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are considered to be secure for the attacks by LLL. The purpose of this paper is to
find some efficient private keys in these lattice based cryptography by numerically
estimating the SAP solutions in the p-adic lattices.

Our plan of this paper is as follows. In Section 2 we give a brief review of lattices
and LLL algorithm. In Section 3 we investigate the relations between the SAP of
p-adic numbers and the SVP of p-adic approximation lattices and we estimate the
l∞ norm of p-adic SAP solutions. In Section 4 we give the numerical estimates of
the SAP solutions by using the LLL reduction algorithm. In Section 5 and 6 we
investigate the 2nd type SAP and we estimate the l∞ norms of these SAP solutions
theoretically and numerically.

2. Lattice and LLL algorithm

In this section we give a brief review on lattices and the LLL algorithm. (For
details, see [5], [6].)

Given linearly independent vectors b1, . . . , bn ∈ Rm, the lattice generated by these
vectors is defined by

L(b1, . . . , bn) = {
n∑

i=1

xibi : xi ∈ Z}.

We refer to b1, . . . , bn as a basis of the lattice.
Let B be them×nmatrix whose columns are b1, . . . , bn, then the lattice generated

by B is

L(B) = {Bx : x ∈ Zn}.
We say that the rank of lattice is n and its dimension is m. If n = m, the lattice is
called a full-rank lattice. Hereafter we consider full-rank lattices.

For matrix B, P (B) = {Bx : x ∈ [0, 1)n} is called the fundamental parallelepiped
of B. Let Λ = L(B) be a lattice of rank n. We define the determinant of Λ,
denoted by det(Λ), as the n-dimensional volume of P (B). In the full rank case,
det(Λ) = | det(B)|.

The ith successive minimum of lattice Λ, λi(Λ), is defined by

λi(Λ) = inf{r : dim(span(Λ ∩B(0, r))) ≥ i}

where B(0, r) is a closed ball with its center 0 and its radius r > 0. The length of the
shortest nonzero vector in the lattice is denoted by λ1(Λ) and the second minimum
vector should be linearly independent to the shortest vector. The following estimate
for the shortest vector is given by Minkowski’s theorem in the l2 norm (Euclidean
norm).

(2.1) λ1(Λ) ≤
√
n{det(Λ)}1/n.

For the successive minimum in the l∞ norm we use the notation λ
(∞)
i (Λ) and we

also use λ
(2)
i (Λ) for those in the l2 norm to distinguish it from other norms. ∥ ∥p

denotes the lp norm for 1 ≤ p ≤ ∞.
Next we introduce the algorithm given by Lenstra, Lenstra and Lovász, which

approximately solves the Shortest Vector Problem (SVP) within a factor of 2O(n) for
the lattices dimension n. The basic idea of LLL algorithm is to generalize Gauss’s
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algorithm to higher dimensions. For a basis b1, . . . , bn of a lattice, the Gram-Schmidt
orthogonalized basis b∗1, . . . , b

∗
n, which satisfies

span(b1, . . . , bk) = span(b∗1, . . . , b
∗
k), k = 1, . . . , n

bk =

k∑
i=1

µk,ib
∗
i , µk,i =

(bk, b
∗
i )

(b∗i , b
∗
i )

for i ≤ k − 1, µk,k = 1,

is essentially used to construct the reduced basis.

Definition 2.1. For a constant δ : 1/4 < δ < 1, a basis {b1, . . . , bn} of a lattice is
called a δ-reduced basis if it satisfies the following two conditions.

• |µk,i| =
∣∣∣∣(bk, b∗i )(b∗i , b

∗
i )

∣∣∣∣ ≤ 1

2
for all i < k,

• for any pair of consecutive vectors bi, bi+1,

δ∥πi(bi)∥22 ≤ ∥πi(bi+1)∥22
where we define projection operations πi from Rn onto span(b∗i , b

∗
i+1, . . . , b

∗
n) by

πi(x) =
n∑

j=i

(x, b∗j )

(b∗j , b
∗
j )
b∗j .

The following estimate is well-known for the first vector in a δ-LLL reduced basis.

Lemma 2.2. If B = (b1, . . . , bn) ∈ Rn×n is a δ-LLL reduced basis with δ ∈ (1/4, 1),
then

(2.2) ∥b1∥2 ≤
(

2√
4δ − 1

)n−1

λ1(B).

Using the estimate (2.1), we obtain

(2.3) ∥b1∥2 ≤
√
n |det(B)|

1
n

(
2√

4δ − 1

)n−1

.

