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for any x, y ∈ X. Such a mapping is called an (α, β, r)-contratively generalized
hybrid mapping; see also Kocourek, Takahashi and Yao [6] for such a mapping in
Hilbert spaces. For instance, if α = 1 and β = 0, then an (α, β, r)-contratively
generalized hybrid mapping is contractive; if α = 1+ r and β = 1, then an (α, β, r)-
contratively generalized hybrid mapping is contractively nonspreading; if α = 1+ r

2

and β = 1
2 , then an (α, β, r)-contratively generalized hybrid mapping is contractively

hybrid; see Hasegawa, Komiya and Takahashi [2].
In this paper, motivated by Hasegawa, Komiya and Takahashi [2], we consider a

broad class of mappings containing Kannan mappings and contratively generalized
hybrid mappings. Then we deal with fixed point theorems for such a mapping.
Using these results, we show directly well-known fixed point theorems in complete
metric spaces.

2. Preliminaries

We know the following Caristi’s fixed point theorem which was generalized by
Takahashi [7].

Theorem 2.1. Let (X, d) be a complete metric space, let ψ be a proper, bounded
below, and lower semicontinuous mapping from X into (−∞,∞], and let T be a
mapping from X into itself. Suppose that

d(x, Tx) + ψ(Tx) ≤ ψ(x)

for any x ∈ X. Then T has a fixed point.

Let ℓ∞ be the Banach space of bounded sequences with supremum norm. Let µ
be an element of (ℓ∞)∗, which is the dual space of ℓ∞. Then we denote by µ(x) the
value of µ at x = (x1, x2, . . .) ∈ ℓ∞. Sometimes we denote by µn(xn) the value µ(x).
A linear functional µ on ℓ∞ is called a mean if µ(e) = ∥µ∥ = 1, where e = (1, 1, . . .).
A mean µ is called a Banach limit on ℓ∞ if µn(xn+1) = µn(xn). We know that there
exists a Banach limit on ℓ∞. If µ is a Banach limit on ℓ∞, then

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn

holds for any x = (x1, x2, . . .) ∈ ℓ∞. In particular, if x = (x1, x2, . . .) ∈ ℓ∞ and
xn → a ∈ R, then we obtain µn(xn) = a. See [7] for the proof of existence of a
Banach limit and its other elementary properties.

Moreover we use the following lemma and theorem showed by Hasegawa, Komiya
and Takahashi [2].

Lemma 2.2. Let (X, d) be a metric space, let {xn} be a bounded sequence in X,
let µ be a mean on ℓ∞ and let g be a mapping from X into R defined by

g(x) = µnd(xn, x)

for any x ∈ X. Then g is continuous.

Theorem 2.3. Let (X, d) be a complete metric space, let µ be a mean on ℓ∞ and
let T be a mapping from X into itself. Suppose that there exist a real number r with
0 ≤ r < 1 and z ∈ X such that {Tnz | n ∈ N ∪ {0}} is bounded and

µnd(T
nz, Tx) ≤ rµnd(T

nz, x)
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for any x ∈ X. Then the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

3. Fixed point theorems

In this section we consider an (α, β, γ, δ, ε, ζ)-contractively widely more gener-
alized hybrid mapping from a metric space X into itself; see also Kawasaki and
Takahashi [5] for such a mapping in Hilbert spaces.

Definition 3.1. Let (X, d) be a metric space and let T be a mapping from X into
itself. We say that T is contractively widely more generalized hybrid if T satisfies
the following condition: there exist real numbers α, β, γ, δ, ε and ζ such that

αd(Tx, Ty) + βd(x, Ty) + γd(Tx, y) + δd(x, y)
+εd(x, Tx) + ζd(y, Ty) ≤ 0

(3.1)

for any x, y ∈ X. Such a mapping T is called an (α, β, γ, δ, ε, ζ)-contractively widely
more generalized hybrid mapping.

Firstly we consider criteria for an (α, β, γ, δ, ε, ζ)-contractively widely more gen-
eralized hybrid mapping T from a metric space X into itself such that {Tnx | n ∈
N ∪ {0}} is a Cauchy sequence for any x ∈ X.

