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for all x, y ∈ C. Such a mapping T is called (α, β)-generalized hybrid. We also know
the following mapping: For λ ∈ R, a mapping U : C → H is called λ-hybrid [1] if

(1.2) ∥Ux− Uy∥2 ≤ ∥x− y∥2 + 2(1− λ)⟨x− Ux, y − Uy⟩
for all x, y ∈ C. Notice that the class of generalized hybrid mappings covers several
well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonex-
pansive, i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

It is nonspreading [6, 7] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [14] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [3]. We
also know that λ-hybrid mappings are in the class of generalized hybrid mappings.
The nonlinear ergodic theorem by Baillon [2] for nonexpansive mappings has been
extended to generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi
and Yao [4]. Recently, Kohsaka [5] also proved the following theorem:

Theorem 1.1 ( [5]). Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let S and T be commutative λ and µ-hybrid mappings of
C into itself such that the set F (S) ∩ F (T ) of common fixed points of S and T is
nonempty. Then, for any x ∈ C,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converges weakly to a point of F (S) ∩ F (T ).

On the other hand, Takahashi and Takeuchi [15] proved the following attractive
point and mean convergence theorem without convexity in a Hilbert space.

Theorem 1.2. Let H be a Hilbert space and let C be a nonempty subset of H. Let
T be a generalized hybrid mapping from C into itself. Assume that {Tnz} for some
z ∈ C is bounded and define

Snx =
1

n

n∑
k=0

T kx

for all x ∈ C and n ∈ N. Then {Snx} converges weakly to u0 ∈ A(T ), where
u0 = limn→∞ PA(T )T

nx and PA(T ) is the metric projection of H onto A(T ).

Maruyama, Takahashi and Yao [10] also defined a more broad class of nonlinear
mappings called 2-generalized hybrid which contains generalized hybrid mappings
in a Hilbert space. Let C be a nonempty subset of H. A mapping T : C → H is
2-generalized hybrid [10] if there exist α1, α2, β1, β2 ∈ R such that

α1∥T 2x−Ty∥2 + α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2(1.3)

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C.
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In this paper, using means, we study attractive points of nonlinear mappings
in Hilbert spaces. Then we obtain attractive point and fixed point theorems for
commutative 2-generalized hybrid mappings in Hilbert spaces. Using this result, we
prove a nonlinear mean convergence theorem for commutative 2-generalized hybrid
mappings in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨ · , · ⟩ and norm ∥ · ∥. We denote
the strong convergence and the weak convergence of {xn} to x ∈ H by xn → x and
xn ⇀ x, respectively. Let A be a nonempty subset of H. We denote by coA the
closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) ∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2

for all x, y ∈ H and α ∈ R; see [13]. Furthermore, in a Hilbert space, we have that

(2.2) 2 ⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2

for all x, y, z, w ∈ H. Indeed, we have that

2 ⟨x− y, z − w⟩ = 2 ⟨x, z⟩ − 2 ⟨x,w⟩ − 2 ⟨y, z⟩+ 2 ⟨y, w⟩

= (−∥x∥2 + 2 ⟨x, z⟩ − ∥z∥2) + (∥x∥2 − 2 ⟨x,w⟩+ ∥w∥2)

+ (∥y∥2 − 2 ⟨y, z⟩+ ∥z∥2) + (−∥y∥2 + 2 ⟨y, w⟩ − ∥w∥2)

= ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2 .

From (2.2), we have that

(2.3) ⟨(x− y) + (x− w), y − w⟩ = ∥x− w∥2 − ∥x− y∥2

for all x, y, w ∈ H. Indeed, we have that

2⟨(x− y) + (x− w), y − w⟩ = 2⟨(x− w)− (y − x), (y − w)− 0⟩
= ∥x− w − 0∥2 + ∥y − x− (y − w)∥2 − ∥x− w − (y − w)∥2 − ∥y − x− 0∥2

= 2∥x− w∥2 − 2∥y − x∥2

and hence ⟨(x− y) + (x− w), y − w⟩ = ∥x− w∥2 − ∥x− y∥2.
Let l∞ be the Banach space of bounded sequences with supremum norm. Let

µ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by µ(f) the
value of µ at f = (a1, a2, a3, . . . ) ∈ l∞. Sometimes, we denote by µn(an) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . . ). A mean µ is called a Banach limit on l∞ if µn(an+1) = µn(an).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (a1, a2, a3, . . . ) ∈ l∞,

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an.

