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FIXED POINT THEOREMS FOR CONTRACTIVELY WIDELY
MORE GENERALIZED HYBRID MAPPINGS
IN METRIC SPACES

KEN HASEGAWA, TOSHIHARU KAWASAKI, AND TETSUO KOBAYASHI

ABSTRACT. In this paper we consider a broad class of mappings containing Kan-
nan mappings and contratively generalized hybrid mappings. Then we deal with
fixed point theorems for such a mapping. Using these results, we show directly
well-known fixed point theorems in complete metric spaces.

1. INTRODUCTION

Let (X,d) be a metric space. A mapping T' from X into itself is said to be
contractive if there exists k with k € [0,1) such that

d(Tx,Ty) < kd(z,y)

for any x,y € X. Such a mapping is called a k-contractive mapping. A mapping
T from X into itself is said to be Kannan [4] if there exists k with k € [0, 1) such
that

d(Tx,Ty) < k(d(x,Tx) + d(y, Ty))

for any xz,y € X. A mapping T from X into itself is said to be contractively
nonspreading [1,3,8] if there exists k with k € [O, %) such that

d(Tx, Ty) < k(d(x,Ty) + d(y, Tz))

for any z,y € X. A mapping T from X into itself is said to be contractively
hybrid [2] if there exists k with k € [0, 3) such that

d(Tz, Ty) < k(d(Tx,y) + d(Ty,z) + d(z,y))

for any z,y € X. Recently, Hasegawa, Komiya and Takahashi [2] introduced the
concept of contratively generalized hybrid mappings on metric spaces and studied
fixed point theorems for such mappings on complete metric spaces. A mapping
T from X into itself is said to be contratively generalized hybrid if there exist
a, B, € R with r € [0,1) such that

ad(Tz, Ty) + (1 — e)d(z, Ty) < r(Bd(Tz,y) + (1 = B)d(x,y))
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for any z,y € X. Such a mapping is called an («, 3, r)-contratively generalized
hybrid mapping; see also Kocourek, Takahashi and Yao [6] for such a mapping in
Hilbert spaces. For instance, if « = 1 and § = 0, then an («, 3, r)-contratively
generalized hybrid mapping is contractive; if « = 147 and = 1, then an («, 8, 7)-
contratively generalized hybrid mapping is contractively nonspreading; if o = 1+ 5
and § = %, then an (a, 8, 7)-contratively generalized hybrid mapping is contractively
hybrid; see Hasegawa, Komiya and Takahashi [2].

In this paper, motivated by Hasegawa, Komiya and Takahashi [2], we consider a
broad class of mappings containing Kannan mappings and contratively generalized
hybrid mappings. Then we deal with fixed point theorems for such a mapping.
Using these results, we show directly well-known fixed point theorems in complete
metric spaces.

2. PRELIMINARIES

We know the following Caristi’s fixed point theorem which was generalized by
Takahashi [7].

Theorem 2.1. Let (X, d) be a complete metric space, let ¢ be a proper, bounded
below, and lower semicontinuous mapping from X into (—oo,00|, and let T be a
mapping from X into itself. Suppose that

d(w, Tx) + ¥(Tw) < ()
for any x € X. Then T has a fixed point.

Let ¢ be the Banach space of bounded sequences with supremum norm. Let y
be an element of (¢°°)*, which is the dual space of £*°. Then we denote by p(x) the
value of p at x = (1, x2,...) € {*°. Sometimes we denote by (i, () the value p(z).
A linear functional p on £ is called a mean if u(e) = ||u|| = 1, where e = (1, 1,...).
A mean p is called a Banach limit on ¢*° if i, (xy41) = pin(z5). We know that there
exists a Banach limit on £°°. If i is a Banach limit on £°°, then

liminf x,, < pp(zy,) < limsupz,
n—00 n—o00

holds for any = = (x1,x9,...) € £*°. In particular, if z = (x1,29,...) € £*° and
zn, — a € R, then we obtain py,(z,) = a. See [7] for the proof of existence of a
Banach limit and its other elementary properties.