Lemma 3.2. Let (X, d) be a metric space and let T be an (α, β, γ, δ, ε, ζ)-contractively
widely more generalized hybrid mapping from X into itself satisfying (B1), (B2) or
(B3):

(B1) α+ β + ζ ≥ 0 and α+ 2min{β, 0}+ δ + ε+ ζ > 0;
(B2) α+ γ + ε ≥ 0 and α+ 2min{γ, 0}+ δ + ε+ ζ > 0;
(B3) 2α+ β + γ + ε+ ζ ≥ 0 and α+min{β + γ, 0}+ δ + ε+ ζ > 0.

Then {Tnx | n ∈ N ∪ {0}} is a Cauchy sequence for any x ∈ X.

Proof. In the case of (B1), replacing x and y by Tn−1x and Tnx, respectively, we
obtain

αd(Tnx, Tn+1x) + βd(Tn−1x, Tn+1x) + γd(Tnx, Tnx) + δd(Tn−1x, Tnx)

+εd(Tn−1x, Tnx) + ζd(Tnx, Tn+1x)

= (α+ ζ)d(Tn+1x, Tnx) + βd(Tn+1x, Tn−1x) + (δ + ε)d(Tnx, Tn−1x)

≤ 0.

Since

d(Tn+1x, Tnx)− d(Tnx, Tn−1x) ≤ d(Tn+1x, Tn−1x)

≤ d(Tn+1x, Tnx) + d(Tnx, Tn−1x),

we obtain

βd(Tn+1x, Tnx)− |β|d(Tnx, Tn−1x) ≤ βd(Tn+1x, Tn−1x)

and hence

(α+ β + ζ)d(Tn+1x, Tnx) + (−|β|+ δ + ε)d(Tnx, Tn−1x) ≤ 0.
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If α+ β + ζ = 0, then by α+ 2min{β, 0}+ δ + ε+ ζ > 0 we obtain

−|β|+ δ + ε = 2min{β, 0} − β + δ + ε

> −(α+ β + ζ)

= 0.

Then we obtain

d(Tnx, Tn−1x) ≤ 0

for any n ∈ N, that is, {Tnx | n ∈ N ∪ {0}} = {x}, and hence it is a Cauchy
sequence. If α+ β + ζ > 0, we obtain

d(Tn+1x, Tnx) ≤ −−|β|+ δ + ε

α+ β + ζ
d(Tnx, Tn−1x)

≤ max

{
−−|β|+ δ + ε

α+ β + ζ
, 0

}
d(Tnx, Tn−1x)

≤
(
max

{
−−|β|+ δ + ε

α+ β + ζ
, 0

})n

d(Tx, x).

By α+ 2min{β, 0}+ δ + ε+ ζ > 0 we obtain −−|β|+δ+ε
α+β+ζ < 1. Therefore we obtain

d(Tmx, Tnx) ≤
m∑

i=n+1

d(T ix, T i−1x)

≤
m∑

i=n+1

(
max

{
−−|β|+ δ + ε

α+ β + ζ
, 0

})i−1

d(Tx, x)

≤
∞∑

i=n+1

(
max

{
−−|β|+ δ + ε

α+ β + ζ
, 0

})i−1

d(Tx, x)

=

(
max

{
−−|β|+δ+ε

α+β+ζ , 0
})n

1−max
{
−−|β|+δ+ε

α+β+ζ , 0
}d(Tx, x)

for any m,n ∈ N ∪ {0} with m ≥ n, and hence {Tnx | n ∈ N ∪ {0}} is a Cauchy
sequence.

In the case of (B2), replacing the variables x and y in (3.1), we obtain

αd(Tx, Ty) + γd(x, Ty) + βd(Tx, y) + δd(x, y)
+ζd(x, Tx) + εd(y, Ty) ≤ 0.

(3.2)

Therefore we obtain the desired result by (B1).
In the case of (B3), adding (3.1) and (3.2), we obtain

2αd(Tx, Ty) + (β + γ)d(x, Ty) + (β + γ)d(Tx, y) + 2δd(x, y)
+(ε+ ζ)d(x, Tx) + (ε+ ζ)d(y, Ty) ≤ 0.