3. p-adic lattice

In this section we introduce p-adic approximation lattices and investigate si-
multaneous rational approximations of p-adic numbers. Let p be a fixed rational
prime number and | · |p be the corresponding p-adic valuation, normalized so that
|p|p = p−1. The completion of Q w.r.t. | · |p is called the field of p-adic numbers,
denoted by Qp. The strong triangle inequality

|a+ b|p ≤ max{|a|p, |b|p}, a, b ∈ Qp

is most important and essential to construct p-adic approximation lattices. The set
of p-adic integers is defined by Zp = {z ∈ Qp : |z|p ≤ 1}.

Let n ≥ 1 be an integer and let Ξ = {ξ1, ξ2, . . . , ξn} be a n-tuple of p-adic integers.

Definition 3.1. We denote by wn(Ξ) the supremum of the real numbers w such
that, for some infinitely many real numbers Xj , which goes to infinity, the inequal-
ities

0 < |a0,j + a1,jξ1 + · · ·+ an,jξn|p ≤ X−w−1
j ,
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max
0≤i≤n

|ai,j | ≤ Xj ,

have a solution in integers a0,j , a1,j , . . . , an,j .

Remark 3.2. For the case where ξ1 = ξ, ξ2 = ξ2, . . . , ξn = ξn for a p-adic number ξ
the following results have been obtained (see [1]). wn(Ξ) = min{n, d − 1} holds if
ξ is algebraic of degree d and wn(Ξ) ≥ n for every p-adic number ξ, which is not
algebraic of degree at most n. In [8] Sprindžuk proved that wn(Ξ) = n for almost
all ξ in the sense of Haar Measure.

For a positive integer m we define the p-adic approximation lattice Γm by

(3.1) Γm = {(a0, a1, . . . , an) ∈ Zn+1 : |a0 + a1ξ1 + · · ·+ anξn|p ≤ p−m}.

When a p-adic integer ξi has the p-adic expansion

ξi =

∞∑
k=0

xi,kp
k, 0 ≤ xi,k ≤ p− 1,

let ξi,m be the m-th order approximation of ξi defined by

(3.2) ξi,m =

m−1∑
k=0

xi,kp
k.

Consider the basis {b0,m, b1,m, . . . , bn,m} ⊂ Zn+1 of the lattice Γm given by

b0,m = (pm, 0, . . . , 0)t, b1,m = (ξ1,m,−1, 0, . . . , 0)t,

b2,m = (ξ2,m, 0,−1, 0, . . . , 0)t, · · · , bn,m = (ξn,m, 0, . . . , 0,−1)t.

In fact, we have bk,m ∈ Γm, ∀k, since we can estimate

|ξk,m − ξk|p ≤ p−m.

For Bm = (b0,mb1,m . . . bn,m) we have

Bm =


pm ξ1,m ξ2,m . . . ξn,m
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1

 , | det(Bm)| = pm.

Applying the LLL algorithm for δ ∈ (1/4, 1), we denote {b0, b1, . . . , bn} a reduced
basis and B = (b0 b1 . . . bn). It follows from (2.3) that the shortest vector b0 in B
satisfies

∥b0∥2 ≤
√
n+ 1 |det(B)|

1
n+1

(
2√

4δ − 1

)n

(3.3)

=
√
n+ 1 |det(Bm)|

1
n+1

(
2√

4δ − 1

)n

=
√
n+ 1 p

m
n+1

(
2√

4δ − 1

)n

.
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Furthermore, it is known that

(3.4)

(
n∏

i=0

∥bi∥2

) 1
n+1

≤ Kn| det(B)|
1

n+1 = Knp
m

n+1 , Kn ∼ 2O(n)

for the reduced basis {b0, b1, . . . , bn}.
Now we estimate the minimum norm value λ

(∞)
1 (Γm)(= λ

(∞)
1 (L(Bm))) by using

the famous Dirichlet principle.

Theorem 3.3. For a n-tuple of p-adic integers Ξ = {ξ1, . . . , ξn}, which are irra-
tional and linearly independent over Q, and each positive integer m, there exists a
solution in integers (a0,m, a1,m, . . . , an,m) ∈ Zn+1, which satisfies

0 < |a0,m + a1,mξ1 + · · ·+ an,mξn|p ≤ p−m,(3.5)

max
0≤i≤n

|ai,m| ≤ p
m

n+1 .(3.6)

Consequently, we have

(3.7) λ
(∞)
1 (Γm) ≤ p

m
n+1 = det(Γm)

1
n+1

and

(3.8) wn(Ξ) ≥ n.