In particular, if f = (a1, a2, a3, . . . ) ∈ l∞ and an → a ∈ R, then we have µ(f) =
µn(an) = a. See [12] for the proof of existence of a Banach limit and its other
elementary properties.
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Using a mean, we obtain the following result; see [9, 11]: Let H be a Hilbert
space, let {xn} be a bounded sequence in H and let µ be a mean on l∞. Then there
exists a unique point z0 ∈ co{xn : n ∈ N} such that

(2.4) µn⟨xn, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

We call such a unique z0 ∈ H the mean vector of {xn} for µ. For the sake of
completeness, we give the proof. Since {xn} is bounded, we have that for any
y ∈ H, {⟨xn, y⟩} is in l∞. Since µ is a mean on l∞, we can define a real valued
function g as follows:

g(y) = µn⟨xn, y⟩, ∀y ∈ H.

We have that for any y, z ∈ H and α, β ∈ R,

g(αy + βz) = µn⟨xn, αy + βz⟩ = αµn⟨xn, y⟩+ βµn⟨xn, z⟩
= αg(y) + βg(z).

Then g is a linear functional of H into R. Furthermore we have that for any y ∈ H,

|g(y)| = |µn⟨xn, y⟩| ≤ ∥µn∥ sup
n∈N

|⟨xn, y⟩|

≤ ∥µn∥ sup
n∈N

∥xn∥ ∥y∥ = (sup
n∈N

∥xn∥) ∥y∥.

Put K = supn∈N ∥xn∥. We have that

|g(y)| ≤ K∥y∥, ∀y ∈ H.

Then g is bounded. By the Riesz theorem, there exists z0 ∈ H such that

(2.5) g(y) = ⟨z0, y⟩, ∀y ∈ H.

It is obvious that such z0 ∈ H is unique. Furthermore we have z0 ∈ co{xn : n ∈ N}.
In fact, if z0 /∈ co{xn : n ∈ N}, then there exists y0 ∈ H from the separation theorem
such that

⟨z0, y0⟩ < inf
{
⟨z, y0⟩ : z ∈ co{xn : n ∈ N}

}
.

Using the property of a mean, we have that

⟨z0, y0⟩ < inf
{
⟨z, y0⟩ : z ∈ co{xn : n ∈ N}

}
≤ inf{⟨xn, y0⟩ : n ∈ N} ≤ µn⟨xn, y0⟩ = ⟨z0, y0⟩.

This is a contradiction. Thus we have z0 ∈ co{xn : n ∈ N}.

3. Attractive point theorems

Let H be a Hilbert space and let C be a nonempty subset of H. A mapping
T : C → H is 2-generalized hybrid [10] if there exist α1, α2, β1, β2 ∈ R such that

α1∥T 2x−Ty∥2 + α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2(3.1)

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. We call such a mapping (α1, α2, β1, β2)-generalized hybrid. We know
that the class of the mappings above covers well-known mappings. For example, the
class of (0, α2, 0, β2)-generalized hybrid mappings is the class of (α2, β2)-generalized
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hybrid mappings in the sense of Kocourek, Takahashi and Yao [4]. If x = Tx in
(3.1), then for any y ∈ C,

α1∥x−Ty∥2 + α2∥x− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥x− y∥2 + β2∥x− y∥2 + (1− β1 − β2)∥x− y∥2.
Hence we have that

(3.2) ∥x− Ty∥ ≤ ∥x− y∥, ∀x ∈ F (T ), y ∈ C.