Therefore we obtain the desired result by (B1). �

Using Lemma 3.2, we obtain directly the following theorem.
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Theorem 3.3. Let (X, d) be a complete metric space and let T be an (α, β, γ, δ, ε, ζ)-
contractively widely more generalized hybrid mapping from X into itself satisfying
(B1), (B2) or (B3). Then for any x ∈ X there exists limn→∞ Tnx.

Remark 3.4. Let (X, d) be a metric space and let {xn | n ∈ N∪{0}} be a Cauchy
sequence inX. Then {xn | n ∈ N∪{0}} is bounded. Indeed, since {xn | n ∈ N∪{0}}
is a Cauchy sequence, for any positive number ρ there exists N ∈ N such that
d(xm, xn) < ρ for any m,n ≥ N . Put M = max{d(x0, xN ), . . . , d(xN−1, xN ), ρ}.
Then d(xn, xN ) ≤M for any n ∈ N ∪ {0}.

Using Theorem 2.1, we show the following fixed point theorem.

Theorem 3.5. Let (X, d) be a complete metric space and let T be an (α, β, γ, δ, ε, ζ)-
contractively widely more generalized hybrid mapping from X into itself satisfying
(C1), (C2) or (C3):

(C1) ζ > 0, α+ β ≥ 0 and α+ β + γ + δ + 2min{ε, 0} ≥ 0;
(C2) ε > 0, α+ γ ≥ 0 and α+ β + γ + δ + 2min{ζ, 0} ≥ 0;
(C3) ε+ ζ > 0, 2α+ β + γ ≥ 0 and α+ β + γ + δ ≥ 0.

Then T has a fixed point if and only if there exists z ∈ X such that {Tnz | n ∈
N ∪ {0}} is bounded. In particular, if α+ β + γ + δ > 0, then T has a unique fixed
point.

Proof. If T has a fixed point u, then {Tnu | n ∈ N ∪ {0}} = {u} is bounded.
Conversely suppose that there exists z ∈ X such that {Tnz | n ∈ N ∪ {0}} is

bounded. In the case of (C1), replacing x and y by Tnz and x, respectively, we
obtain

αd(Tn+1z, Tx) + βd(Tnz, Tx) + γd(Tn+1z, x) + δd(Tnz, x)

+εd(Tnz, Tn+1z) + ζd(x, Tx) ≤ 0.

Since min{ε, 0} ≤ ε, we obtain

αd(Tn+1z, Tx) + βd(Tnz, Tx) + γd(Tn+1z, x) + δd(Tnz, x)

+min{ε, 0}d(Tnz, Tn+1z) + ζd(x, Tx) ≤ 0.

Since min{ε, 0} ≤ 0 and d(Tnz, Tn+1z) ≤ d(Tnz, x) + d(x, Tn+1z), we obtain

αd(Tn+1z, Tx) + βd(Tnz, Tx) + (γ +min{ε, 0})d(Tn+1z, x)

+(δ +min{ε, 0})d(Tnz, x) + ζd(x, Tx) ≤ 0.

Since {Tnz | n ∈ N ∪ {0}} is bounded, we can apply a Banach limit µ to the
inequality above. Then we obtain

(α+ β)µnd(T
nz, Tx) + (γ + δ + 2min{ε, 0})µnd(Tnz, x) + ζd(x, Tx) ≤ 0.

By ζ > 0 we obtain

d(x, Tx) +
α+ β

ζ
µnd(T

nz, Tx) ≤ −γ + δ + 2min{ε, 0}
ζ

µnd(T
nz, x).

By α+ β + γ + δ + 2min{ε, 0} ≥ 0 we obtain −(γ + δ + 2min{ε, 0}) ≤ α+ β, and
hence

d(x, Tx) +
α+ β

ζ
µnd(T

nz, Tx) ≤ α+ β

ζ
µnd(T

nz, x).
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By ζ > 0, α + β ≥ 0 and Lemma 2.2, α+β
ζ µnd(T

nz, ·) is proper, bounded below,

and continuous. Therefore by Theorem 2.1 T has a fixed point.
Moreover suppose that α + β + γ + δ > 0 holds. Let u and v be fixed points of

T . Then we obtain

αd(Tu, Tv) + βd(u, Tv) + γd(Tu, v) + δd(u, v) + εd(u, Tu) + ζd(v, Tv)

= (α+ β + γ + δ)d(u, v) ≤ 0.

