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An interesting example of Problem 1.1 is the support vector machine (SVM) opti-
mization problem [3,13,14] defined as follows: given a training set S := {(xm, ym)}Mm=1,
where xm ∈ Rn−1 and ym ∈ {+1,−1},

minimize
λ

2
∥w∥2 + E [l((w, b); (x, y))] subject to (w, b) ∈ X,(1.1)

where X ⊂ Rn−1 × R is a simple closed convex set (e.g., a closed ball with large
enough radius), λ > 0 is the regularization parameter, the pairs (xt, yt) ∈ S for
t ≥ 1 are independent and identically distributed, and for a given (x, y) ∈ Rn−1×R,
l((w, b); (x, y)) := max{0, 1− y(⟨w, x⟩+ b)} ((w, b) ∈ Rn−1 × R).

The classical method for solving Problem 1.1 is the projected stochastic subgra-
dient method [2, (5.4.1)], [10, (1)], [11, (2.1)] defined as follows: given w0 ∈ Rn and
(γt)t≥1 ⊂ [0,+∞),

wt := PX (wt−1 − γtG(wt−1, ξt−1)) (t ≥ 1),(1.2)

where PX stands for the metric projection onto X, and it is assumed that (i) there
is an independent identically distributed sample ξ0, ξ1, . . . of realizations of random
vector ξ and that (ii) there is an oracle which, for a given input point (w, ξ) ∈ X×Ξ,
returns a stochastic subgradient G(w, ξ) such that g(w) := E[G(w, ξ)] is well defined
and is a subgradient of f at w (i.e., g(w) ∈ ∂f(w)) [10, (b)], [11, (A1), (A2)]. The
previously reported results [10, Section 3.2], [11, (2.9))] show that Algorithm (1.2)
with γt := θ/(t+ 1) satisfies that, for all t ≥ 1,

E
[
∥wt − w⋆∥2

]
= O

(
1

t

)
,(1.3)

where θ > 0 is a constant depending on the strong convexity constant of f and w⋆

is the unique solution to Problem 1.1.
Meanwhile, the conjugate gradient methods [12, Chapter 5] are the most popular

methods that can accelerate the steepest descent method for a problem of minimiz-
ing a smooth function h : Rn → R over a whole space Rn. The search direction of
the conjugate gradient method is defined for all t ≥ 1 by

dt := −∇h (wt−1) + βtdt−1,(1.4)

where wt−1 is the (t − 1)th approximation to the problem, dt−1 is the (t − 1)th
search direction, ∇h stands for the gradient of h, and βt ≥ 0 (t ≥ 1). The well-
known formulas of βt [12, Chapter 5] are, for example, the Fletcher–Reeves, Polak–
Ribiére–Polyak, Hestenes–Stiefel, and Dai–Yuan formulas. The formulas do not
always satisfy limt→∞ βt = 0.

There are some algorithms [5–9] using (1.4) with limt→∞ βt = 0 for deterministic
constrained convex optimization. To distinguish between the conventional conjugate
gradient directions with the four formulas and the direction with limt→∞ βt = 0,
we call the latter the conjugate gradient-like direction. The previously reported
results [5–8] showed that the gradient algorithms with the conjugate gradient-like
directions converge faster than the algorithm [15] with the steepest descent direction.

From the above discussion, we can present the following novel stochastic subgra-
dient method using (1.2) and (1.4), where∇h(wt−1) is replaced with −G(wt−1, ξt−1),



CONVERGENCE RATE ANALYSIS OF STOCHASTIC SUBGRADIENT METHOD 205

for solving Problem 1.1: given w0 ∈ Rn and d0 := −G (w0, ξ0),

dt := −G (wt−1, ξt−1) + βtdt−1,

wt := PX (wt−1 + γtdt) (t ≥ 1).
(1.5)

The proposed method with βt := 0 (t ≥ 1) coincides with the classical projected
stochastic subgradient method (1.2). In this paper, we show that the proposed
method achieves a convergence rate of O(t−1) under certain assumptions (Theorem
3.1). Finally, we apply the existing and proposed methods to the SVM optimization
problem for the LIBSVM Data [3] and compare numerically the existing method
(1.2) [10, 11] with the proposed method (1.5). The numerical result demonstrates
that the proposed method performed better than the existing one.