Moreover we use the following lemma and theorem showed by Hasegawa, Komiya
and Takahashi [2].

Lemma 2.2. Let (X,d) be a metric space, let {x,} be a bounded sequence in X,
let u be a mean on €*° and let g be a mapping from X into R defined by

g(a:) = Nnd('rna 33)

for any x € X. Then g is continuous.

Theorem 2.3. Let (X,d) be a complete metric space, let pn be a mean on > and
let T' be a mapping from X into itself. Suppose that there exist a real number r with
0<r<1andzeX such that {T"z | n € NU{0}} is bounded and

pnd(T"z, Tx) < rp,d(T"z, x)
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for any x € X. Then the following hold:

(i) T has a unique fized point u € X;
(i)  w=lmy_0 T"x for any x € X.

3. FIXED POINT THEOREMS

In this section we consider an («, 3,7, 9, e, ()-contractively widely more gener-
alized hybrid mapping from a metric space X into itself; see also Kawasaki and
Takahashi [5] for such a mapping in Hilbert spaces.

Definition 3.1. Let (X, d) be a metric space and let T be a mapping from X into
itself. We say that T is contractively widely more generalized hybrid if T satisfies
the following condition: there exist real numbers «, 3, v, d, € and ¢ such that

ad(Tx, Ty) + Bd(z, Ty) + vd(Tx,y) + dd(z,y)

+ed(z,Tx) + ¢d(y, Ty) <0
for any x,y € X. Such a mapping T is called an («, 3,7, d, €, {)-contractively widely
more generalized hybrid mapping.

(3.1)

Firstly we consider criteria for an («, 3,7, 6, €, ¢)-contractively widely more gen-
eralized hybrid mapping T from a metric space X into itself such that {T"z | n €
NU{0}} is a Cauchy sequence for any z € X.

Lemma 3.2. Let (X, d) be a metric space and let T be an («, 3,7, 6, €, ¢)-contractively
widely more generalized hybrid mapping from X into itself satisfying (B1), (B2) or
(B3):

(Bl) a+p+¢>0anda+2min{s,0} +5+ec+(>0;

(B2) a+~y+e>0and a+2min{y,0} +5+ec+¢>0;

(B3) 2a+pf+7v+e+(>0and a+min{f+~,0} +5+e+(>0.

Then {T"x | n € NU{0}} is a Cauchy sequence for any x € X.

Proof. In the case of (B1), replacing = and y by 7" 'z and T"z, respectively, we
obtain

ad(T"x, T" o) + Bd(T" o, T" o) + vd(T"x, T"x) + 6d(T™ ‘o, T )
ed(T" o, T x) 4 Cd(T™z, T" ' 2)
= (a4 Od(T" "z, T"x) + Bd(T™" o, T o) + (6 + &)d(T"z, T" 1)
<0.
Since
AT e, Thx) — d(T"z, T 'a) d(T" e, T 1)
d(T" 2, T) + d(T"z, T" '),

IA A

we obtain
Bd(T" a, Tx) — |B|ld(T"x, T ) < Bd(T™Ha, T 1)
and hence

(a+ B+ QdT" 2, T x) + (—|B| + 6 + e)d(T"z, T" 'z) < 0.
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If a4+ 5+ ¢ =0, then by a + 2min{3,0} + J + € + ( > 0 we obtain
—1Bl+d+e = 2min{B,0} —BF+d+¢

> —(a+B8+C)

= 0.
Then we obtain

d(T"z, T" 'z) <0

for any n € N, that is, {T"z | n € NU{0}} = {2}, and hence it is a Cauchy
sequence. If o+ 8+ ¢ > 0, we obtain

—|Bl+d+e
dTn+1 ’Tn < _ ‘/B|
( »nT") < a+pB+(¢

—|Bl+d+¢ " n—1
< P L —
< max{ ot BiC ,0pd(T"x, T" "x)

