S, »
g%\ %’726&7‘ ﬁf?(/:%j;?fdf %Q&J’lp’f k"'«"") ISSN 2188-8167 Copyright 2017
{ S

Volume 3, Number 2, 2017, 213-224

THE SHORTEST VECTOR PROBLEMS IN p-ADIC LATTICES
AND SIMULTANEOUS APPROXIMATION PROBLEMS
OF p-ADIC NUMBERS

HIROHITO INOUE AND KOICHIRO NAITO

ABSTRACT. In this paper we construct the multi-dimensional p-adic approxi-
mation lattices by using simultaneous approximation problems (SAP) of p-adic
numbers and we estimate the [ norm of the p-adic SAP solutions theoretically
by applying Dirichlet’s principle and numerically by using the LLL algorithm.

1. INTRODUCTION

The p-adic numbers introduced by Kurt Hensel have been mainly used as signifi-
cant objects in the number theory during almost 100 years. From 1980’s applications
of p-adic numbers were started and proposed in mathematical physics, especially in
quantum mechanics. Now p-adic analysis has been studied in various fields to inves-
tigate extremely complex models, which have chaotic properties, such as the theory
of turbulence, biology, dynamical systems, cryptography and economy ... from the
natural sciences to the social sciences. On the other hand, the lattice-based cryp-
tography is considered as one of the most powerful post-quantum cryptography.
In this paper we construct the multi-dimensional p-adic approximation lattices by
using simultaneous approximation problems (SAP) of p-adic numbers and we esti-
mate the [ norm of the p-adic SAP solutions theoretically by applying Dirichlet’s
principle and numerically by using the LLL algorithm.

We consider two types of SAP, named the 1st type and the 2nd type, and these
two types of SAP are related by the transference principle (see [4]). In both cases we
can show that the numerical estimates on the /o, norms of the p-adic SAP solutions
by LLL algorithms satisfy the theoretical upper bounds in the lattice dimension
n < 60, but in the case n > 80 and the p-adic approximation order m > 30 these
numerical solutions become greater than these theoretical upper bounds.

In [3], using these SVP or SAP solutions as private keys, we construct a cryp-
tosystem, the security of which is based on the hardness of SVP or SAP. Since we
can numerically show that the [, norms of the SVP solutions given by LLL in the
lattices of dimensions over 80 and m > 30 exceed the theoretical boundary value of
the SAP solutions, the private keys given in the lattices of dimensions over this value
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are considered to be secure for the attacks by LLL. The purpose of this paper is to
find some efficient private keys in these lattice based cryptography by numerically
estimating the SAP solutions in the p-adic lattices.

Our plan of this paper is as follows. In Section 2 we give a brief review of lattices
and LLL algorithm. In Section 3 we investigate the relations between the SAP of
p-adic numbers and the SVP of p-adic approximation lattices and we estimate the
loo norm of p-adic SAP solutions. In Section 4 we give the numerical estimates of
the SAP solutions by using the LLL reduction algorithm. In Section 5 and 6 we
investigate the 2nd type SAP and we estimate the /o, norms of these SAP solutions
theoretically and numerically.

2. LATTICE AND LLL ALGORITHM

In this section we give a brief review on lattices and the LLL algorithm. (For
details, see [5], [6].)

Given linearly independent vectors by, ..., b, € R™, the lattice generated by these
vectors is defined by

L(bl, e ,bn) = {szbz T € Z}.
=1

We refer to b1,...,b, as a basis of the lattice.
Let B be the m xn matrix whose columns are b1, . .., b,, then the lattice generated
by B is

L(B)={Bz: x€Z"}.
We say that the rank of lattice is n and its dimension is m. If n = m, the lattice is
called a full-rank lattice. Hereafter we consider full-rank lattices.

For matrix B, P(B) = {Bx : x € [0,1)"} is called the fundamental parallelepiped
of B. Let A = L(B) be a lattice of rank n. We define the determinant of A,
denoted by det(A), as the n-dimensional volume of P(B). In the full rank case,
det(A) = | det(B)].