This paper is organized as follows. Section 2 gives the mathematical preliminaries.
Section 3 presents the proposed projected stochastic subgradient method for solving
the main problem and describes its convergence rate. Section 4 presents numerical
evaluation using the LIBSVM Data [3] and compares the behaviors of the existing
and proposed methods. Section 5 concludes the paper with a brief summary.

2. Mathematical preliminaries

Let Rn be an n-dimensional Euclidean space with inner product ⟨·, ·⟩ and its
induced norm ∥ · ∥. We denote the history of the process ξ0, ξ1, . . . up to time
t by ξ[t] = (ξ0, ξ1, . . . , ξt). Unless stated otherwise, all relations between random
variables are supported to hold almost surely.

The metric projection [1, Subchapter 4.2, Chapter 28] onto a nonempty, closed
convex set X ⊂ Rn, denoted by PX , is defined for all x ∈ Rn by PX(x) ∈ X and
∥x−PX(x)∥ = infy∈X ∥x−y∥. PX is nonexpansive, i.e., ∥PX(x)−PX(y)∥ ≤ ∥x−y∥
for all x, y ∈ Rn, and Fix(PX) := {x ∈ Rn : PX(x) = x} = C [1, Proposition 4.8,
(4.8)].

Let c > 0. A function f : Rn → R is said to be c-strongly convex [1, Definition 10.5]
if, for all x, y ∈ Rn and for all α ∈ (0, 1), f(αx+(1−α)y)+(cα(1−α)/2)∥x−y∥2 ≤
αf(x)+(1−α)f(y). The subdifferential [1, Definition 16.1] of f : Rn → R is defined
for all x ∈ Rn by

∂f(x) := {u ∈ H : f(y) ≥ f(x) + ⟨y − x, u⟩ (y ∈ Rn)} .

We call u ∈ ∂f(x) the subgradient of f at x ∈ Rn. If f is c-strongly convex, ∂f is
strongly monotone; i.e., ⟨x−y, u−v⟩ ≥ c∥x−y∥2 (x, y ∈ Rn, u ∈ ∂f(x), v ∈ ∂f(y)) [1,
Example 22.3(iv)]. Let L > 0. f : Rn → R is L-Lipschitz continuous [1, Definition
1.46] if |f(x)− f(y)| ≤ L∥x− y∥ for all x, y ∈ Rn. f is locally Lipschitz continuous
near a point x ∈ Rn if there exists ρ > 0 such that f |B(x;ρ) is Lipschitz continuous,
where B(x; ρ) stands for closed ball with center x and radius ρ. f is L-locally
Lipschitz continuous on a subset X ⊂ Rn [1, Definition 1.46] if it is locally Lipschitz
continuous near every point in X.

Proposition 2.1 ( [4, Proposition 3.1(ii)]). Let f : Rn → R be locally Lipschitz
continuous on a nonempty, closed convex set X ⊂ Rn. Then, f is c-strongly convex
if and only if, for all x, y ∈ X and for all u ∈ ∂f(y), f(x) − f(y) ≥ ⟨u, x − y⟩ +
c∥x− y∥2.
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3. Convergence rate analysis of proposed method

The following establishes the rate of convergence of the proposed method (1.5)
for solving Problem 1.1.

Theorem 3.1. Assume that the conditions in Problem 1.1, (i), and (ii) hold and
(iii) there exists a positive number B such that E[∥G(w, ξ)∥2] ≤ B2 for all (w, ξ) ∈
X × Ξ. Then the sequence (wt)t≥0 generated by (1.5) satisfies the following:

(a) If γt := 1/(ct) and βt ≤ 1/t for all t ≥ 1, then, for all t ≥ 1,

E
[
∥wt − w⋆∥2

]
= O

(
1 + log t

t

)
.

