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ATTRACTIVE POINT AND ERGODIC THEOREMS
FOR TWO NONLINEAR MAPPINGS IN HILBERT SPACES

MAYUMI HOJO, S. TAKAHASHI, AND WATARU TAKAHASHI*

ABSTRACT. In this paper, using means, we study attractive points of nonlinear
mappings in Hilbert spaces. Then we obtain attractive point and fixed point
theorems for commutative 2-generalized hybrid mappings in Hilbert spaces. Us-
ing this result, we prove a nonlinear mean convergence theorem for commutative
2-generalized hybrid mappings in Hilbert spaces.

1. INTRODUCTION

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space and let C' be a nonempty subset
of H. Let T be a mapping of C into H. Then we denote by F(T') the set of fized
points of T and by A(T) the set of attractive points [15] of T, i.e.,

(i) F(T)={z€C:Tz=z};

(ii) A(T)={z€ H:||Tx — z|| < ||z — z||, Yz € C}.
We know from [15] that A(T) is closed and convex. This property is important for
proving our main theorem. A mapping T : C — H is said to be nonezrpansive if
1Tz — Ty| < |z —y| forall z,y € C. Tt is well-known that if C' is a bounded, closed
and convex subset of H and T': C' — C' is nonexpansive, then F(T') is nonempty.
Furthermore, from Baillon [2] we know the first nonlinear ergodic theorem in a
Hilbert space: Let C be a bounded, closed and convex subset of H andlet T': C' — C
be nonexpansive. Then for any = € C,

1 n—1
Spx = - l;)Tkx

converges weakly to an element z € F(T). In 2010, Kocourek, Takahashi and Yao [4]
defined a broad class of nonlinear mappings in a Hilbert space: Let H be a Hilbert
space and let C' be a nonempty subset of H. A mapping T : C — H is called
generalized hybrid [4] if there exist «, 5 € R such that

(1.1) alTe = Tyl? + (1 - a)llz = Ty|* < BTz — y|* + (1 = Bz — y|?
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for all z,y € C. Such a mapping T is called (v, 5)-generalized hybrid. We also know
the following mapping: For A € R, a mapping U : C' — H is called \-hybrid [1] if
(1.2) |Uz = Uyll? < flo = ylI? +2(1 = \){w — Uz, y — Uy)
for all z,y € C. Notice that the class of generalized hybrid mappings covers several
well-known mappings. For example, a (1,0)-generalized hybrid mapping is nonex-
pansive, i.e.,
[Tz =Tyl < ||z —yll, Va,yeC.

It is nonspreading [6,7] for « = 2 and § =1, i.e.,

2Tz — Ty|® < || Tz — y|* + |Ty — «|®, Va,y e C.
It is also hybrid [14] for a = % and 8 = %, Le.,

81 Tw — Ty|2 < |l — ylI? + T2 — ylI? + | Ty — 22, Va,y € C.

In general, nonspreading and hybrid mappings are not continuous; see [3]. We
also know that A-hybrid mappings are in the class of generalized hybrid mappings.
The nonlinear ergodic theorem by Baillon [2] for nonexpansive mappings has been
extended to generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi
and Yao [4]. Recently, Kohsaka [5] also proved the following theorem:

Theorem 1.1 ( [5]). Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let S and T be commutative A and p-hybrid mappings of
C into itself such that the set F'(S) N F(T) of common fized points of S and T is
nonempty. Then, for any x € C,

1 n n

k=0 1=0
converges weakly to a point of FI(S) N F(T).

On the other hand, Takahashi and Takeuchi [15] proved the following attractive
point and mean convergence theorem without convexity in a Hilbert space.

Theorem 1.2. Let H be a Hilbert space and let C' be a nonempty subset of H. Let
T be a generalized hybrid mapping from C' into itself. Assume that {T"z} for some

z € C is bounded and define
1 n
Spr=—) Tk
v=— kzzo x

for all z € C and n € N. Then {S,z} converges weakly to uop € A(T), where
ug = limy, 0o PoryT"x and Py(ry is the metric projection of H onto A(T).