(max {—M,O})n d(Tx, ).

d(T"z, T" 1x)

IN

By a +2min{f,0} + 6 +& + ¢ > 0 we obtain — ;lﬂgfgs < 1. Therefore we obtain

d(T"z, T"z) < Z d(Tz, T x)

i=n+1
- Bl +d+e })i_ldT
< izn;1<max{ ot Bl ;0 (Tx, x)
- Bl +d+e il
< Z-Zn;q (max{ ot BiC ,0}) d(Txz,x)

—1Bl+d+ "
(maX {_ At B 0}>

_ _ —IBl+d+e
1 max{ a+ﬁ+§’0}

d(Tz,x)

for any m,n € NU {0} with m > n, and hence {T"z | n € NU {0}} is a Cauchy
sequence.
In the case of (B2), replacing the variables z and y in (3.1), we obtain
ad(Tz, Ty) + vd(z, Ty) + Bd(Tz,y) + dd(x, y)
+(d(z, Tx) +ed(y, Ty) < 0.
Therefore we obtain the desired result by (B1).
In the case of (B3), adding (3.1) and (3.2), we obtain

20d(Tx, Ty) + (B + v)d(z, Ty) + (8 + v)d(Tx,y) + 20d(x,y)
+(e + Q)d(z, Tz) + (e + ¢)d(y, Ty) <O0.

Therefore we obtain the desired result by (B1). O

(3.2)

Using Lemma 3.2, we obtain directly the following theorem.
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Theorem 3.3. Let (X, d) be a complete metric space and let T be an (c, 8,7, 9, ¢,()-
contractively widely more generalized hybrid mapping from X into itself satisfying
(B1), (B2) or (B3). Then for any x € X there exists lim, oo T"x.

Remark 3.4. Let (X, d) be a metric space and let {z,, | n € NU{0}} be a Cauchy
sequence in X. Then {z,, | n € NU{0}} is bounded. Indeed, since {z,, | n € NU{0}}
is a Cauchy sequence, for any positive number p there exists N € N such that
d(xm, xn) < p for any m,n > N. Put M = max{d(xzo,zn),...,d(xN-1,ZN),p}.
Then d(zy,xy) < M for any n € NU {0}.

Using Theorem 2.1, we show the following fixed point theorem.

Theorem 3.5. Let (X, d) be a complete metric space and let T be an («, 8,7, 9, ¢,()-
contractively widely more generalized hybrid mapping from X into itself satisfying
(C1), (C2) or (C3):

(Cl) (>0, a+p3>0anda+ B+~v+ 6+ 2min{e,0} > 0;

(C2) e>0,a+vy>0anda+ B +~y+ 6+ 2min{(,0} > 0;

(C3) e+¢(>0,2a+pB+y>0anda+p+~v+6>0.

Then T has a fized point if and only if there exists z € X such that {T"z | n €
NU{0}} is bounded. In particular, if « + 5+~ + 0 >0, then T has a unique fized
point.

Proof. If T has a fixed point u, then {T"u | n € NU{0}} = {u} is bounded.

Conversely suppose that there exists z € X such that {T"z | n € NU{0}} is
bounded. In the case of (C1), replacing x and y by 7"z and x, respectively, we
obtain

ad(T" Mz, Tx) + Bd(T"2, Tx) + vd(T" M 2, ) + 6d(T" 2, x)
+ed(T"z, T" ' 2) + ¢d(z, Tx) < 0.
Since min{e, 0} < €, we obtain
ad(T" M2, Tx) + Bd(T"z, Tx) + vd(T" 2, ) + 6d(T" 2, x)
+min{e, 0}d(T"2, T" ' 2) + ¢d(x, Tx) < 0.
Since min{e, 0} < 0 and d(T"z, T""12) < d(T"z,x) + d(x, T""'2), we obtain
ad(T" 2, Tx) + Bd(T™2, Tx) + (y + min{e, 0})d(T" ' 2, z)
+(0 4+ min{e,0})d(T"z,x) + ¢d(z, Tx) < 0.
Since {T"z | n € NU{0}} is bounded, we can apply a Banach limit p to the
inequality above. Then we obtain
(a+ B)pund(T"z, Tx) 4+ (v + 6 + 2min{e, 0} ) pund(T" 2z, ) + (d(z, Tx) < 0.
By ¢ > 0 we obtain
a+ 3