(b) If γt := 2/(c(t+ 1)) and βt ≤ 1/t for all t ≥ 1, then, for all t ≥ 1,

E
[
∥wt − w⋆∥2

]
= O

(
1

t

)
.

Proof. We first shaw that (E[∥dt∥])t≥0 is bounded. Jensen’s inequality and (iii) en-
sure that E[∥G(w, ξ)∥] ≤ B for all (w, ξ) ∈ X×Ξ, which implies that E[∥G(wt, ξt)∥] ≤
B for all t ≥ 0. The condition βt ≤ 1/t (t ≥ 1) means limt→∞ βt = 0. Accordingly,
there exists t0 ≥ 1 such that, for all t ≥ t0, βt ≤ 1/2. Putting R := max{B,E[∥d0∥]}
means that E[∥d0∥] ≤ 2R. Assume that E[∥dt∥] ≤ 2R for some t ≥ t0. Then the
triangle inequality leads to the finding that

∥dt+1∥ = ∥−G (wt, ξt) + βt+1dt∥ ≤ ∥G (wt, ξt)∥+
1

2
∥dt∥ .

Taking the expectation of both sides of the above inequality implies that

E [∥dt+1∥] ≤ B +
1

2
E [∥dt∥] ≤ 2R.

Induction thus shows that E[∥dt∥] ≤ 2R for all t ≥ t0, i.e., (E[∥dt∥])t≥0 is bounded.
The nonexpansivity condition of PX with PX(w⋆) = w⋆ and the equation ∥x +

y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ (x, y ∈ Rn) imply that, for all t ≥ 1,

∥wt − w⋆∥2 = ∥PX (wt−1 + γtdt)− PX (w⋆)∥2

≤ ∥(wt−1 − w⋆) + γtdt∥2

= ∥wt−1 − w⋆∥2 + γ2t ∥dt∥
2 + 2γt ⟨wt−1 − w⋆, dt⟩ ,

which, together with the definition of dt, implies that

∥wt − w⋆∥2 ≤ ∥wt−1 − w⋆∥2 + γ2t ∥dt∥
2 − 2γt ⟨wt−1 − w⋆,G (wt−1, ξt−1)⟩

+ 2γtβt ⟨wt−1 − w⋆, dt−1⟩ .
(3.1)

Since wt−1 = wt−1(ξ[t−2]) is independent of ξt−1, the definition of the expectation
ensures that, for all t ≥ 1,

E [⟨wt−1 − w⋆,G (wt−1, ξt−1)⟩] = E
[
E
[
⟨wt−1 − w⋆,G (wt−1, ξt−1)⟩ |ξ[t−2]

]]
= E

[⟨
wt−1 − w⋆,E

[
G (wt−1, ξt−1) |ξ[t−2]

]⟩]
= E [⟨wt−1 − w⋆, g (wt−1)⟩] .



CONVERGENCE RATE ANALYSIS OF STOCHASTIC SUBGRADIENT METHOD 207

Proposition 2.1 thus leads to the finding that, for all t ≥ 1,

E [⟨wt−1 − w⋆,G (wt−1, ξt−1)⟩] ≥ E [f (wt−1)− f (w⋆)] +
c

2
E
[
∥wt−1 − w⋆∥2

]
.

(3.2)

Moreover, the Cauchy-Schwarz inequality means that, for all t ≥ 1,

E [|⟨wt−1 − w⋆, dt−1⟩|] ≤ E [∥wt−1 − w⋆∥ ∥dt−1∥] ,

which, together with the boundedness conditions of X and (E[∥dt∥])t≥1, implies
that there exists M1 ∈ R such that

E [|⟨wt−1 − w⋆, dt−1⟩|] ≤ M1.(3.3)

From the definition of dt, for all t ≥ 1,

∥dt∥2 = ∥−G (wt−1, ξt−1) + βtdt−1∥2

= ∥G (wt−1, ξt−1)∥2 + β2
t ∥dt−1∥2 − 2βt ⟨G (wt−1, ξt−1) , dt−1⟩ .