Thus, a 2-generalized hybrid mapping with a fixed point is quasi-nonexpansive.
Now, we prove an attractive point theorem for commutative 2-generalized hybrid
mappings in a Hilbert space. Before proving the theorem, we show the following
lemma.

Lemma 3.1. Let H be a Hilbert space, let C be a nonempty subset of H and let S
and T be mappings of C into itself. Suppose that there exist a mean µ on l∞ and a
sequence {xn} ⊂ H such that {xn} is bounded and

µn∥xn − Sy∥2 ≤ µn∥xn − y∥2 and µn∥xn − Ty∥2 ≤ µn∥xn − y∥2, ∀y ∈ C.

Then A(S) ∩ A(T ) is nonempty. In particular, the mean vector z0 ∈ H of {xn}
for µ is an element of A(S) ∩ A(T ). Additionally, if C is closed and convex and
{xn} ⊂ C, then F (S) ∩ F (T ) is nonempty.

Proof. Since {xn} is bounded, we have from (2.5) that there exists a unique point
z0 ∈ co{xn : n ∈ N} such that

(3.3) µn⟨xn, y⟩ = ⟨z0, y⟩, ∀y ∈ H.

Using this z0, we have from (2.3) and the assumption of T that for any v ∈ C,

⟨(z0 − v) + (z0 − Sv), v − Sv⟩ = µn⟨(xn − v) + (xn − Sv), v − Sv⟩
= µn(∥xn − Sv∥2 − ∥xn − v∥2)
= µn∥xn − Sv∥2 − µn∥xn − v∥2

≤ 0.

Using (2.3) again, we have that

⟨(z0 − v) + (z0 − Sv), v − Sv⟩ = ∥z0 − Sv∥2 − ∥z0 − v∥2.
Thus we have that

∥z0 − Sv∥2 − ∥z0 − v∥2 ≤ 0, ∀v ∈ C

and hence

∥z0 − Sv∥ ≤ ∥z0 − v∥, ∀v ∈ C.

Therefore we have z0 ∈ A(S). Similarly, we have that

∥z0 − Tv∥ ≤ ∥z0 − v∥, ∀v ∈ C.

and hence z0 ∈ A(T ). Therefore we have z0 ∈ A(S) ∩ A(T ). Additionally, if C is
closed and convex and {xn} ⊂ C, we have that

z0 ∈ co{xn : n ∈ N} ⊂ C.
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Since z0 ∈ A(S) ∩A(T ) and z0 ∈ C, we have that

∥Sz0 − z0∥ ≤ ∥z0 − z0∥ = 0 and ∥Tz0 − z0∥ ≤ ∥z0 − z0∥ = 0

and hence z0 ∈ F (S) ∩ F (T ). This completes the proof. �
Using Lemma 3.1, we can prove an attractive point theorem for commutative

2-generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a Hilbert space, let C be a nonempty subset of H and let S
and T be commutative 2-generalized hybrid mappings of C into itself. Suppose that
there exists an element z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded. Then
A(S)∩A(T ) is nonempty. Additionally, if C is closed and convex, then F (S)∩F (T )
is nonempty.

Proof. Since a mapping S is 2-generalized hybrid, there exist α1, α2, β1, β2 ∈ R such
that

α1∥S2x−Sy∥2 + α2∥Sx− Sy∥2 + (1− α1 − α2)∥x− Sy∥2

≤ β1∥S2x− y∥2 + β2∥Sx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. Take z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded. Then
for any y ∈ C and k, l ∈ N ∪ {0}, we have that

α1∥Sk+2T lz − Sy∥2 + α2∥Sk+1T lz − Sy∥2 + (1− α1 − α2)∥SkT lz − Sy∥2

≤ β1∥Sk+2T lz − y∥2 + β2∥Sk+1T lz − y∥2 + (1− β1 − β2)∥SkT lz − y∥2

= β1{∥Sk+2T lz − Sy∥2 + ∥Sy − y∥2 + 2⟨Sk+2T lz − Sy, Sy − y⟩}

+ β2{∥Sk+1T lz − Sy∥2 + ∥Sy − y∥2 + 2⟨Sk+1T lz − Sy, Sy − y⟩}

+ (1− β1 − β2){∥SkT lz − Sy∥2 + ∥Sy − y∥2 + 2⟨SkT lz − Sy, Sy − y⟩}.
This implies that