0 + 2mi
(e, Ta) + * (T2, T) < =2 o ;“1“{“”0} fin

By a+ 4+ v+ 9+ 2min{e,0} > 0 we obtain —(y + 0 + 2min{e,0}) < a + 3, and
hence

d(T"z,x).

a+pf
¢

ath
¢

d(z,Tx) + pnd(T"z, Tx) < pnd(T"z, x).
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By ( >0, a+ 3 > 0 and Lemma 2.2, Lzrﬁlund(T”z, -) is proper, bounded below,
and continuous. Therefore by Theorem 2.1 T has a fixed point.

Moreover suppose that o+ 8+ v+ d > 0 holds. Let v and v be fixed points of
T. Then we obtain

ad(Tu, Tv) + Bd(u, Tv) + vd(Tu,v) + dd(u,v) + ed(u, Tu) + ¢d(v, Tv)
=(a+ B +v+0)d(u,v) <O0.
By a+ 8+ v+ 0 > 0 we obtain d(u,v) < 0 and hence v = v. Therefore T has a
unique fixed point.

In the cases of (C2) and (C3), we obtain the desired results similarly to latter
parts of the proof of Lemma 3.2. O

Using Lemma 3.2, Remark 3.4 and Theorem 3.5, we obtain the following fixed
point theorem.

Theorem 3.6. Let (X, d) be a complete metric space and let T be an (c, 8,7, 9,¢,()-
contractively widely more generalized hybrid mapping from X into itself satisfying
the following:

(B)  one of (B1), (B2) and (B3) holds;
(C)  ome of (C1), (C2) and (C3) holds.

Then T has a fixed point. In particular, if o + 8+ ~v+ 0 > 0, then T has a unique
fixed point.

Using Theorem 2.3, we show the following fixed point theorem.

Theorem 3.7. Let (X, d) be a complete metric space and let T be an (c, 8,7, 9,¢,()-
contractively widely more generalized hybrid mapping from X into itself satisfying
(H1), (H2) or (H3):

(H1) a+pB+(¢>0and a+f+~y+ 0+ 2min{e,0} + 2min{¢,0} > 0;

(H2) a+~y+¢e>0and a+ +~v+ 9+ 2min{e,0} + 2min{¢,0} > 0;

(H3) 2a+pf+y+e+(>0and a+ [+~ +0+2min{e + ¢, 0} > 0.

Then T has a fized point if and only if there exists z € X such that {T"z | n €
NU{0}} is bounded. Moreover the following hold:

(i) T has a unique fized point u € X;
(ii) u = lim, 00 T™x for any r € X.

Proof. If T has a fixed point u, then {T"u | n € NU{0}} = {u} is bounded.

Conversely suppose that there exists z € X such that {T"z | n € NU {0}} is
bounded. In the case of (H1), replacing x and y by 7"z and x, respectively, we
obtain