Proof. For each positive integer m we use the pigeonhole principle for the holes,
which are defined by

Hk = {z ∈ Zp : z ≡
m−1∑
j=0

hk,jp
j mod pm}

for 0 ≤ hk,j ≤ p − 1, j = 0, 1, . . . ,m − 1, k = 1, 2, . . . , pm. Here we can take each
set Hk, defined by the numbers {hk,j}0≤j≤m−1, which satisfies

Zp =

pm∪
k=1

Hk, Hk ∩Hk′ = ∅ for k ̸= k′.

Next we consider the following nonzero p-adic integers given by

b0 + b1ξ1 + · · ·+ bnξn,

bi ∈ {0, 1, . . . , l}, i = 0, 1, . . . , n

where the integer l is given by l = [pm/(n+1)]. Since the total number of these p-adic
integers satisfies

(l + 1)n+1 > (p
m

n+1 )n+1 = pm,

and it is greater than the total number of the pigeonholes, there exists a pigeonhole
Hk, which contains at least a pair of p-adic integers,

b0 + b1ξ1 + · · ·+ bnξn, b′0 + b′1ξ1 + · · ·+ b′nξn ∈ Hk.

Putting ai = bi−b′i, i = 0, 1, . . . , n, we can obtain the solution in integers a0, . . . , an,
which satisfies

0 < |a0 + a1ξ1 + · · ·+ anξn|p ≤ p−m,
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max
0≤i≤n

|ai| ≤ l ≤ p
m

n+1 .

It follows from the definitions that we can obtain the estimates (5.7) and (5.8).
�

4. Numerical calculations on SAP

In this section, we compare the minimum norms of the vectors given by the
LLL reduction algorithm and the upper bound of the norms of the shortest vectors
Xm := pm/(n+1) given in Theorem 5.2, using the open source software Sage. We
investigate the following case.
p = 13: prime number,

ξi = u
1

103
i : p-adic number, 103rd root of ui:

11, 12, 14, 15, 16, 17, 18, 19, 20, 21,
m = 5: approximation order
n = 10: dimension

For the approximation order m = 5 and the dimension n = 10, we apply the LLL
reduction (δ = 0.99999). Then we obtain the reduced basis B from Bm. Here we
note that the basis is given by row vectors in Sage.

Bm =



371293 0 0 0 0 0 0 0 0 0 0
125400 −1 0 0 0 0 0 0 0 0 0
286272 0 −1 0 0 0 0 0 0 0 0
282218 0 0 −1 0 0 0 0 0 0 0
340728 0 0 0 −1 0 0 0 0 0 0
128378 0 0 0 0 −1 0 0 0 0 0
4671 0 0 0 0 0 −1 0 0 0 0

341596 0 0 0 0 0 0 −1 0 0 0
366035 0 0 0 0 0 0 0 −1 0 0
6311 0 0 0 0 0 0 0 0 −1 0

348639 0 0 0 0 0 0 0 0 0 −1


.

B =



0 −1 −1 −1 −1 2 0 0 0 2 −1
0 1 2 −1 1 0 −2 −1 1 −1 1
1 1 −2 2 0 −1 0 0 1 −1 −1
0 −1 2 2 0 1 1 1 −1 −1 0
2 −1 1 0 −2 1 2 0 −1 1 0

−1 0 1 0 −1 0 0 −1 2 2 −1
0 −1 −2 0 2 0 1 −1 1 −2 0

−1 1 −1 −1 0 0 −1 −3 0 −2 0
0 0 0 −1 1 −1 −2 −1 −2 −1 −2
1 −2 −1 2 −1 0 0 0 0 −2 2
1 −1 0 1 1 −1 −1 0 −2 3 1


.

We obtain

min
0≤i≤n

∥bi∥2 = 3.60555..., max
0≤i≤n

∥bi∥2 = 4.35889...,

min
0≤i≤n

∥bi∥∞ = 2, max
0≤i≤n

∥bi∥∞ = 3,
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which are sufficiently effective solutions of SVP, smaller than the value Xm =
pm/(n+1) = 3.208764..., comparing the theoretical estimate (5.7) in Theorem 5.2

λ
(∞)
1 (Γm) ≤ p

m
n+1 = det(Γm)

1
n+1 .

5. Second Type SAP

We consider the following simultaneous approximation problems. Let n ≥ 1 be
an integer and let Ξ = {ξ1, ξ2, . . . , ξn} be a n-tuple of p-adic integers.