0 ≤(β1 − α1){∥Sk+2T lz − Sy∥2 − ∥SkT lz − Sy∥2}

+ (β2 − α2){∥Sk+1T lz − Sy∥2 − ∥SkT lz − Sy∥2}+ ∥Sy − y∥2

+ 2⟨β1Sk+2T lz + β2S
k+1T lz + (1− β1 − β2)S

kT lz − Sy, Sy − y⟩.
Summing up these inequalities with respect to k = 0, 1, . . . , n, we have

0 ≤(β1 − α1){∥Sn+2T lz − Sy∥2 + ∥Sn+1T lz − Sy∥2

− ∥ST lz − Sy∥2 − ∥T lz − Sy∥2}

+ (β2 − α2){∥Sn+1T lz − Sy∥2 − ∥T lz − Sy∥2}+ (n+ 1)∥Sy − y∥2

+ 2
⟨ n∑

k=0

SkT lz + β1(S
n+2T lz + Sn+1T lz − ST lz − T lz)

+ β2(S
n+1T lz − T lz)− (n+ 1)Sy, Sy − y

⟩
.

Furthermore, summing up these inequalities with respect to l = 0, 1, . . . , n, we have

0 ≤ (β1 − α1)

n∑
l=0

{∥Sn+2T lz − Sy∥2 + ∥Sn+1T lz − Sy∥2
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− ∥ST lz − Sy∥2 − ∥T lz − Sy∥2}

+ (β2 − α2)

n∑
l=0

{∥Sn+1T lz − Sy∥2 − ∥T lz − Sy∥2}+ (n+ 1)2∥Sy − y∥2

+ 2
⟨ n∑

l=0

n∑
k=0

SkT lz + β1

n∑
l=0

(Sn+2T lz + Sn+1T lz − ST lz − T lz)

+ β2

n∑
l=0

(Sn+1T lz − T lz)− (n+ 1)2Sy, Sy − y
⟩
.

Dividing by (n+ 1)2, we have

0 ≤ (β1 − α1)
1

(n+ 1)2

n∑
l=0

{∥Sn+2T lz − Sy∥2 + ∥Sn+1T lz − Sy∥2

− ∥ST lz − Sy∥2 − ∥T lz − Sy∥2}

+ (β2 − α2)
1

(n+ 1)2

n∑
l=0

{∥Sn+1T lz − Sy∥2 − ∥T lz − Sy∥2}+ ∥Sy − y∥2

+ 2
⟨
Snz + β1

1

(n+ 1)2

n∑
l=0

(Sn+2T lz + Sn+1T lz − ST lz − T lz)

+ β2
1

(n+ 1)2

n∑
l=0

(Sn+1T lz − T lz)− Sy, Sy − y
⟩
,

where Snz = 1
(n+1)2

∑n
k=0

∑n
l=0 S

kT lz. Since {SkT lz} is bounded by assumption,

{Snz} is bounded. Taking a Banach limit µ to both sides of this inequality, we have
that

0 ≤ (β1 − α1)µn

( 1

(n+ 1)2

n∑
l=0

{∥Sn+2T lz − Sy∥2 + ∥Sn+1T lz − Sy∥2

− ∥ST lz − Sy∥2 − ∥T lz − Sy∥2}
)

+ (β2 − α2)µn

( 1

(n+ 1)2

n∑
l=0

{∥Sn+1T lz − Sy∥2 − ∥T lz − Sy∥2}
)
+ ∥Sy − y∥2

+ 2µn

⟨
Snz + β1

1

(n+ 1)2

n∑
l=0

(Sn+2T lz + Sn+1T lz − ST lz − T lz)