ad(T" M2, Tx) + Bd(T"z, Tx) + vd(T™" M 2, z) + 6d(T" 2, x)
+ed(T"z, T" ' 2) + ¢d(z, Tx) < 0.
Since min{e, 0} < e, we obtain
ad(T" M2, Tx) + Bd(T"z, Tx) + vd(T" 2, ) + 6d(T" 2, x)
+min{e, 0}d(T"2, T" " 2) + ¢d(x, Tz) < 0.
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Since min{e, 0} < 0 and d(T"z, T""12) < d(T"z,x) + d(x, T""'2), we obtain
ad(T" 2, Tx) + Bd(T"z, Tx) + (v + min{e, 0})d(T" 2, 2)
+(6 + min{e,0})d(T"z,x) + {d(z, Tx) < 0.
Since
d(T"z,Tz) —d(T"z,z) < d(z,Tzx) < d(T"z,Tz) + d(T"z,x),
we obtain
CA(T"z,Tx) — |¢|d(T"z,x) < {d(z,Tx)
and hence
ad(T" 2, Tx) + (B + Q)d(T™z, Tx) + (v + min{e, 0)d(T" ' 2, x)
+(6 + min{e, 0} — |())d(T"z,z) < 0.

Since {T"z | n € NU{0}} is bounded, we can apply a Banach limit p to the
inequality above. Then we obtain

(O‘ + 6+ O:und(TnZv Tﬂ:)
+(y+d + 2min{e, 0} — |(|)pnd(T"z,z) < 0.
By o+ 8+ ¢ > 0 we obtain

L d(TnZ TI') < _7+5+2min{€70}_‘<‘

jnd(T" 2, )

a+B+¢
0 + 2 mi 0} —
< max {—7 * +a flﬁnf’c ! |C’,0} pnd(T"z, ).
By a+ B8+~ + 3+ 2min{e, 0} + 2min{¢, 0} > 0 we obtain —2Fo+2min{=0}=lc

a+B+¢
Therefore by Theorem 2.3 T has a unique fixed point v € X and v = limy,_,o T"x

for any z € X.
In the cases of (H2) and (H3), we obtain the desired results similarly to latter
parts of the proof of Lemma 3.2. O

Using Lemma 3.2, Remark 3.4 and Theorem 3.7, we obtain the following fixed
point theorem.

Theorem 3.8. Let (X, d) be a complete metric space and let T be an («, 3,7,0,¢,()-
contractively widely more generalized hybrid mapping from X into itself satisfying
the following:

(B)  one of (B1), (B2) and (B3) holds;

(H)  one of (H1), (H2) and (H3) holds.

Then the following hold:

(i) T has a unique fized point u € X;
(i)  w=lmy_ o T"x for any x € X.

Moreover, if (B) is satisfied, we also show the following fixed point theorem.
Theorem 3.9. Let (X,d) be a complete metric space and let T be an («, 3,7,0,¢,()-

contractively widely more generalized hybrid mapping from X into itself satisfying
(B), and one of (M1), (M2) and (M3):
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(M1) a+pB+4+¢>0;
(M2) a+vy+4+¢e>0;
(M3) 2a+B+~+e+(>0.

Then T has a fized point. In particular, if « + 8 +v+ d > 0, then the following
hold:

(i) T has a unique fized point u € X;
(il)  w=lmy_ oo T"x for any x € X.

Proof. By Theorem 3.3 there exists u € X such that v = lim,,_,oo 7"x. In the case
of (M1), replacing x and y by T"x and u, respectively, we obtain

ad(T" Mz, Tu) + Bd(T"x, Tu) + vd(T" 2, u) + 6d(T™z, u)
+ed(T"z, T x) + Cd(u, Tu) < 0.
Since v = lim,,_,oo T™x, we obtain
(a+ B+ )d(u, Tu) <0.

By a+ 8+ ¢ > 0 we obtain d(u,Tu) < 0 and hence u is a fixed point of T'.
Moreover suppose that o+ 8+ v+ 9 > 0 holds. Let v and v be fixed points of
T. Then we obtain

ad(Tu, Tv) + pd(u, Tv) + vd(Tu,v) + éd(u,v) + ed(u, Tu) + ¢d(v, Tv)
=(a+B+v+9)d(u,v) <0.

By a4+ v+ d > 0 we obtain d(u,v) < 0 and hence u = v. Therefore T" has a
unique fixed point.