The ith successive minimum of lattice A, A;(A), is defined by

Ai(A) = inf{r : dim(span(A N B(0,7))) > i}

where B(0,7) is a closed ball with its center 0 and its radius r > 0. The length of the
shortest nonzero vector in the lattice is denoted by A1 (A) and the second minimum
vector should be linearly independent to the shortest vector. The following estimate
for the shortest vector is given by Minkowski’s theorem in the ls norm (Euclidean
norm).

(2.1) A (A) < v/n{det(A) /™.

For the successive minimum in the /o, norm we use the notation )\Z(OO) (A) and we
also use )\52)(/\) for those in the Iy norm to distinguish it from other norms. || ||,
denotes the [, norm for 1 < p < oo.

Next we introduce the algorithm given by Lenstra, Lenstra and Lovéasz, which
approximately solves the Shortest Vector Problem (SVP) within a factor of 20 for

the lattices dimension n. The basic idea of LLL algorithm is to generalize Gauss’s
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algorithm to higher dimensions. For a basis b1, ..., b, of a lattice, the Gram-Schmidt
orthogonalized basis b7, ..., b;,, which satisfies
span(by,...,b;) =span(b],...,br),k=1,...,n

- (b, ;)
b= pkabf, pki = (b*f’bf.*) for ¢ <k—1, prr=1,
i=1

1771

is essentially used to construct the reduced basis.

Definition 2.1. For a constant ¢ : 1/4 < § < 1, a basis {b1,...,b,} of a lattice is
called a d-reduced basis if it satisfies the following two conditions.

(bk,b’f) 1 .
< A 11 k
Gron| Sz sl

e for any pair of consecutive vectors b;, b;11,

llmi(ba)lI3 < llms(bir)13

i ‘Mk,i

where we define projection operations 7; from R" onto span(b;, by, ,...,by) by
“ (2,07)
_ J
miw) =) (b b*f)b;'
j=i V3777

The following estimate is well-known for the first vector in a J-LLL reduced basis.

Lemma 2.2. If B = (by,...,b,) € R"™" is a 6-LLL reduced basis with 6 € (1/4,1),
then

(2.2) b2 < (W%) M (B).

Using the estimate (2.1), we obtain

23) Il < Vit laenB) (2 )

3. p-ADIC LATTICE

In this section we introduce p-adic approximation lattices and investigate si-
multaneous rational approximations of p-adic numbers. Let p be a fixed rational
prime number and | - |, be the corresponding p-adic valuation, normalized so that
Ipl, = p~'. The completion of Q w.r.t. |- |, is called the field of p-adic numbers,
denoted by Q,. The strong triangle inequality

la + bl, < max{|aly, [bl,}, a,be @,

is most important and essential to construct p-adic approximation lattices. The set
of p-adic integers is defined by Z, = {z € Q, : |z], < 1}.
Let n > 1 be an integer and let = = {&1, &2, ..., &, } be a n-tuple of p-adic integers.

Definition 3.1. We denote by w, (=) the supremum of the real numbers w such
that, for some infinitely many real numbers X, which goes to infinity, the inequal-
ities

0< ‘CLOJ + al,jfl + -4+ a,wﬁn]p < X;wil,
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< X
Org%xn]aw| < Xj,

have a solution in integers ag j, a1 j,...,an ;.

Remark 3.2. For the case where & = £, & = €2,...,&, = £" for a p-adic number ¢
the following results have been obtained (see [1]). wy,(ZE) = min{n,d — 1} holds if

—
—

¢ is algebraic of degree d and w,(Z) > n for every p-adic number £, which is not
algebraic of degree at most n. In [8] Sprindzuk proved that w,(Z) = n for almost
all £ in the sense of Haar Measure.