By α + β + γ + δ > 0 we obtain d(u, v) ≤ 0 and hence u = v. Therefore T has a
unique fixed point.

In the cases of (C2) and (C3), we obtain the desired results similarly to latter
parts of the proof of Lemma 3.2. �

Using Lemma 3.2, Remark 3.4 and Theorem 3.5, we obtain the following fixed
point theorem.

Theorem 3.6. Let (X, d) be a complete metric space and let T be an (α, β, γ, δ, ε, ζ)-
contractively widely more generalized hybrid mapping from X into itself satisfying
the following:

(B) one of (B1), (B2) and (B3) holds;
(C) one of (C1), (C2) and (C3) holds.

Then T has a fixed point. In particular, if α+ β + γ + δ > 0, then T has a unique
fixed point.

Using Theorem 2.3, we show the following fixed point theorem.

Theorem 3.7. Let (X, d) be a complete metric space and let T be an (α, β, γ, δ, ε, ζ)-
contractively widely more generalized hybrid mapping from X into itself satisfying
(H1), (H2) or (H3):

(H1) α+ β + ζ > 0 and α+ β + γ + δ + 2min{ε, 0}+ 2min{ζ, 0} > 0;
(H2) α+ γ + ε > 0 and α+ β + γ + δ + 2min{ε, 0}+ 2min{ζ, 0} > 0;
(H3) 2α+ β + γ + ε+ ζ > 0 and α+ β + γ + δ + 2min{ε+ ζ, 0} > 0.

Then T has a fixed point if and only if there exists z ∈ X such that {Tnz | n ∈
N ∪ {0}} is bounded. Moreover the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

Proof. If T has a fixed point u, then {Tnu | n ∈ N ∪ {0}} = {u} is bounded.
Conversely suppose that there exists z ∈ X such that {Tnz | n ∈ N ∪ {0}} is

bounded. In the case of (H1), replacing x and y by Tnz and x, respectively, we
obtain

αd(Tn+1z, Tx) + βd(Tnz, Tx) + γd(Tn+1z, x) + δd(Tnz, x)

+εd(Tnz, Tn+1z) + ζd(x, Tx) ≤ 0.

Since min{ε, 0} ≤ ε, we obtain

αd(Tn+1z, Tx) + βd(Tnz, Tx) + γd(Tn+1z, x) + δd(Tnz, x)

+min{ε, 0}d(Tnz, Tn+1z) + ζd(x, Tx) ≤ 0.
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Since min{ε, 0} ≤ 0 and d(Tnz, Tn+1z) ≤ d(Tnz, x) + d(x, Tn+1z), we obtain

αd(Tn+1z, Tx) + βd(Tnz, Tx) + (γ +min{ε, 0})d(Tn+1z, x)

+(δ +min{ε, 0})d(Tnz, x) + ζd(x, Tx) ≤ 0.

Since

d(Tnz, Tx)− d(Tnz, x) ≤ d(x, Tx) ≤ d(Tnz, Tx) + d(Tnz, x),

we obtain

ζd(Tnz, Tx)− |ζ|d(Tnz, x) ≤ ζd(x, Tx)

and hence

αd(Tn+1z, Tx) + (β + ζ)d(Tnz, Tx) + (γ +min{ε, 0})d(Tn+1z, x)

+(δ +min{ε, 0} − |ζ|)d(Tnz, x) ≤ 0.

Since {Tnz | n ∈ N ∪ {0}} is bounded, we can apply a Banach limit µ to the
inequality above. Then we obtain

(α+ β + ζ)µnd(T
nz, Tx)

+(γ + δ + 2min{ε, 0} − |ζ|)µnd(Tnz, x) ≤ 0.