+ β2
1

(n+ 1)2

n∑
l=0

(Sn+1T lz − T lz)− Sy, Sy − y
⟩

and hence

0 ≤ ∥Sy − y∥2 + 2µn⟨Snz − Sy, Sy − y⟩.
We obtain from (2.2) that

0 ≤ ∥Sy − y∥2 + 2µn⟨Snz − Sy, Sy − y⟩
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= ∥Sy − y∥2 + µn∥Snz − y∥2 + ∥Sy − Sy∥2 − µn∥Snz − Sy∥2 − ∥Sy − y∥2

= µn∥Snz − y∥2 − µn∥Snz − Sy∥2

and hence

µn∥Snz − Sy∥2 ≤ µn∥Snz − y∥2.
Similarly, since a mapping T is 2-generalized hybrid, there exist α′

1, α
′
2, β

′
1, β

′
2 ∈ R

such that

α′
1∥T 2x−Ty∥2 + α′

2∥Tx− Ty∥2 + (1− α′
1 − α′

2)∥x− Ty∥2

≤ β′
1∥T 2x− y∥2 + β′

2∥Tx− y∥2 + (1− β′
1 − β′

2)∥x− y∥2

for all x, y ∈ C. Replacing S and T by T and S for the above proof, respectively,
we have

µn∥Snz − Ty∥2 ≤ µn∥Snz − y∥2.
By Lemma 3.1, we have that A(S)∩A(T ) is nonempty. Additionally, if C is closed
and convex, then we have from Lemma 3.1 that F (S) ∩ F (T ) is nonempty. This
completes the proof. �

Using Theorem 3.2, we have the following theorem for commutative generalized
hybrid mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space, let C be a nonempty subset of H and let
S and T be commutative generalized hybrid mappings of C into itself. Suppose that
there exists an element z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded. Then
A(S)∩A(T ) is nonempty. Additionally, if C is closed and convex, then F (S)∩F (T )
is nonempty.

Proof. The generalized hybrid mappings S and T of C into itself are 2-generalized
hybrid mappings. That is, an (α, β)-generalized hybrid mapping S is a (0, α, 0, β)-
generalized hybrid mapping and an (α′, β′)-generalized hybrid mapping S is a
(0, α′, 0, β′)-generalized hybrid mapping. Thus we have the desired result from The-
orem 3.2. �

Using Theorem 3.2, we also have the attractive point theorem by Takahashi and
Takeuchi [15] for generalized hybrid mappings in a Hilbert space.

Theorem 3.4. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be a generalized hybrid mapping of C into itself. Suppose that there exists an
element z ∈ C such that {Tnz} is bounded. Then A(T ) is nonempty.
Additionally, if C is closed and convex, then F (T ) is nonempty.

4. Nonlinear erdodic theorems

In this section, we prove a mean convergence theorem for commutative 2-generalized
hybrid mappings without convexity in a Hilbert space.

Let D = {(k, l) : k, l ∈ N∪ {0}}. Then D is a directed set by the binary relation:

(k, l) ≤ (i, j) if k ≤ i and l ≤ j.
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Theorem 4.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S and T be commutative 2-generalized hybrid mappings of C into itself such that
A(S) ∩ A(T ) ̸= ∅. Let P be the metric projection of H onto A(S) ∩ A(T ). Then,
for any x ∈ C,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converges weakly to an element q of A(S) ∩A(T ), where q = lim(k,l)∈D PSkT lx. In
particular, if C is closed and convex, {Snx} converges weakly to an element q of
F (S) ∩ F (T ).

Proof. Let S : C → C be an (α1, α2, β1, β2)-generalized hybrid mapping. Since
A(S) ∩ A(T ) is nonempty, closed and convex, there exists the metric projection P
of H onto A(S) ∩A(T ). We have that

0 ≤ ⟨v − Pv, Pv − u⟩ , ∀u ∈ A(S) ∩A(T ), v ∈ C.