For a positive integer m we define the p-adic approximation lattice I';;, by
(3.1) Ui = {(a0, a1, an) € 2" ag + a1y + -+ + anbalp < p~"}.
When a p-adic integer &; has the p-adic expansion

oo
&= wippt, 0<mip <p—1,
k=0

let &, be the m-th order approximation of §; defined by
m—1

(3'2) fi,m = Z xi,kpk-
k=0

Consider the basis {bo,m,b1,m, - bnm} C Z"*1! of the lattice I',, given by
bom = (P™,0,...,0)", b1m = (&1,m,—1,0,...,0),
bom = (E2,m,0,—1,0,...,0)" -+ by = (&m0, ..., 0, —1).
In fact, we have by ,,, € I'y,, Vk, since we can estimate
&k,m — Eklp <7

For By, = (bo,mbim - - - bn,m) we have

pm gl,m f2,m gn,m
0 —1 0 0

By, = 0 0 -1 ... 0 . | det(Bm)| = p™.
0 0 0 oo —1

Applying the LLL algorithm for § € (1/4,1), we denote {bg,b1,...,b,} a reduced
basis and B = (by by ... by). It follows from (2.3) that the shortest vector by in B
satisfies

(3.3) lbollz < VA ¥l |det(B)|= (\/4527_&
= V11 |det(By)|" (\/452—_1>

m 2 n
= Vntlpot ([—— ] .
nTep (\/45—1>
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Furthermore, it is known that
1

n nt+1l
(3.4) (H ||bz-\|2> < K| det(B)|#+1 = Kopiti, K, ~ 200
=0

for the reduced basis {bg, b1,...,b,}.

Now we estimate the minimum norm value )\goo) (T) (= )\goo) (L(By,))) by using
the famous Dirichlet principle.

Theorem 3.3. For a n-tuple of p-adic integers = = {&1,...,&,}, which are irra-
tional and linearly independent over Q, and each positive integer m, there exists a
solution in integers (aom,@1m, - -, anm) € Z"L, which satisfies
(35) 0< |a0,m + al,m§1 + -+ an,mfn‘p < pima

, < s,
(3.6) [max |aim| < p

Consequently, we have

(3.7) AUT,,) < prdt = det(Ty,) w1
and
(3-8) wn(2) > n.

Proof. For each positive integer m we use the pigeonhole principle for the holes,
which are defined by

m—1
Hy,={2€Z,:z= Z hi;p’  mod p™}
§=0
forO0< hg; <p-1,5=0,1,....m—1, k=1,2,...,p™. Here we can take each
set Hy, defined by the numbers {hy, ;}o<j<m—1, which satisfies

pm
Zp=|\J Hy, HenHyp =0 fork#F.
k=1
Next we consider the following nonzero p-adic integers given by
bO +b1£1 + - +bn£n7
b €{0,1,...,1l}, i=0,1,...,n

where the integer [ is given by [ = [pm/ (”+1)]. Since the total number of these p-adic
integers satisfies

R e
and it is greater than the total number of the pigeonholes, there exists a pigeonhole
Hy,, which contains at least a pair of p-adic integers,

bo +b1&y + -+ b&n, by + 016+ + B, € Hy.

Putting a; = b;—b}, i = 0,1,...,n, we can obtain the solution in integers ag, . . ., an,
which satisfies

0<lap+ai&i+--+anknlp <p™ ",
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max |a;| <1< prii.
0<i<n
It follows from the definitions that we can obtain the estimates (5.7) and (5.8).
U

4. NUMERICAL CALCULATIONS ON SAP

In this section, we compare the minimum norms of the vectors given by the
LLL reduction algorithm and the upper bound of the norms of the shortest vectors
X, = p™/ @+ given in Theorem 5.2, using the open source software Sage. We
investigate the following case.
p= 13:1prime number,

&= ulm p-adic number, 103rd root of u;:

11,12,14,15,16,17,18, 19, 20, 21,
m = b: approximation order
n = 10: dimension

For the approximation order m = 5 and the dimension n = 10, we apply the LLL
reduction (6 = 0.99999). Then we obtain the reduced basis B from B,,. Here we
note that the basis is given by row vectors in Sage.