By α+ β + ζ > 0 we obtain

µnd(T
nz, Tx) ≤ −γ + δ + 2min{ε, 0} − |ζ|

α+ β + ζ
µnd(T

nz, x)

≤ max

{
−γ + δ + 2min{ε, 0} − |ζ|

α+ β + ζ
, 0

}
µnd(T

nz, x).

By α+ β + γ + δ + 2min{ε, 0}+ 2min{ζ, 0} > 0 we obtain −γ+δ+2min{ε,0}−|ζ|
α+β+ζ < 1.

Therefore by Theorem 2.3 T has a unique fixed point u ∈ X and u = limn→∞ Tnx
for any x ∈ X.

In the cases of (H2) and (H3), we obtain the desired results similarly to latter
parts of the proof of Lemma 3.2. �

Using Lemma 3.2, Remark 3.4 and Theorem 3.7, we obtain the following fixed
point theorem.

Theorem 3.8. Let (X, d) be a complete metric space and let T be an (α, β, γ, δ, ε, ζ)-
contractively widely more generalized hybrid mapping from X into itself satisfying
the following:

(B) one of (B1), (B2) and (B3) holds;
(H) one of (H1), (H2) and (H3) holds.

Then the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

Moreover, if (B) is satisfied, we also show the following fixed point theorem.

Theorem 3.9. Let (X, d) be a complete metric space and let T be an (α, β, γ, δ, ε, ζ)-
contractively widely more generalized hybrid mapping from X into itself satisfying
(B), and one of (M1), (M2) and (M3):
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(M1) α+ β + ζ > 0;
(M2) α+ γ + ε > 0;
(M3) 2α+ β + γ + ε+ ζ > 0.

Then T has a fixed point. In particular, if α + β + γ + δ > 0, then the following
hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

Proof. By Theorem 3.3 there exists u ∈ X such that u = limn→∞ Tnx. In the case
of (M1), replacing x and y by Tnx and u, respectively, we obtain

αd(Tn+1x, Tu) + βd(Tnx, Tu) + γd(Tn+1x, u) + δd(Tnx, u)

+εd(Tnx, Tn+1x) + ζd(u, Tu) ≤ 0.

Since u = limn→∞ Tnx, we obtain

(α+ β + ζ)d(u, Tu) ≤ 0.

By α+ β + ζ > 0 we obtain d(u, Tu) ≤ 0 and hence u is a fixed point of T .
Moreover suppose that α + β + γ + δ > 0 holds. Let u and v be fixed points of

T . Then we obtain

αd(Tu, Tv) + βd(u, Tv) + γd(Tu, v) + δd(u, v) + εd(u, Tu) + ζd(v, Tv)

= (α+ β + γ + δ)d(u, v) ≤ 0.

By α + β + γ + δ > 0 we obtain d(u, v) ≤ 0 and hence u = v. Therefore T has a
unique fixed point.

In the cases of (M2) and (M3), we obtain the desired results similarly to latter
parts of the proof of Lemma 3.2. �

4. Applications

Theorem 4.1. Let (X, d) be a complete metric space and let T be a contractively
generalized hybrid mapping form X into itself, that is, there exist α, β, r ∈ R with
0 ≤ r < 1 such that

αd(Tx, Ty) + (1− α)d(x, Ty) ≤ r(βd(Tx, y) + (1− β)d(x, y))

for any x, y ∈ X. Suppose that α > r(1 + |β|). Then the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

Proof. T is (α, 1 − α,−rβ,−r(1 − β), 0, 0)-contractively widely more generalized
hybrid. Since

α+ (1− α) + 0 = 1 > 0,

α+ (1− α) + (−rβ) + (−r(1− β)) + 2 · 0 + 2 · 0 = 1− r > 0,

T satisfies (H1). If β ≥ 0 and α > r(1 + β), then we obtain

α+ (−rβ) + 0 = α− rβ > r ≥ 0,

α+ 2min{−rβ, 0}+ (−r(1− β)) + 0 + 0 = α− r(1 + β) > 0;
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if β < 0 and α > r(1− β), then we obtain

α+ (−rβ) + 0 = α− rβ > r(1− 2β) ≥ 0,

α+ 2min{−rβ, 0}+ (−r(1− β)) + 0 + 0 = α− r(1− β) > 0.