In the cases of (M2) and (M3), we obtain the desired results similarly to latter
parts of the proof of Lemma 3.2. O

4. APPLICATIONS

Theorem 4.1. Let (X,d) be a complete metric space and let T' be a contractively
generalized hybrid mapping form X into itself, that is, there exist o, 3,7 € R with
0 <r <1 such that

ad(Tx,Ty) + (1 — a)d(z, Ty) < r(Bd(Tz,y) + (1 - B)d(x,y))
for any x,y € X. Suppose that o > r(1+ |5|). Then the following hold:

(i) T has a unique fized point u € X;
(il)  w=lmy_ oo T"x for any x € X.

Proof. T is (a,1 — a, =13, —r(1 — [3),0,0)-contractively widely more generalized
hybrid. Since

a+(l—a)+0=1>0,
at(l—-a)+(—rB)+(-r(1-p8)+2-0+2-0=1—-7>0,
T satisfies (H1). If > 0 and « > r(1 + j3), then we obtain
at+(—rf)+0=a—-rB>r>0,
a+2min{—rg3,0} + (—r(1-8))+0+0=a—r(l+ ) > 0;
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if 5 <0 and o > r(1 — ), then we obtain
at+(—rf)+0=a—-rg>r(1-28)>0,
a+2min{—78,0} + (-=r(1 - 8)) +0+0=a—r(1 - 3) > 0.
In both cases T satisfies (B2). Therefore by Theorem 3.8 T" has a unique fixed point
u € X and u = limy,_, T"z for any = € X. O

Theorem 4.2. Let (X, d) be a complete metric space and let T be a mapping form
X into itself satisfying there exist €, € R such that e+ <1 and

d(Tx,Ty) < ed(x,Tx) + (d(y, Ty)

for any x,y € X. Then the following hold:

(i) T has a unique fized point u € X;

(i)  w=lmy_o T"x for any x € X.

Proof. T is (1,0,0,0, —e, —()-contractively widely more generalized hybrid. Since
2140+ (=) +(=¢)=2—(¢+¢) >0,
1+04+0+ (=) +(—¢)=1—(e¢+¢) >0,

T satisfies (B3) and (M3). Moreover

140+04+0>0
holds. Therefore by Theorem 3.9 T has a unique fixed point v € X and u =

limy, o0 T"x for any z € X. O

In the remaining part of this section we discuss a special case of contractively
widely more generalized hybrid mapping in metric spaces, which gives us a good
vision for some applications. This mapping is defined as follows.

Definition 4.3. Let (X, d) be a metric space and let T be a mapping from X into
itself. We say that T is a comprehensive contraction if T satisfies the following
condition: there exist 8,~,0,¢ and ¢ with 8,7v,0,6,( >0and 8+~v+d+ec+( <1
such that
d(Tz,Ty) < pd(z, Ty) + vd(Tx,y) + dd(x,y) + ed(z, Tx) + (d(y, Ty)
for any z,y € X. Such a mapping 7T is called a (3,7, d, €, ()-comprehensive contrac-
tion.
The following theorem is derived easily from Theorem 3.9.

Theorem 4.4. Let (X,d) be a complete metric space and let T be a (8,7,9,¢,()-
comprehensive contraction from X into itself. Then the following hold:

(i) T has a unique fized point u € X;
(i)  w=lmy o T"x for any x € X.

Proof. Any (5,7, 9,¢,()-comprehensive contraction is a (1, — 3, —v, —9, —&, —()-con-
tractively widely more generalized hybrid mapping. Since

2-1—-p—vy—e—(>14+6>0,
l+min{-p—-7,0}-d—ec—-(=1-8—-7y—95—ec—(>0,
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T satisfies (B3) and (M3). Moreover T satisfies
1—B—n—0>ec+(>0.