Maruyama, Takahashi and Yao [10] also defined a more broad class of nonlinear
mappings called 2-generalized hybrid which contains generalized hybrid mappings
in a Hilbert space. Let C' be a nonempty subset of H. A mapping T': C' — H is
2-generalized hybrid [10] if there exist oy, ag, 51, 82 € R such that

(1.3) ar|[ Tz —Ty|* + aol|Te — Ty|* + (1 — a1 — az)ja — Ty|?
< Bill Tz — y||* + Bal| T — yl* + (1 = B1 = B2) |l — y|?
for all z,y € C.



ATTRACTIVE POINT AND ERGODIC THEOREMS 277

In this paper, using means, we study attractive points of nonlinear mappings
in Hilbert spaces. Then we obtain attractive point and fixed point theorems for
commutative 2-generalized hybrid mappings in Hilbert spaces. Using this result, we
prove a nonlinear mean convergence theorem for commutative 2-generalized hybrid
mappings in Hilbert spaces.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. We denote
the strong convergence and the weak convergence of {x,} to x € H by z,, — z and
Tn — x, respectively. Let A be a nonempty subset of H. We denote by ¢oA the
closure of the convex hull of A. In a Hilbert space, it is known that

2 2 2
(2.1) laz + (1 = a)y||* = alz]® + (1 = o) [ly|* = a(l - a) [|lz — y|
for all x,y € H and « € R; see [13]. Furthermore, in a Hilbert space, we have that
(22) 2(x—y,z—w) = |z —wl’ +[ly — 2|° = |z = 2> = |y — w]|?
for all x,y,z,w € H. Indeed, we have that
2<ﬂz—y,z—w> :2<CC,Z> _2<‘T’w> —2<y,z>+2<y,w>
= (= |z + 2 {z, 2) = |2l1*) + ([l=]* = 2 (z, w) + [[w]*)
+ (gl = 2 ¢y, 2) + 121%) + (= llyl® + 2 (y, w) — JJw]®)
2 2 2 2
= llz —wl|” +lly = 2lI" = llz — 2[I" = [ly — w|]".
From (2.2), we have that
(2.3) (=) + (@ —w)y —w) =z —w|? - |z —y|
for all z,y,w € H. Indeed, we have that
2z —y)+ @ —w)y—w) =2z —w) = (y —=z),(y —w) - 0)
I 1> = lly — = —0|?

=z —w—0*+lly—z—(y —w)|* - o —w — (y — w)

= 2|z —w|® - 2]y — z|?

and hence ((z —y) + (z —w),y —w) = [z —w[]* - |z — y|*.
Let I°° be the Banach space of bounded sequences with supremum norm. Let

p be an element of ({°°)* (the dual space of [*°). Then, we denote by u(f) the
value of p at f = (a1,a9,as,...) € [°°. Sometimes, we denote by puy,(a,) the value
w(f). A linear functional p on [*° is called a mean if u(e) = ||p|| = 1, where
e=(1,1,1,...). A mean p is called a Banach limit on [ if p,(ant1) = pn(an).
We know that there exists a Banach limit on {*°. If x4 is a Banach limit on [*°, then
for f = (al,ag,ag,. . ) e[,

liminf a, < p,(a,) <limsupa,,.

n—00 n—0oo
In particular, if f = (a1,a2,as3,...) € [* and a, — a € R, then we have u(f) =
tn(an) = a. See [12] for the proof of existence of a Banach limit and its other
elementary properties.
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Using a mean, we obtain the following result; see [9,11]: Let H be a Hilbert
space, let {z,} be a bounded sequence in H and let u be a mean on [°°. Then there
exists a unique point zg € co{x, : n € N} such that

(2.4) pn{Tn,y) = (20,y), Yy € H.

We call such a unique zg € H the mean vector of {x,} for p. For the sake of
completeness, we give the proof. Since {x,} is bounded, we have that for any
y € H, {{zp,y)} is in [*°. Since p is a mean on [*°, we can define a real valued
function g as follows:

9(y) = pnlzn,y), Vye H.
We have that for any y,z € H and «, § € R,
g(ay + 5Z) - M”<$"’ ay + /Bz> = O‘Mn<xmy> + Bﬂn<$m Z)
= ag(y) + By(2).

Then g is a linear functional of H into R. Furthermore we have that for any y € H,

l9(W)| = |pn(Tn, )| < [|pnll sup [(zn, y)|
neN
< lpnll sup [|zall lyll = (sup [|[zall) [yl
neN neN

Put K = sup,ey ||zn||. We have that

l9(y)l < Kllyll, Vye H.
Then g is bounded. By the Riesz theorem, there exists zg € H such that
(25> g(y) = <Z()7y>7 Vy € H.