In both cases T satisfies (B2). Therefore by Theorem 3.8 T has a unique fixed point
u ∈ X and u = limn→∞ Tnx for any x ∈ X. �
Theorem 4.2. Let (X, d) be a complete metric space and let T be a mapping form
X into itself satisfying there exist ε, ζ ∈ R such that ε+ ζ < 1 and

d(Tx, Ty) ≤ εd(x, Tx) + ζd(y, Ty)

for any x, y ∈ X. Then the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

Proof. T is (1, 0, 0, 0,−ε,−ζ)-contractively widely more generalized hybrid. Since

2 · 1 + 0 + (−ε) + (−ζ) = 2− (ε+ ζ) > 0,

1 + 0 + 0 + (−ε) + (−ζ) = 1− (ε+ ζ) > 0,

T satisfies (B3) and (M3). Moreover

1 + 0 + 0 + 0 > 0

holds. Therefore by Theorem 3.9 T has a unique fixed point u ∈ X and u =
limn→∞ Tnx for any x ∈ X. �

In the remaining part of this section we discuss a special case of contractively
widely more generalized hybrid mapping in metric spaces, which gives us a good
vision for some applications. This mapping is defined as follows.

Definition 4.3. Let (X, d) be a metric space and let T be a mapping from X into
itself. We say that T is a comprehensive contraction if T satisfies the following
condition: there exist β, γ, δ, ε and ζ with β, γ, δ, ε, ζ ≥ 0 and β + γ + δ + ε+ ζ < 1
such that

d(Tx, Ty) ≤ βd(x, Ty) + γd(Tx, y) + δd(x, y) + εd(x, Tx) + ζd(y, Ty)

for any x, y ∈ X. Such a mapping T is called a (β, γ, δ, ε, ζ)-comprehensive contrac-
tion.

The following theorem is derived easily from Theorem 3.9.

Theorem 4.4. Let (X, d) be a complete metric space and let T be a (β, γ, δ, ε, ζ)-
comprehensive contraction from X into itself. Then the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

Proof. Any (β, γ, δ, ε, ζ)-comprehensive contraction is a (1,−β,−γ,−δ,−ε,−ζ)-con-
tractively widely more generalized hybrid mapping. Since

2 · 1− β − γ − ε− ζ > 1 + δ > 0,

1 + min{−β − γ, 0} − δ − ε− ζ = 1− β − γ − δ − ε− ζ > 0,
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T satisfies (B3) and (M3). Moreover T satisfies

1− β − γ − δ > ε+ ζ ≥ 0.

Therefore by Theorem 3.9 T has a unique fixed point u ∈ X and u = limn→∞ Tnx
for any x ∈ X. �

Let (X, d) be a metric space. A mapping T from X into itself is said to be
(1) contractive, (2) Kannan, (3) contractively nonspreading, and (4) contractively
hybrid if there exists k ∈ [0, 1) such that

(1) d(Tx, Ty) ≤ kd(x, y);
(2) d(Tx, Ty) ≤ k

2 (d(x, Tx) + d(y, Ty));

(3) d(Tx, Ty) ≤ k
2 (d(x, Ty) + d(Tx, y));

(4) d(Tx, Ty) ≤ k
3 (d(x, Ty) + d(Tx, y) + d(x, y));

for any x, y ∈ X, respectively. It holds that

(1) any contractive mapping T is a (0, 0, k, 0, 0)-comprehensive contraction;
(2) any Kannan mapping T is a (0, 0, 0, k2 ,

k
2 )-comprehensive contraction;

(3) any contractively nonspreading mapping T is a (k2 ,
k
2 , 0, 0, 0)-comprehensive

contraction;
(4) any contractively hybrid mapping T is a (k3 ,

k
3 ,

k
3 , 0, 0)-comprehensive con-

traction.

For each mapping by Theorem 4.4 the following hold:

(i) T has a unique fixed point u ∈ X;
(ii) u = limn→∞ Tnx for any x ∈ X.

In 2011, Hasegawa, Komiya and Takahashi proved the following theorem.