Therefore by Theorem 3.9 T has a unique fixed point v € X and v = lim,_, T"z
for any z € X. O

Let (X,d) be a metric space. A mapping 7' from X into itself is said to be
(1) contractive, (2) Kannan, (3) contractively nonspreading, and (4) contractively
hybrid if there exists k € [0,1) such that
(1) d(Tz,Ty) < kd(z, y);

(2)  d(Tz,Ty) < 5(d(w, Tx) + d(y, Ty));

(3)  d(Tw,Ty) < 5(d(z, Ty) + d(Tz,y));

(4)  d(Tz,Ty) < §(d(w, Ty) + d(Tz,y) +d(z,y));

for any z,y € X, respectively. It holds that

) any contractive mapping 7" is a (0,0, k, 0, 0)-comprehensive contraction;

1
2)  any Kannan mapping 7T is a (0,0, 0, g, %)-comprehensive contraction;

(
(
(

3) any contractively nonspreading mapping 1 is a (%, %, 0,0, 0)-comprehensive
contraction;

(4)  any contractively hybrid mapping T is a (%, %, %,0,0)—comprehensive con-
traction.

For each mapping by Theorem 4.4 the following hold:

(i) T has a unique fixed point u € X;
(ii)  w=Ilimy, oo Tz for any x € X.

In 2011, Hasegawa, Komiya and Takahashi proved the following theorem.

Theorem 4.5. Let E be a Banach space, let C' be a nonempty closed convex subset
of E, let a, 8,7 be real numbers with 0 < v < 1, and let T be an («, B,7)- contrac-
tively generalized hybrid mapping form C' into itself such that the set of fized points
of T is nonempty. Take xg,x1 € C and define xpio = T(yxne1 + (1 — ¥)xy,) for
any n € N. Then, {x,} is convergent to a unique fized point of T

Theorem 4.5 says that, when we think that {x,} is a sequence of time-series
vectors, the 2-period moving average sequence {x,} of vectors is convergent to a
unique fixed point of T'. We extend the convergence of a 2-period moving average
sequence of vectors to that of any m-period moving average sequence of vectors
constructing by a comprehensive contraction 7'. For instance, let T" be a compre-
hensive contraction, put m = 3 and let {x,} be a sequence in a Banach space E
as follows: take x1,x9,x3 € E and define x,,43 =T (%$n+2 + %l’n+1 + %flin) Then
{zy} converges to a fixed point u € C.

Lemma 4.6. Let (X,d) be a complete metric space and let T' be a (f3,7,0,¢,()-
comprehensive contraction from X into itself. Then T is a quasi-contractive map-
ping, that is, there exists k € [0,1) such that

d(Tz,u) < kd(x,u)
for any x € X and for any u € F(T).
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Proof. In the case of € > ( we obtain

d(Tu,Ty) = d(u,Ty)
< Bd(u,Ty) +vd(u,y) + d(u,y) + ed(u,u) + (d(y, Ty)
= Bd(u,Ty) + (v + 0)d(u,y) + (d(y, Ty)
< Bd(u,Ty) + (v + 6)d(u,y) + ((d(u, Ty) + d(u, y))

(B +Q)d(u, Ty) + (v + 6 + Q)d(u,y).

Therefore we obtain

(I=F—=Qd(u, Ty) < (v + 6+ ()d(u,y).
Since 1 = 8 —(¢ >~v+ 9+ >0, we obtain

7t +<( y)
S1-5-¢N"
Since e > (,weobtain 1l —§—(>v4+d+e>~v+9d+ (>0 and hence

d(u, Ty) <

In the case of ¢ < ¢ we obtain

d(Tx,Tu) = d(Tx,u)
Bd(x,u) +vd(Tz,u) + dd(x,u) + ed(z, Tx) + (d(u, u)
(B+0)d(z,u) +~vd(Tz,u) + ed(z, Tx)
(B+0)d(xz,u) +vd(Tz,u) +e(d(z,u) + d(u, Tz))
(B+d+e)d(z,u)+ (v+e)d(Tz,u).