It is obvious that such zp € H is unique. Furthermore we have zg € ¢o{z, : n € N}.
In fact, if zg ¢ co{x,, : n € N}, then there exists yg € H from the separation theorem
such that

(z0,y0) < inf {(z,y0) : z € co{xp : n € N} }.
Using the property of a mean, we have that
(z0,y0) < inf {(z,y0) : z € co{an : n € N}}
< inf{(zn, yo) : n € N} < pin(2n, y0) = (20,Y0)-

This is a contradiction. Thus we have zy € co{z,, : n € N}.

3. ATTRACTIVE POINT THEOREMS

Let H be a Hilbert space and let C' be a nonempty subset of H. A mapping
T :C — H is 2-generalized hybrid [10] if there exist oy, ag, 81, S2 € R such that

(3.1) ar||T? 2 —Ty|* + as||Tz — Ty|* + (1 — a1 — as)||z — Ty||?
< B T% — y||* + Bol| Tz — y||> + (1 = B1 — Bo)|lz — y?

for all z,y € C. We call such a mapping (a1, ag, 81, B2)-generalized hybrid. We know
that the class of the mappings above covers well-known mappings. For example, the
class of (0, aa, 0, B2)-generalized hybrid mappings is the class of (ag, f2)-generalized
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hybrid mappings in the sense of Kocourek, Takahashi and Yao [4]. If x = Tz in
(3.1), then for any y € C,

arllz=Ty|* + az||lz = Ty[|* + (1 — a1 — ag) ||z — Tyl|?

< Bulle = ylI* + Ballz — ylI* + (1 = B1 = Ba) [l — |,
Hence we have that
(3:2) |z = Tyl| < [z —yll, VoeF(T), yedl.

Thus, a 2-generalized hybrid mapping with a fixed point is quasi-nonexpansive.
Now, we prove an attractive point theorem for commutative 2-generalized hybrid
mappings in a Hilbert space. Before proving the theorem, we show the following
lemma.

Lemma 3.1. Let H be a Hilbert space, let C' be a nonempty subset of H and let S
and T be mappings of C into itself. Suppose that there exist a mean p on I*° and a
sequence {x,} C H such that {x,} is bounded and

pn |l — Sy||2 < || — ?JH2 and fip ||z, — Ty||2 < || — ?JH2a vy € C.

Then A(S) N A(T) is nonempty. In particular, the mean vector zy € H of {zn}
for w is an element of A(S) N A(T). Additionally, if C is closed and conver and
{zn} C C, then F(S)N F(T) is nonempty.

Proof. Since {x,} is bounded, we have from (2.5) that there exists a unique point
zp € co{xy, : n € N} such that

(3-3) pin(ns y) = (20,9), Vy € H.
Using this zp, we have from (2.3) and the assumption of T that for any v € C,
((z0 — v) + (20 — Sv),v — Sv) = pp{(zy, — v) + (xn, — Sv),v — Sv)
= pin(||zn — Sv[* — ||z — v[|)
= tinllwn = Svl* = pnllwn — vl
<0.
Using (2.3) again, we have that
((z0 — v) + (20 — Sv),v — S) = ||z0 — Sv||> — |20 — v
Thus we have that
|20 — Sv||? = |20 —v||* <0, YveC
and hence
|zo — Sv|| < ||z0 —v||, YveC.
Therefore we have zp € A(S). Similarly, we have that
llzo — Tv| < ||zo —v||, Vv eC.

and hence zgp € A(T). Therefore we have zp € A(S) N A(T'). Additionally, if C' is
closed and convex and {z,} C C, we have that

20 € co{xy :n €N} C C.
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Since zg € A(S) N A(T) and zy € C, we have that
1520 — 20ll < [lz0 — 20| =0 and  [[Tz — zo|| < |20 — 20 = 0
and hence zp € F'(S) N F(T). This completes the proof. O

Using Lemma 3.1, we can prove an attractive point theorem for commutative
2-generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a Hilbert space, let C be a nonempty subset of H and let S
and T be commutative 2-generalized hybrid mappings of C' into itself. Suppose that
there exists an element z € C such that {S*T'z : k,1 € NU{0}} is bounded. Then
A(S)NA(T) is nonempty. Additionally, if C is closed and convez, then F(S)NF(T)
18 nonempty.