371293 0 0 0 0 0 0 0 0 0 0
125400 -1 0 0 0 0 0 0 0 0 0
286272 0 -1 0 0 0 0 0 0 0 0
282218 0 0 -1 0 0 0 0 0 0 0
340728 0 0 0 -1 0 0 0 0 0 0
B, = 128378 0 0 0 0 -1 0 0 0 0 0
4671 0 0 0 0 0 —1 0 0 0 0
341596 0 0 0 0 0 0 -1 0 0 0
366035 0 0 0 0 0 0 0 -1 0 0
6311 0 0 0 0 0 0 0 0 -1 0
348639 0 0 0 0 0 0 0 0 0 -1

o -1 -1 -1 -1 2 0 0 0 2 -1

0 1 2 -1 1 0 -2 -1 1 -1 1

1 1 -2 2 0 -1 0 0 1 -1 -1

0 -1 2 2 0 1 1 1 -1 -1 0

2 -1 1 0 -2 1 2 0 -1 1 0

B = -1 0 1 0 -1 0 0 -1 2 2 -1

0 -1 -2 0 2 0 1 -1 1 -2 0

-1 1 -1 -1 0 0 -1 -3 0 -2 0

0 0 0 -1 1 -1 -2 -1 -2 -1 =2

1 -2 -1 2 -1 0 0 0 0 -2 2

1 -1 0 1 1 -1 -1 0 -2 3 1

We obtain
min ||bs||o = 3.60555..., max bl = 4.35889...,
0<i<n 0<i<n

Join. 1billoo = 2, max 1billoo = 3,
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which are sufficiently effective solutions of SVP, smaller than the value X,, =
p™/ (1) — 3.208764.... comparing the theoretical estimate (5.7) in Theorem 5.2

AP(D,,) < pitt = det(D) 75
5. SEcCOND TYPE SAP

We consider the following simultaneous approximation problems. Let n > 1 be
an integer and let = = {{1,&2,...,&,} be a n-tuple of p-adic integers.

Definition 5.1. We denote by v, (Z) the supremum of the real numbers v such that,
for some infinitely many real numbers Y}, which goes to infinity, the inequalities

0 < max lag.& — ajil, <YV !
1§i§n| 0.5€i ijlp < j ’

foax. |a; j| <Yj,

have a solution in integers ag j, a1 j, ..., Gn ;-
For a positive integer m we define the p-adic approximation lattice A,, by
(5.1) A = {(ag,a1,...,an) € Z"™ : max |ag&; — ail, <p ™}
1<i<n
When a p-adic integer &; has the p-adic expansion
oo
&= wipph, 0<mip <p—1,

k=0
let &, be the m-th order approximation of &; defined by

m—1
(5.2) Gim=>_ wirp".
k=0

Consider the basis {bom,b1.m; - -, bnm} C Z"T1 of the lattice A, given by
bO,m - (17 gl,ma g?,ma ... 7£n,m)t7 bl,m = (07 _pm7 07 .. 70)t7
b2,m - (O) O) _pm7 07 v 70)ta e 7bn,m - (07 07 o 70) _pm)t
In fact, we have by, € Ay, VEk, since we can estimate
Ekm — Eklp <P
For By, = (bo,mbi,m - - - bn,m) we have

1 0 0 0
él,m —pm 0 . 0
Bm — €Q7m 0 _pm ce 0 , ’det(Bm)| — pnm.
&m0 o ... —p™m

Applying the LLL algorithm for § € (1/4,1), we denote {bg,b1,...,b,} a reduced
basis and B = (by by ... b,). It follows from (2.3) that the shortest vector by in B
satisfies

(53) Iolle < VET fder(me ()
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= VnF1 |det(Bn)| <\/452*_1>

mn 2 n
Y g W o (N R
nTep <\/45—1>

Furthermore, it is known that

n+1
(5.4) (H [ ||2> < K| det(B)|[7 = K,piti, K, ~ 200

for the reduced basis {bg, b1, ..., by}

Now we estimate the minimum norm value )\goo) (Ap)(= )\goo)(L(Bm))) by using
the famous Dirichlet principle.