Theorem 4.5. Let E be a Banach space, let C be a nonempty closed convex subset
of E, let α, β, γ be real numbers with 0 < γ < 1, and let T be an (α, β, γ)- contrac-
tively generalized hybrid mapping form C into itself such that the set of fixed points
of T is nonempty. Take x0, x1 ∈ C and define xn+2 = T (γxn+1 + (1 − γ)xn) for
any n ∈ N. Then, {xn} is convergent to a unique fixed point of T .

Theorem 4.5 says that, when we think that {xn} is a sequence of time-series
vectors, the 2-period moving average sequence {xn} of vectors is convergent to a
unique fixed point of T . We extend the convergence of a 2-period moving average
sequence of vectors to that of any m-period moving average sequence of vectors
constructing by a comprehensive contraction T . For instance, let T be a compre-
hensive contraction, put m = 3 and let {xn} be a sequence in a Banach space E
as follows: take x1, x2, x3 ∈ E and define xn+3 = T

(
1
2xn+2 +

1
3xn+1 +

1
6xn

)
. Then

{xn} converges to a fixed point u ∈ C.

Lemma 4.6. Let (X, d) be a complete metric space and let T be a (β, γ, δ, ε, ζ)-
comprehensive contraction from X into itself. Then T is a quasi-contractive map-
ping, that is, there exists k ∈ [0, 1) such that

d(Tx, u) ≤ kd(x, u)

for any x ∈ X and for any u ∈ F (T ).
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Proof. In the case of ε ≥ ζ we obtain

d(Tu, Ty) = d(u, Ty)

≤ βd(u, Ty) + γd(u, y) + δd(u, y) + εd(u, u) + ζd(y, Ty)

= βd(u, Ty) + (γ + δ)d(u, y) + ζd(y, Ty)

≤ βd(u, Ty) + (γ + δ)d(u, y) + ζ(d(u, Ty) + d(u, y))

= (β + ζ)d(u, Ty) + (γ + δ + ζ)d(u, y).

Therefore we obtain

(1− β − ζ)d(u, Ty) ≤ (γ + δ + ζ)d(u, y).

Since 1− β − ζ > γ + δ + ε ≥ 0, we obtain

d(u, Ty) ≤ γ + δ + ζ

1− β − ζ
d(u, y).

Since ε ≥ ζ, we obtain 1− β − ζ > γ + δ + ε ≥ γ + δ + ζ ≥ 0 and hence

0 ≤ γ + δ + ζ

1− β − ζ
< 1.

In the case of ε < ζ we obtain

d(Tx, Tu) = d(Tx, u)

≤ βd(x, u) + γd(Tx, u) + δd(x, u) + εd(x, Tx) + ζd(u, u)

= (β + δ)d(x, u) + γd(Tx, u) + εd(x, Tx)

≤ (β + δ)d(x, u) + γd(Tx, u) + ε(d(x, u) + d(u, Tx))

= (β + δ + ε)d(x, u) + (γ + ε)d(Tx, u).

Therefore we obtain

(1− γ − ε)d(Tx, u) ≤ (β + δ + ε)d(x, u).

Since 1− γ − ε > β + δ + ζ ≥ 0, we obtain

d(Tx, u) ≤ β + δ + ε

1− γ − ε
d(x, u).

Since ε < ζ, we obtain 1− γ − ε > β + δ + ζ > β + δ + ε ≥ 0 and hence

0 ≤ β + δ + ε

1− γ − ε
< 1.

�

Lemma 4.7. Let k, a1, . . . , am be real numbers with 0 ≤ k < 1,
∑m

i=1 ai = 1 and
0 < ai < 1 for any i = 1, . . . ,m. Take P1, . . . , Pm ∈ R and define

Pm+ℓ = k

m∑
i=1

aiPm+ℓ−i

for any ℓ ∈ N. Then

lim
n→∞

Pn = 0.
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Proof. Put P = max{|P1|, . . . , |Pm|}. Let us show by induction that |Pℓm+i| ≤ kℓP
for any i = 1, . . . ,m and for any ℓ ∈ N. Put ℓ = 1. If i = 1, then

|Pm+1| =

∣∣∣∣∣k
m∑
i=1

aiPm+1−i

∣∣∣∣∣
≤ k

m∑
i=1

ai|Pm+1−i|

≤ kP

m∑
i=1

ai

= kP.