Adding up ∥Pv − u∥2 to both sides of this inequality, we have from (2.2) that

∥Pv − u∥2 ≤ ∥Pv − u∥2 + 2 ⟨v − Pv, Pv − u⟩
= ∥Pv − u∥2 + ∥v − u∥2 + ∥Pv − Pv∥2 − ∥v − Pv∥2 − ∥Pv − u∥2(4.1)

= ∥v − u∥2 − ∥v − Pv∥2.
Since ∥Sz − u∥ ≤ ∥z − u∥ and ∥Tz − u∥ ≤ ∥z − u∥ for any u ∈ A(S) ∩ A(T ) and
z ∈ C, it follows that for any (k, l), (i, j) ∈ D with (k, l) ≤ (i, j),

∥SiT jx− PSiT jx∥ ≤ ∥SiT jx− PSkT lx∥

≤ ∥SkT lx− PSkT lx∥.

Hence the sequence ∥SkT lx − PSkT lx∥ is nonincreasing and then there exists
lim(k,l)∈D ∥SkT lx − PSkT lx∥. Putting u = PSkT lx and v = SiT jx with (k, l) ≤
(i, j) in (4.1), we have that

∥PSiT jx− PSkT lx∥2 ≤ ∥SiT jx− PSkT lx∥2 − ∥SiT jx− PSiT jx∥2

≤ ∥SkT lx− PSkT lx∥2 − ∥SiT jx− PSiT jx∥2

and hence {PSkT lx} is a Cauchy net; see [8, 16]. Therefore {PSkT lx} converges
strongly to a point q ∈ A(S)∩A(T ) since A(S)∩A(T ) is closed. Next, consider an
arbitrary subsequence {Snix} of {Snx} convergent weakly to a point v. From the
proof of Theorem 3.2, we know that

0 ≤ (β1 − α1)
1

(n+ 1)2

n∑
l=0

{∥Sn+2T lx− Sy∥2 + ∥Sn+1T lx− Sy∥2

− ∥ST lx− Sy∥2 − ∥T lx− Sy∥2}

+ (β2 − α2)
1

(n+ 1)2

n∑
l=0

{∥Sn+1T lx− Sy∥2 − ∥T lx− Sy∥2}+ ∥Sy − y∥2

+ 2
⟨
Snx+ β1

1

(n+ 1)2

n∑
l=0

(Sn+2T lx+ Sn+1T lx− ST lx− T lx)
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+ β2
1

(n+ 1)2

n∑
l=0

(Sn+1T lx− T lx)− Sy, Sy − y
⟩
,

where Snx = 1
(n+1)2

∑n
k=0

∑n
l=0 S

kT lx. Letting ni → ∞, we obtain

0 ≤ ∥Sy − y∥2 + 2⟨v − Sy, Sy − y⟩.

Then, we obtain

0 ≤ ∥Sy − y∥2 + 2⟨v − Sy, Sy − y⟩
= ∥Sy − y∥2 + ∥v − y∥2 + ∥Sy − Sy∥2 − ∥v − Sy∥2 − ∥Sy − y∥2

= ∥v − y∥2 − ∥v − Sy∥2

and hence ∥v−Sy∥ ≤ ∥v−y∥. This implies that v ∈ A(S). Similarly, let T : C → C
be an (α′

1, α
′
2, β

′
1, β

′
2)-generalized hybrid mapping. Replacing S and T by T and S in

the proof, respectively, we have v ∈ A(T ). Therefore v ∈ A(S)∩A(T ). Rewriting the
characterization of the metric projection P , we have that for any u ∈ A(S)∩A(T ),

0 ≤
⟨
SkT lx− PSkT lx, PSkT lx− u

⟩
and hence⟨

SkT lx− PSkT lx, u− q
⟩
≤

⟨
SkT lx− PSkT lx, PSkT lx− q

⟩
≤ ∥SkT lx− PSkT lx∥ · ∥PSkT lx− q∥

≤ K∥PSkT lx− q∥,

where K is an upper bound for ∥SkT lx−PSkT lx∥. Summing up these inequalities
for k = 0, 1, . . . , n and l = 0, 1, . . . , n and dividing by (n+ 1)2, we arrive to⟨

Snx− 1

(n+ 1)2

n∑
k=0

n∑
l=0

PSkT lx, u− q

⟩
≤ K

1

(n+ 1)2

n∑
k=0

n∑
l=0

∥PSkT lx− q∥.