Definition 5.1. We denote by νn(Ξ) the supremum of the real numbers ν such that,
for some infinitely many real numbers Yj , which goes to infinity, the inequalities

0 < max
1≤i≤n

|a0,jξi − ai,j |p ≤ Y −ν−1
j ,

max
0≤i≤n

|ai,j | ≤ Yj ,

have a solution in integers a0,j , a1,j , ..., an,j .

For a positive integer m we define the p-adic approximation lattice Λm by

(5.1) Λm = {(a0, a1, . . . , an) ∈ Zn+1 : max
1≤i≤n

|a0ξi − ai|p ≤ p−m}.

When a p-adic integer ξi has the p-adic expansion

ξi =

∞∑
k=0

xi,kp
k, 0 ≤ xi,k ≤ p− 1,

let ξi,m be the m-th order approximation of ξi defined by

(5.2) ξi,m =
m−1∑
k=0

xi,kp
k.

Consider the basis {b0,m, b1,m, . . . , bn,m} ⊂ Zn+1 of the lattice Λm given by

b0,m = (1, ξ1,m, ξ2,m, . . . , ξn,m)t, b1,m = (0,−pm, 0, . . . , 0)t,

b2,m = (0, 0,−pm, 0, . . . , 0)t, · · · , bn,m = (0, 0, . . . , 0,−pm)t.

In fact, we have bk,m ∈ Λm, ∀k, since we can estimate

|ξk,m − ξk|p ≤ p−m.

For Bm = (b0,mb1,m . . . bn,m) we have

Bm =


1 0 0 . . . 0

ξ1,m −pm 0 . . . 0
ξ2,m 0 −pm . . . 0
...

...
...

. . .
...

ξn,m 0 0 . . . −pm

 , | det(Bm)| = pnm.

Applying the LLL algorithm for δ ∈ (1/4, 1), we denote {b0, b1, . . . , bn} a reduced
basis and B = (b0 b1 . . . bn). It follows from (2.3) that the shortest vector b0 in B
satisfies

∥b0∥2 ≤
√
n+ 1 |det(B)|

1
n+1

(
2√

4δ − 1

)n

(5.3)
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=
√
n+ 1 |det(Bm)|

1
n+1

(
2√

4δ − 1

)n

=
√
n+ 1 p

mn
n+1

(
2√

4δ − 1

)n

.

Furthermore, it is known that

(5.4)

(
n∏

i=0

∥bi∥2

) 1
n+1

≤ Kn| det(B)|
1

n+1 = Knp
nm
n+1 , Kn ∼ 2O(n)

for the reduced basis {b0, b1, . . . , bn}.
Now we estimate the minimum norm value λ

(∞)
1 (Λm)(= λ

(∞)
1 (L(Bm))) by using

the famous Dirichlet principle.

Theorem 5.2. For a n-tuple of p-adic integers Ξ = {ξ1, . . . , ξn}, which are irra-
tional and linearly independent over Q, and each positive integer m, there exists a
solution in integers (a0,m, a1,m, . . . , an,m) ∈ Zn+1, which satisfies

0 < max
1≤i≤n

|a0,mξi − ai,m|p ≤ p−m,(5.5)

max
0≤i≤n

|ai,m| ≤ p
nm
n+1 .(5.6)

Consequently, we have

(5.7) λ
(∞)
1 (Λm) ≤ p

nm
n+1 = det(Λm)

1
n+1

and

(5.8) νn(Ξ) ≥
1

n
.

Proof. For each positive integer m we use the pigeonhole principle for the holes
Bk(·), which are defined as follows. Consider the set K of all functions k(·) from
{1, 2, ..., n} to {1, 2, ..., pm}

K = {k(·) : k(i) ∈ {1, 2, ..., pm}, i ∈ {1, ..., n}}, #(K) = pnm.

For each fixed i ∈ {1, ..., n}, define

Hk(i) = {z ∈ Zp : z ≡
m−1∑
j=0

hk(i),jp
j mod pm}

for 0 ≤ hk(i),j ≤ p− 1, j = 0, 1, . . . ,m− 1. Here, for each fixed i, we can take each
set Hk(i), defined by the sequences {hk(i),j}0≤j≤m−1, which satisfies

Zp =
∪
k∈K

Hk(i), Hk(i) ∩Hk′(i) = ∅ for {hk(i),j} ̸= {hk′(i),j}.

Now we can define the pigeonholes Bk(·) by

Bk(·) :=

n∏
i=1

Hk(i) ⊂ Zn
p ,
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which satisfy ∪
k∈K

Bk(·) = Zn
p , Bk(·) ∩Bk′(·) = ∅ for k ̸= k′.