Theorem 5.2. For a n-tuple of p-adic integers = = {&1,...,&,}, which are irra-
tional and linearly independent over Q, and each positive integer m, there exists a
solution in integers (agm,@1m,---,anm) € Z"L, which satisfies

(5'5) 0< maX ‘ao,mgi - ai,m‘p < p—m

5.6 < WL

( ) OIE?%X ‘az m’ b

Consequently, we have

(5.7) AP (M) < piFT = det(Ayy, )7
and
(5.8) =) >,

. Unl\Z) =2 n

Proof. For each positive integer m we use the pigeonhole principle for the holes
By.y, which are defined as follows. Consider the set K of all functions k(-) from
{1,2,...,n} to {1,2,...,p™}

K ={k(-): k(i) €{1,2,....p"}, i€{l,...,n}}, H#(K)=p"™.
For each fixed i € {1,...,n}, define

m—1
Hypy={2€Zp: 2= Z hk(i)yjpj mod p"'}
§=0
for 0 < hyipy; <p-—-1, j=0,1,. — 1. Here, for each fixed i, we can take each

set Hy;), defined by the sequences {hk(i),j}ogjgm—h which satisfies

p_ U Hk(z Hk ﬂHk, —@ for {hk j}#{h’k/ 1)7]}
keK

Now we can define the pigeonholes By.y by

n

By = H Hyy C 77,
=1
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which satisfy

U Biy =2}, BryN By =0 for k#FK.
keK

Next we consider the following nonzero vectors of p-adic integers given by

(bo&1 — b1, bo&2 — ba, ..., bo&n — by) € Zy
bic{0,1,...,0}, i=0,1,....n,

where the integer [ is given by [ = [pm"/ (”‘H)]. Since the total number of these
p-adic integers satisfies

(5.9) (I + 1)+ > (prt)ntl = prm,

and it is greater than the total number of the pigeonholes, there exists a pigeonhole
By(.y, which contains at least a pair of vectors of p-adic integers,

(bo&1 — b1, bo€2 — ba, .. bobn — bn),  (Bp&1 — by, bpéa — by, o, b — b)) € By

Putting a; = b;—b}, i = 0,1,...,n, we can obtain the solution in integers ag, . . ., an,
which satisfies

0 < max |agé; —a;l, <p ™
< 1§i§n‘ 051 z‘p_p )

max |a;| <1 < prit
0<i<n
where we note that, if ag = 0, there exists a; # 0 : |aj| < p™, which contradicts
that |a;|, < p™™. It follows from the definitions that we can obtain the estimates
(5.7) and (5.8).
O

6. NUMERICAL COMPUTATIONS OF 2ND TYPE

In this section, we compare the minimum norms of the vectors given by the
LLL reduction algorithm and the upper bound of the norms of the shortest vectors
X, = p"™/ (") given in Theorem 5.2, using the open source software Sage. We
investigate the following case.
p= 13:1prime number,

&= u;ﬁ p-adic number, 103rd root of w;:
11,12,14,15,16,17,18,19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32,
33,34, 35,36,37,38,40,41,42, 43,44, 45,46, 47, 48,49, 50, 51, 53, 54,
55, 56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,74,75,
76,77,79,80,81, 82,83, 84, 85, 86, 87, 88,89, 90, 92, 93, 94, 95, 96, 97
m =5,6,...,50: approximation orders
n = 20,60, 70, 80: dimensions
Filrst1 we show our numerical process by using the small parameters, n = 10,

&= ullﬁ , m = 5. For the approximation order m = 5 and the dimension n = 10,
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we apply the LLL reduction (6 = 0.99999). Then we obtain the reduced ba-
sis B from B,,. Here we note that the basis is given by row vectors in Sage.

