnx− Tny∥
for all n ∈ N and x, y ∈ C with ∥x− y∥ ≤ M .

Before proving Theorem 4.1, we show some lemmas. The rest of this section, let
C be a nonempty subset of a Banach space E and {Tn} a sequence of nonexpansive
mappings of C into E.

The following lemma is clear from the nonexpansiveness of Tn.

Lemma 4.2. Suppose that M > 0 and set

(4.2) LM = sup{∥x− y − (Tnx− Tny)∥ : x, y ∈ C, ∥x− y∥ ≤ M, n ∈ N}.
Then 0 ≤ LM ≤ 2M .

Lemma 4.3. Suppose that M > 0 and LM = 0, where LM is defined by (4.2). Let
γ : [0, 2M ] → [0,M ] be a function defined by γ(t) = t/2 for t ∈ [0, 2M ]. Then (4.1)
holds for all n ∈ N and x, y ∈ C with ∥x− y∥ ≤ M .

Proof. Let x, y ∈ C with ∥x− y∥ ≤ M . Then ∥x− y − (Tnx− Tny)∥ ≤ LM = 0.
Since Tn is nonexpansive, it follows that γ(∥x− y − (Tnx− Tny)∥) = 0 ≤ ∥x− y∥−
∥Tnx− Tny∥ for all n ∈ N. �
Lemma 4.4. Suppose that M > 0, {Tn} is a uniformly nonexpansive sequence,
and LM > 0, where LM is defined by (4.2). Let γ : [0, LM ) → [0,M ] be a function
defined by

(4.3) γ(t) = inf{∥u− v∥ − ∥Tnu− Tnv∥ :

n ∈ N, u, v ∈ C, ∥u− v∥ ≤ M, ∥u− v − (Tnu− Tnv)∥ ≥ t}
for t ∈ [0, LM ). Then the following hold:

(1) 0 ≤ γ(t) ≤ M for all t ∈ [0, LM );
(2) γ is nondecreasing;
(3) (4.1) holds if n ∈ N, x, y ∈ C, ∥x− y∥ ≤ M , and ∥x− y − (Tnx− Tny)∥ <

LM ;
(4) γ(0) = 0 and γ(t) > 0 if t ∈ (0, LM ).

Proof. Let t ∈ [0, LM ) be fixed. Then, by the definition of LM , there exist x, y ∈ C
and n ∈ N such that ∥x− y∥ ≤ M and ∥x− y − (Tnx− Tny)∥ > t. Thus γ(t) < ∞.
Since Tn is nonexpansive, it is clear that

0 ≤ γ(t) ≤ ∥x− y∥ − ∥Tnx− Tny∥ ≤ ∥x− y∥ ≤ M.

Therefore, (1) holds.
(2) and (3) follow from the definition of γ.
Lastly, we show (4). It is easy to verify that γ(0) = 0. Suppose that there exists

t ∈ (0, LM ) with γ(t) = 0. By the definition of γ, for each m ∈ N, there exist
um, vm ∈ C and nm ∈ N such that

∥um − vm∥ ≤ M, ∥um − vm − (Tnmum − Tnmvm)∥ ≥ t,

and ∥um − vm∥ − ∥Tnmum − Tnmvm∥ < 1/m.
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Since {Tn} is a uniformly nonexpansive sequence, there exists δ > 0 such that

n ∈ N, ∥x− y∥ ≤ M, ∥x− y∥ − ∥Tnx− Tny∥ < δ

⇒ ∥x− y − (Tnx− Tny)∥ < t/2.

Choosing m ∈ N satisfying that 1/m < δ, we have ∥um − vm∥ ≤ M , ∥um − vm∥ −
∥Tnmum − Tnmvm∥ < δ, and

t ≤ ∥um − vm − (Tnmum − Tnmvm)∥ < t/2,

which is a contradiction. Therefore, (4) holds. �

Using lemmas above, we can prove Theorem 4.1.

Proof of Theorem 4.1. We first show that (1) implies (2). Let M be a positive real
number and LM a real number defined by (4.2). Lemma 4.2 shows that 0 ≤ LM ≤
2M . If LM = 0, then the assertion follows from Lemma 4.3. Suppose that LM > 0
and γ is a function defined by (4.3) for t ∈ [0, LM ). Lemma 4.4 implies that γ can
be extended to a function defined on [0, 2M ] as follows:

γ(t) = sup{γ(s) : 0 ≤ s < LM} for t ∈ [LM , 2M ].

Using Lemma 4.4, we know that the extended γ is the desired function.
We next show that (2) implies (1). Suppose that {Tn} is not a uniformly non-

expansive sequence. Then there exist M > 0 and ϵ > 0 such that for each m ∈ N
there exist xm, ym ∈ C and nm ∈ N such that (3.3) holds. By (2), there exists a
nondecreasing function γ : [0, 2M ] → [0,M ] such that γ(t) > 0 for all t ∈ (0, 2M ]
and (4.1) holds for all n ∈ N and x, y ∈ C with ∥x− y∥ ≤ M . Thus it follows that

0 < γ(ϵ) ≤ γ(∥xm − ym − (Tnmxm − Tnmym)∥)
≤ ∥xm − ym∥ − ∥Tnmxm − Tnmym∥ < 1/m → 0

as m → ∞, which is a contradiction. Therefore, {Tn} is a uniformly nonexpansive
sequence. �

Using Theorem 4.1, we obtain the following:

Corollary 4.5 ([5]). Let C be a nonempty subset of a Banach space E and T a
mapping of C into E. Then the following are equivalent:

(1) T is strongly nonexpansive;
(2) for any M > 0, there exists a nondecreasing function γ : [0, 2M ] → [0,M ]

such that γ(t) > 0 for all t ∈ (0, 2M ] and

γ(∥x− y − (Tx− Ty)∥) ≤ ∥x− y∥ − ∥Tx− Ty∥

for all x, y ∈ C with ∥x− y∥ ≤ M .
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