Next we consider the following nonzero vectors of p-adic integers given by

(b0ξ1 − b1, b0ξ2 − b2, ..., b0ξn − bn) ∈ Zn
p

bi ∈ {0, 1, . . . , l}, i = 0, 1, . . . , n,

where the integer l is given by l = [pmn/(n+1)]. Since the total number of these
p-adic integers satisfies

(5.9) (l + 1)n+1 > (p
nm
n+1 )n+1 = pnm,

and it is greater than the total number of the pigeonholes, there exists a pigeonhole
Bk(·), which contains at least a pair of vectors of p-adic integers,

(b0ξ1 − b1, b0ξ2 − b2, ..., b0ξn − bn), (b′0ξ1 − b′1, b
′
0ξ2 − b′2, ..., b

′
0ξn − b′n) ∈ Bk(·).

Putting ai = bi−b′i, i = 0, 1, . . . , n, we can obtain the solution in integers a0, . . . , an,
which satisfies

0 < max
1≤i≤n

|a0ξi − ai|p ≤ p−m,

max
0≤i≤n

|ai| ≤ l ≤ p
nm
n+1

where we note that, if a0 = 0, there exists aj ̸= 0 : |aj | < pm, which contradicts
that |aj |p ≤ p−m. It follows from the definitions that we can obtain the estimates
(5.7) and (5.8).

�

6. Numerical computations of 2nd type

In this section, we compare the minimum norms of the vectors given by the
LLL reduction algorithm and the upper bound of the norms of the shortest vectors
Xm := pmn/(n+1) given in Theorem 5.2, using the open source software Sage. We
investigate the following case.
p = 13: prime number,

ξi = u
1

103
i : p-adic number, 103rd root of ui:

11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97

m = 5, 6, . . . , 50: approximation orders
n = 20, 60, 70, 80: dimensions

First we show our numerical process by using the small parameters, n = 10,

ξi = u
1

103
i , m = 5. For the approximation order m = 5 and the dimension n = 10,
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we apply the LLL reduction (δ = 0.99999). Then we obtain the reduced ba-
sis B from Bm. Here we note that the basis is given by row vectors in Sage.

We obtain

min
0≤i≤n

∥bi∥∞ = 54982, max
0≤i≤n

∥bi∥∞ = 111874 < p
mn
n+1 = 115712.126290745...,

which shows that the SVP solutions given by LLL satisfy the theoretical estimate
(5.7) of the SAP solutions in Theorem 5.2

λ
(∞)
1 (Γm) ≤ p

mn
n+1 = det(Γm)

1
n+1 .

Next we give the graphs which compare these numerical minimum and maximum
values in the l∞ norm for the shortest vectors given by the LLL reduction basis and
the values Xm := pnm/(n+1) for the approximation orders m from 10 to 50 and the
dimensions n = 20, 60, 70, 80. Here we take the ratio of these numerical minimum
and maximum values to the value Xm.

Since the LLL reduction algorithm approximately finds the shortest vectors in
the l2 norm, we use their l∞ norm values as the substitutes of the shortest vectors
in the l∞ norm. We use the following line styles in the graphs.

- - - - - - - - : ratio of minimum norm values of the reduced basis vectors in l∞,
————— : Xm = pnm/(n+1) ≡ 1,
· · · · · · · · · · · · : ratio of maximum norm values of the reduced basis vectors in l∞.
These graphs show that the LLL algorithm is effective enough to obtain the

solutions of SAP, which satisfy the estimate (5.7), if the dimension n is under 60
(see Figure 1 and 2), but this estimate is not satisfied for some m if n > 60 and if
n ≥ 80 and m ≥ 30 (see Figure 4).

In [7] we found the remark on the run-time of exact SVP, quoted from [2], that
up to dimension 60 the shortest vector problem could be solved within an hour,
whereas dimension 100 seemed out of reach.

These graphs show that the LLL algorithm is effective enough to obtain the
solutions of SAP, which satisfy the estimate (5.6),

λ
(∞)
1 (Γm) ≤ p

nm
n+1 ,
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Figure 1. n=20 Figure 2. n=60

Figure 3. n=70 Figure 4. n=80

if the dimension n is under 60 (see Figure 1 and 2), but this estimate is not satisfied
for some m if n > 60 and if n ≥ 80 and m ≥ 30 (see Figure 4 and [2], [7] ). In our
cryptosystems proposed in [3] we use these SAP solutions as the private keys. The
private keys of the SAP solutions, which satisfy (3.6), must be secure against the
LLL attacks in the dimension n ≥ 80 and m ≥ 30.
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