Letting ni → ∞, we get

⟨v − q, u− q⟩ ≤ 0.

This holds for any u ∈ A(S) ∩ A(T ). Therefore we have Pv = q. But because
v ∈ A(S)∩A(T ), we have v = q. Thus the sequence {Snx} converges weakly to the
point q ∈ A(S) ∩ A(T ). In particular, if C is closed and convex, {Snx} converges
weakly to an element q of F (S) ∩ F (T ). �

Using Theorem 4.1, we get the nonlinear ergodic theorem (Theorem 1.1) by
Kohsaka [5]. Furthermore, we can prove the following nonlinear ergodic theorem by
Lin and Takahashi [9] for 2-generalized hybrid mappings in a Hilbert space.

Theorem 4.2 ( [9]). Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a 2-generalized hybrid mapping of C into itself such that A(T ) is nonempty.
Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx
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converges weakly to z0 ∈ A(T ), where z0 = limn→∞ PA(T )T
nx. Additionally, if

C is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ), where z0 =
limn→∞ PF (T )T

nx.

Using Theorem 4.1, we also have the following nonlinear ergodic theorem by
Takahashi and Takeuchi [15].

Theorem 4.3 ([15]). Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a generalized hybrid mapping of C into itself such that A(T ) is nonempty.
Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞ PA(T )T
nx. Additionally, if

C is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ), where z0 =
limn→∞ PF (T )T

nx.

References

[1] K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for
λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335-343.

[2] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace
de Hilbert, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511–1514.

[3] T. Igarashi, W. Takahashi and K. Tanaka, Weak convergence theorems for nonspreading map-
pings and equilibrium problems, in Nonlinear Analysis and Optimization (S. Akashi, W. Taka-
hashi and T. Tanaka Eds.), Yokohama Publishers, Yokohama, 2008, pp. 75–85.

[4] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems
for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.

[5] F. Kohsaka, Existence and approximation of common fixed points of two hybrid mappings in
Hilbert spaces, J. Nonlinear Convex Anal. 16 (2015), 2193-2205.

[6] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly
nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824–835.

[7] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related
to maximal monotone operators in Banach spaces, Arch. Math. 91 (2008), 166–177.

[8] A. T. Lau and W. Takahashi, Weak convergence and nonlinear ergodic theorems for reversible
semigroups of nonexpansive mappings, Pacific J. Math. 126 (1987), 277–294.

[9] L.-J. Lin and W. Takahashi, Attractive point theorems and ergodic theorems for nonlinear
mappings in Hilbert spaces, Taiwanese J. Math. 16 (2012), 1763–1779.

[10] T. Maruyama, W. Takahashi and M. Yao, Fixed point and mean ergodic theorems for new
nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011), 185–197.

[11] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive map-
pings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.

[12] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and its Applications, Yoko-
hama Publishers, Yokohama, 2000.

[13] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yoko-
hama, 2009.

[14] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlin-
ear Convex Anal. 11 (2010), 79–88.

[15] W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized
hybrid mappings in a Hilbert space, J. Nonlinear Convex Anal. 12 (2011), 399–406.

[16] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and
monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.



286 M. HOJO, S. TAKAHASHI, AND W. TAKAHASHI

Manuscript received 30 August 2016
revised 3 October 2016

Mayumi Hojo
Shibaura Institute of Technology, Tokyo 135-8548, Japan

E-mail address: mayumi-h@shibaura-it.ac.jp

Satoru Takahashi
Yokohama Publishers, 101, 6–27, Satsukigaoka, Aoba-ku, Yokohama 227-0053, Japan

E-mail address: info@ybook.co.jp

Wataru Takahashi
Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan; Keio
Research and Education Center for Natural Sciences, Keio University, Kouhoku-ku, Yokohama
223-8521, Japan; and Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp; wataru@a00.itscom.net