Proof. Since a mapping S is 2-generalized hybrid, there exist oy, as, 81, B2 € R such
that

a1]|S*z—=Sy||* + aol|Sz — Sy|* + (1 — a1 — az)[|lz — Syl|*
< BillS%z =yl + Bal| Sz — y|* + (1 = B1 — B2) |z — yl®

for all 2,y € C. Take z € C such that {S*T'z : k,1 € NU {0}} is bounded. Then
for any y € C and k,l € NU {0}, we have that

o1 || SF 2Tz — Sy||? + ao||SFFIT 2 — Sy|? + (1 — aq — aw)|| STz — Sy||?
< BISE Tz — y|P + Bol STz — | + (1 = B = Bo) [ S*T"2 — | |?
= Bi{[[S"2T" 2 — Sy|* + ||Sy — ylI* + 2(S* Tz — Sy, Sy — y)}
+ Bo{ | STz — Sy|? + 1Sy — yl® + 2(S*HT'z — Sy, Sy — )}
+ (1= p1 = B){IS*T"2 = Sy|I” + ||y — ylI* + 2(S"T'z — Sy, Sy — y)}.
This implies that
0 <(B1 — a){|[S***T'z — Sy — |S*T"= — Sy|1*}
+ (B2 — ) {|S*HITY 2 — Sy||* — [|S*T"2 — Sy|*} + || Sy — ]I
+2(B18F 2T 4 BoSFHIT: 4 (1= By — £2)SFT! 2 — Sy, Sy — y).
Summing up these inequalities with respect to k =0,1,...,n, we have
0 <(B1 — a){[[S"*T'z — Sy|* + [|S"+'T"z - Sy|®
—|ST"> = Sy||* — | T"= — Sy||*}
+ (B2 — aa){||S" Tz = Syl® — (|IT'z = SylI*} + (n + 1)||Sy — y?

n
+ 2< D STl 4 By (ST + ST s — STz — T'z)

k=0
+ Bo(S" T — Tl2) — (n +1)Sy, Sy — y>
Furthermore, summing up these inequalities with respect tol = 0,1,...,n, we have

0< (B —ar) Y {1521z = Sy|? + |5 1Tz — Sy)?
=0



ATTRACTIVE POINT AND ERGODIC THEOREMS 281
— 18Tz = Sy||* - ||IT"= — Sy||*}

+ (B2 — az) Z{HS"HTlZ — Sy|I* = 7'z = Sy[I*} + (n + 1)*(|Sy — y|I*
+ 2< Z Z SkTl 2 + 6y Z ("7l 4 ST, — ST 2 — T'2)

=0 k=0
n

+ B2 Y (8™ 2 = T'2) — (n+1)%Sy, Sy — y>
=0

Dividing by (n + 1)2, we have
1 n
< _ n+2Tl o 2 n+1Tl o 2
0% (1 = an) g LIS T - SyIP £ 57T - Sl
—[IST"2 = Sy||* — |IT'= — Sy||*}
1 O
+ (B2 — az)m D AIS™T = Sy|? = T2 = Sy|*} + 1Sy — yl®
=0

n

1

m (Sn+2TlZ =+ Sn+1TlZ — STZZ — TlZ)
=0

+ 2<Snz + B

IR
+ ﬁQm Z(S T2 —T'z) — Sy, Sy — y>,
where S,z = n+1 L S oS SFT 2. Since {S*T'z} is bounded by assumption,

{Spz} is bounded Taking a Banach limit p to both sides of this inequality, we have
that

1 n
05 (81— ey (yr 2 ANS™2TY5 = Syl + 54Tz — Sy
=0
—|IST' = Sy|* = |T'= - Sy|I*})

1 n
+ (B = a)pn (g DS T2 = SylP = T2 = SylPY) + 1Sy — ulP
=0

1 n
+ 2Nn<SnZ + Blm Z(SnJrQTlZ + SnJrlTlZ — STZZ — TIZ)

n

1=0
n

By <5 (8"~ T'2) — Sy, Sy - y>
1=0
and hence

0 < ISy = yll* + 210 (Snz — Sy, Sy — y).
We obtain from (2.2) that

0 < [1Sy — yl* + 2, (Snz — Sy, Sy — y)
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= [|Sy — ylI> + unllSnz = ylI> + 1Sy — Syll* — pnl| Sz — Syl> — 1Sy — y|?
= fin]|Snz = YlI> = pnl Snz — Syl|®
and hence
fin|Snz = SylI* < pinl|Snz — yl|>.