Moreover, since 0 ≤ k < 1, |Pm+1| ≤ P holds. If i = 2, then

|Pm+2| =

∣∣∣∣∣k
m∑
i=1

aiPm+2−i

∣∣∣∣∣
≤ k

m∑
i=1

ai|Pm+2−i|

≤ kP

m∑
i=1

ai

= kP.

Moreover, since 0 ≤ k < 1, |Pm+2| ≤ P holds. Proceeding with this way until
i = m, we obtain

|Pm+i| ≤ kP

for any i = 1, . . . ,m. Next, take ℓ ∈ N and suppose that |Pℓm+i| ≤ kℓP for any
i = 1, . . . ,m. If i = 1, then

|P(ℓ+1)m+1| =

∣∣∣∣∣k
m∑
i=1

aiP(ℓ+1)m+1−i

∣∣∣∣∣
≤ k

m∑
i=1

ai|Pℓm+m+1−i|

≤ kℓ+1P

m∑
i=1

ai

= kℓ+1P.

Moreover, since 0 ≤ k < 1, |P(ℓ+1)m+1| ≤ kℓP holds. If i = 2, then

|P(ℓ+1)m+2| =

∣∣∣∣∣k
m∑
i=1

aiP(ℓ+1)m+2−i

∣∣∣∣∣
≤ k

m∑
i=1

ai|Pℓm+m+2−i|
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≤ kℓ+1P

m∑
i=1

ai

= kℓ+1P.

Moreover, since 0 ≤ k < 1, |P(ℓ+1)m+2| ≤ kℓP holds. Proceeding with this way until
i = m, we obtain

|P(ℓ+1)m+i| ≤ kℓ+1P

for any i = 1, . . . ,m. Since 0 ≤ k < 1, we obtain

lim
n→∞

|Pn| ≤ lim
ℓ→∞

kℓP = 0

and hence

lim
n→∞

Pn = 0.

�
Theorem 4.8. Let E be a Banach space, let C be a nonempty closed convex subset
of E, let T be a (β, γ, δ, ε, ζ)-comprehensive contraction from C into itself, and
let a1, . . . , am be real numbers such that 0 < ai < 1 for any i = 1, . . . ,m and∑m

i=1 ai = 1. Take x1, . . . , xm ∈ C and define

xm+ℓ = T

(
m∑
i=1

aixm+ℓ−i

)
for any ℓ ∈ N. Then {xn} is convergent to a unique fixed point of T .

Proof. By Theorem 4.4 T has a unique fixed point u ∈ C. Since by Lemma 4.6 T
is quasi-contractive, there exists k ∈ [0, 1) such that

∥Tx− u∥ ≤ k∥x− u∥
for any x ∈ X. Put Pi = ∥xi − u∥ for any i = 1, . . . ,m and define

Pm+ℓ = k

m∑
i=1

aiPm+ℓ−i

for any ℓ ∈ N. Let us show by induction that ∥xn − u∥ ≤ Pn for any n ∈ N. By
definition we obtain ∥xi − u∥ = Pi for any i = 1, . . . ,m. Take ℓ ∈ N and suppose
that ∥xn − u∥ ≤ Pn for any n with n < m+ ℓ. Then we obtain

∥xm+ℓ − u∥ =

∥∥∥∥∥T
(

m∑
i=1

aixm+ℓ−i

)
− u

∥∥∥∥∥
≤ k

∥∥∥∥∥
m∑
i=1

aixm+ℓ−i − u

∥∥∥∥∥
≤ k

m∑
i=1

ai∥xm+ℓ−i − u∥

≤ k

m∑
i=1

aiPm+ℓ−i = Pm+ℓ.
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On the other hand, by Lemma 4.7 we obtain

lim
n→∞

Pn = 0.

Therefore we obtain

lim
n→∞

∥xn − u∥ = 0.

�
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