Accordingly, the boundedness condition of (E[∥dt∥])t≥1 and (iii) imply that, there
exist M2,M3 ∈ R such that, for all t ≥ 1,

E
[
∥dt∥2

]
= E

[
∥G (wt−1, ξt−1)∥2

]
+ β2

t E
[
∥dt−1∥2

]
− 2βtE [⟨G (wt−1, ξt−1) , dt−1⟩]

≤ B2 +M2β
2
t +M3βt.

(3.4)

Hence, from (3.1), (3.2), (3.3), and (3.4), for all t ≥ 1,

E
[
∥wt − w⋆∥2

]
≤ E

[
∥wt−1 − w⋆∥2

]
+ γ2t

(
B2 +M2β

2
t + βtM3

)
+ 2M1γtβt

− 2γt

(
E [f (wt−1)− f (w⋆)] +

c

2
E
[
∥wt−1 − w⋆∥2

])
= (1− cγt)E

[
∥wt−1 − w⋆∥2

]
+ γ2t

(
B2 +M2β

2
t +M3βt

)
+ 2M1γtβt − 2γtE [f (wt−1)− f (w⋆)] ,

which implies that, for all t ≥ 1,

E [f (wt−1)− f (w⋆)] ≤ 1− cγt
2γt

E
[
∥wt−1 − w⋆∥2

]
− 1

2γt
E
[
∥wt − w⋆∥2

]
+M1βt +

γt
2

(
B2 +M2β

2
t +M3βt

)
.

(3.5)

(a) Let γt := 1/(ct) and βt ≤ 1/t for all t ≥ 1. Then (3.5) leads to the finding
that, for all t ≥ 1,

E [f (wt−1)− f (w⋆)] ≤ c (t− 1)

2
E
[
∥wt−1 − w⋆∥2

]
− ct

2
E
[
∥wt − w⋆∥2

]
+

M1

t
+

1

2ct

(
B2 +

M2

t2
+

M3

t

)
≤ c (t− 1)

2
E
[
∥wt−1 − w⋆∥2

]
− ct

2
E
[
∥wt − w⋆∥2

]
+

M4

t
,
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where M4 := M1+(B2+M2+M3)/(2c). Summing the above inequality from t = 1
to t = T > 0 implies that, for all T > 0,

1

T

T∑
t=1

E [f (wt−1)]− f (w⋆) ≤ c

2T

T∑
t=1

{
(t− 1)E

[
∥wt−1 − w⋆∥2

]
− tE

[
∥wt − w⋆∥2

]}
+

M4

T

T∑
t=1

1

t

≤ − c

2
E
[
∥wT − w⋆∥2

]
+

M4(1 + log T )

T
,

where the second inequality comes from
∑T

t=1{(t − 1)E[∥wt−1 − w⋆∥2] − tE[∥wt −
w⋆∥2]} = −TE[∥wT − w⋆∥2] and

∑T
t=1(1/t) ≤ 1 + log T . The convexity of f thus

guarantees that, for all T ,

E

[
f

(
1

T

T∑
t=1

wt−1

)]
− f (w⋆) ≤ − c

2
E
[
∥wT − w⋆∥2

]
+

M4(1 + log T )

T
.

Since w⋆ is the solution to Problem 1.1 and (wt)t≥1 ⊂ X, we have that, for all T ,

E
[
∥wT − w⋆∥2

]
≤ 2M4(1 + log T )

cT
.

(b) Let γt := 2/(c(t+ 1)) and βt ≤ 1/t for all t ≥ 1. From (3.5), for all t ≥ 1,

E [f (wt−1)− f (w⋆)] ≤ c(t− 1)

4
E
[
∥wt−1 − w⋆∥2

]
− c(t+ 1)

4
E
[
∥wt − w⋆∥2

]
+

M1

t
+

1

c(t+ 1)

(
B2 +

M2

t2
+

M3

t

)
.