1 111456 18940 350689 212426 303156 144193 25368 63624 59421 22667
0 371293 0 0 0 0 0 0 0 0 0
0 0 371293 0 0 0 0 0 0 0 0
0 0 0 371293 0 0 0 0 0 0 0
0 0 0 0 371293 0 0 0 0 0 0
B, = 0 0 0 0 0 371293 0 0 0 0 0
0 0 0 0 0 0 371293 0 0 0 0
0 0 0 0 0 0 0 371293 0 0 0
0 0 0 0 0 0 0 0 371293 0 0
0 0 0 0 0 0 0 0 0 371293 0
0 0 0 0 0 0 0 0 0 0 371293
—69434 24095 39846 26207 27541 9052 18983 12280 —24702 —29898 50549
—45752 3150 54982  —38719 51216 27996 15888 25182 11872 —22246  —39235
23932 —3920 —76673 —17824 35276 64172 29734 42921  —23025 11182 7571
100625 —16358 —9469 22612 28240 10913 32771 15625 —40199 —64347 13976
18545 —36611 —878  —40683 21440 —90586 6999 21329 —62074 —35179 55839
B = 70240  —43465 2781 75154 21742 23890 —14134 13213 67212 26427 25696 .
- 70927 40449 19306 29340 40255 —3311 —88774 —9742  —35674 6424 3619

7586 71055 —11551 12409 52016  —47426 18920 111874  —29236 18004 43203
—54693 25466 22050 20317 —85955 —50900 —84429 69917  —29436 14876 21096

39752 —40457 —T79324 22150 41653 411  —61198 —3052 —66668 —62474 —69527
—45915 29179 —61894 —21904 —43973 —4463 —96112 —25579 37364 —54251 —21026
‘We obtain

i b; = 54982 b; = 111874 annl:ll 12.126290745...
Join [[bifloc = 54982, max [[bfloc = 111874 < p 5712.126200745...,

which shows that the SVP solutions given by LLL satisfy the theoretical estimate
(5.7) of the SAP solutions in Theorem 5.2

APT,) < pitt = det(T ) 741

Next we give the graphs which compare these numerical minimum and maximum
values in the [, norm for the shortest vectors given by the LLL reduction basis and
the values X,,, := p"™/("+1) for the approximation orders m from 10 to 50 and the
dimensions n = 20, 60, 70, 80. Here we take the ratio of these numerical minimum
and maximum values to the value X,,.

Since the LLL reduction algorithm approximately finds the shortest vectors in
the lo norm, we use their [, norm values as the substitutes of the shortest vectors
in the [, norm. We use the following line styles in the graphs.

———————— : ratio of minimum norm values of the reduced basis vectors in [,

c Xy = pnm/(n+1) =1,

------------ : ratio of maximum norm values of the reduced basis vectors in .

These graphs show that the LLL algorithm is effective enough to obtain the
solutions of SAP, which satisfy the estimate (5.7), if the dimension n is under 60
(see Figure 1 and 2), but this estimate is not satisfied for some m if n > 60 and if
n > 80 and m > 30 (see Figure 4).

In [7] we found the remark on the run-time of exact SVP, quoted from [2], that
up to dimension 60 the shortest vector problem could be solved within an hour,
whereas dimension 100 seemed out of reach.

These graphs show that the LLL algorithm is effective enough to obtain the
solutions of SAP, which satisfy the estimate (5.6),

APNT,,) < pat,
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n=20}

351

223

—min
-max

10 20 30 40 50

FIGURE 2.

—min
-max

n =80

FIGURE 3. n=70 FIGURE 4. n=80

if the dimension n is under 60 (see Figure 1 and 2), but this estimate is not satisfied
for some m if n > 60 and if n > 80 and m > 30 (see Figure 4 and [2], [7] ). In our
cryptosystems proposed in [3] we use these SAP solutions as the private keys. The
private keys of the SAP solutions, which satisfy (3.6), must be secure against the
LLL attacks in the dimension n > 80 and m > 30.
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