IN

IN

Therefore we obtain
(1=~ — £)d(T,0) < (8 + 8 +2)d(z, v).
Since 1 —y—¢e¢> B+ 6+ (>0, we obtain

B+d+e

d(Tz,u) < —

d(z,u).

Since e < (,weobtainl —y—e>84+3d+( >+ 5+ >0 and hence

é
0§75+ Jr6<1.
l—~v—e¢

g

Lemma 4.7. Let k,a1,...,an be real numbers with 0 < k <1, " a; =1 and
O0<a; <1 foranyi=1,...,m. Take Pi,..., Py, € R and define

m
Pnie=k Z T
i—1

for any £ € N. Then
lim P, =0.

n—oo
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Proof. Put P = max{|P}|,...,|Pn|}. Let us show by induction that |Pp,;| < k‘P
forany i =1,...,m and for any £ € N. Put / = 1. If i = 1, then

m

kz a; P11
i—1
m

k Z a;i| Prg1—il
i—1

m
kP a;
i=1
= kP.
Moreover, since 0 < k < 1, |Pp41| < P holds. If i = 2, then

m

k Z a; Prt2—
i=1
m

kY ai| Prya-il
i=1

m
i=1

= kP.

Moreover, since 0 < k < 1, |Ppy2| < P holds. Proceeding with this way until
1 = m, we obtain

|Pm+1| =

IN

IN

|Pm+2| =

IN

|Pyil < kP

for any i = 1,...,m. Next, take £ € N and suppose that |Pp,,,;| < k‘P for any
i=1,...,m. If i =1, then

|P(£+1)m+1| =

kY aiPyiyme—i
i=1

IN

m
kY il Pom g1l
i=1

m
P
i=1
— k:Z'HP.
Moreover, since 0 < k <1, |Pyy1ym1] < k‘P holds. If i = 2, then

IN

m
k Z @i Plot1ym+2—i
i=1

m
k> ail Punmy2—il
i=1

’P(K+1)m+2‘ =

IN
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m
Ktip Z a;
=1
— ké+1P.

Moreover, since 0 < k < 1, [Py41)mi2| < k'P holds. Proceeding with this way until
i = m, we obtain

IN

| Posiymsil < ETIP

for any ¢ = 1,...,m. Since 0 < k < 1, we obtain
lim [P, < lim kP =0
n—00 {—00
and hence
lim P, =0.
n—o0

g

Theorem 4.8. Let E be a Banach space, let C be a nonempty closed convex subset
of E, let T be a (B,7,9,¢,()-comprehensive contraction from C into itself, and
let ai,...,am be real numbers such that 0 < a; < 1 for any i = 1,...,m and
Yoiriai=1. Take z1,...,xzp € C and define

m
Type =T (Z aixm—&—f—i)
1=1

for any £ € N. Then {x,} is convergent to a unique fixed point of T.

Proof. By Theorem 4.4 T has a unique fixed point v € C'. Since by Lemma 4.6 T
is quasi-contractive, there exists k € [0, 1) such that

[Tz — ull < ke — ull
for any z € X. Put P; = ||z; — ul| for any i = 1,...,m and define
m
Pnie=k Z a; Pryyo—i
i=1
for any ¢ € N. Let us show by induction that ||z, — u|| < P, for any n € N. By

definition we obtain ||z; — u|| = P; for any ¢ = 1,...,m. Take £ € N and suppose
that ||z, — u|| < P, for any n with n < m + ¢. Then we obtain

m
T (Z ai$m+é—z‘> —u

=1

m
§ G m4L—i — U
i=1

m
< k Z il Tmo—i — ull
i=1

[Tmae =l =

< k

m
< k Z a;i Pryo—i = Py
i—1
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On the other hand, by Lemma 4.7 we obtain

lim P, =0.

n—oo

Therefore we obtain

lim ||z, —ul| = 0.
n—oo

O
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