Accordingly, for all t ≥ 1,

tE [f (wt−1)− f (w⋆)] ≤ c(t− 1)t

4
E
[
∥wt−1 − w⋆∥2

]
− ct(t+ 1)

4
E
[
∥wt − w⋆∥2

]
+M1 +

t

c(t+ 1)

(
B2 +

M2

t2
+

M3

t

)
≤ c(t− 1)t

4
E
[
∥wt−1 − w⋆∥2

]
− ct(t+ 1)

4
E
[
∥wt − w⋆∥2

]
+M5,

where M5 := M1+(B2+M2+M3)/c. Summing up the above inequality from t = 1
to t = T ensures that, for all T ,

T∑
t=1

tE [f (wt−1)− f (w⋆)] ≤ −cT (T + 1)

4
E
[
∥wT − w⋆∥2

]
+M5T,

which implies that, for all T ,

1

T (T + 1)

T∑
t=1

tE [f (wt−1)]−
1

2
f (w⋆) ≤ − c

4
E
[
∥wT − w⋆∥2

]
+

M5

T + 1
,
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where
∑T

t=1 tf(w
⋆) = f(w⋆)(T (T + 1))/2. Therefore, the convexity of f leads to

the finding that, for all T ,

E

[
f

(
2

T (T + 1)

T−1∑
t=0

(t+ 1)wt

)]
− f (w⋆) ≤ − c

2
E
[
∥wT − w⋆∥2

]
+

2M5

T + 1
,

which implies that, for all T ,

E
[
∥wT − w⋆∥2

]
≤ 4M5

c(T + 1)
.

This completes the proof. �

4. Numerical experiment

This section applies the existing method (1.2) and the proposed method (1.5) to
the support vector machine optimization problem (1.1) with λ = 1/n [10, Section 4]
for the data set “a1a” (the number of the learning data is 1605, the number of the
unknown data is 30956, and the dimension of the problem is 123) from the LIBSVM
Data [3]. The experiment used a 13-inch MacBook Air with Intel(R) Core(TM)
i7-5650U CPU processor, 8GB 1600MHz DDR3 RAM memory, and Mac OS X El
Capitan (Version 10.11.6) operating system. The algorithms used in the experiment
were the following. They were written in MATLAB 2016a (9.0.0.341360).

• Projected Stochastic Subgradient Method (1.2) with γt = 2n/(t+1) (PSSM)
• Proposed Method (1.5) with γt = n/t and βt = 1/t (PM1, Theorem 3.1(a))
• Proposed Method (1.5) with γt = 2n/(t+ 1) and βt = 1/t (PM2, Theorem
3.1(b))

We set an initial point w0 = 0 in the algorithms and the stopping condition of the
algorithms was t = 103.

The value of f(w5) generated by each of PSSM, PM1, and PM2 was 2.1074e+04,
1.4424e+04, and 1.5198e+03, respectively. Moreover, we checked that PSSM, PM1,
and PM2 converge to the same point at which the value of f is approximately 103,
i.e., PM2 converges faster than PSSM and PM1.

Table 1 indicates the classification accuracies for PSSM, PM1, and PM2. It
shows that, compared with the existing method, the accuracies were improved by
the proposed methods.

Table 1. The classification accuracies (%) for the existing method
(PSSM) and the proposed methods (PM1 and PM2)

PSSM PM1 PM2
a1a [3] 82.15 83.74 83.57

5. Conclusion

This paper presented a novel projected subgradient method for stochastic con-
strained smooth convex optimization. The proposed method uses the search di-
rection based on the conventional conjugate gradient directions. We showed that
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the proposed method achieves a convergence rate of O(t−1) under certain assump-
tions. Numerical evaluation using a concrete support vector machine optimization
problem showed the efficiency of the proposed method.
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