Similarly, since a mapping T is 2-generalized hybrid, there exist o}, af, 51, 85 € R
such that

| T2 =Ty|* + ah|| Tz — Tyl* + (1 - o — ab)|la — Tyl
< BillT?z — y|* + Bl|Ta — yl* + (1 = By — )|z — ylI?

for all z,y € C. Replacing S and T by T and S for the above proof, respectively,
we have

fin || Snz — Tyl < pn | Snz — yl|%.

By Lemma 3.1, we have that A(S) N A(T) is nonempty. Additionally, if C' is closed
and convex, then we have from Lemma 3.1 that F(S) N F(T') is nonempty. This
completes the proof. O

Using Theorem 3.2, we have the following theorem for commutative generalized
hybrid mappings in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space, let C be a nonempty subset of H and let
S and T be commutative generalized hybrid mappings of C' into itself. Suppose that
there exists an element z € C such that {S*T'z : k,1 € NU{0}} is bounded. Then
A(S)NA(T) is nonempty. Additionally, if C is closed and convex, then F(S)NF(T)
1§ nonempty.

Proof. The generalized hybrid mappings S and T of C into itself are 2-generalized
hybrid mappings. That is, an («a, 3)-generalized hybrid mapping S is a (0, «, 0, 5)-
generalized hybrid mapping and an (o/, 3’)-generalized hybrid mapping S is a
(0,a/,0, B')-generalized hybrid mapping. Thus we have the desired result from The-
orem 3.2. Il

Using Theorem 3.2, we also have the attractive point theorem by Takahashi and
Takeuchi [15] for generalized hybrid mappings in a Hilbert space.

Theorem 3.4. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be a generalized hybrid mapping of C into itself. Suppose that there exists an
element z € C' such that {T"z} is bounded. Then A(T) is nonempty.

Additionally, if C' is closed and convez, then F(T) is nonempty.

4. NONLINEAR ERDODIC THEOREMS

In this section, we prove a mean convergence theorem for commutative 2-generalized
hybrid mappings without convexity in a Hilbert space.
Let D = {(k,l) : k,l € NU{0}}. Then D is a directed set by the binary relation:

(k1) < (i,7) ifk<iandl<j.
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Theorem 4.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let
S and T be commutative 2-generalized hybrid mappings of C into itself such that
A(S)NA(T) # 0. Let P be the metric projection of H onto A(S) N A(T). Then,

for any x € C,
Spt = ——= ST x
TSI IS
converges weakly to an element q of A(S) N A(T), where ¢ = lim, yep PSkT . In
particular, if C is closed and convez, {Spx} converges weakly to an element q of

F(S) N F(T).

Proof. Let S : C — C be an (a1, aq, 51, 52)-generalized hybrid mapping. Since
A(S) N A(T) is nonempty, closed and convex, there exists the metric projection P
of H onto A(S) N A(T). We have that

0<(v—Pv,Pv—u), YueAS)NAT), veC.
Adding up ||Pv — u||? to both sides of this inequality, we have from (2.2) that
| Pv — ul|? < ||Pv —ul|?> + 2 (v — Pv, Pv — u)
(4.1) = [[Pv —ul® + |lv — ul]* + [ Pv = Pv||* — [lo — Pol® — [|[Pv — u||?
= [lv—ul)?* = Jlv — Po||.
Since ||Sz — ul| < ||z — u|| and [Tz — u|| < ||z — u|| for any u € A(S) N A(T') and
z € O, it follows that for any (k,1), (i,7) € D with (k,1) < (1, 5),
|S* Tz — PS'TIz| < ||S'T7 2 — PS*T x|
< ||S*Tte — PS*T!z||.
Hence the sequence ||S*T'z — PS*T!z| is nonincreasing and then there exists
lim pep |S¥T'e — PS*T'z||. Putting u = PS*T'z and v = S'TVx with (k,1) <
(7,7) in (4.1), we have that
|PS‘TIx — PS*T!z||> < ||S'TV 2 — PS*T'x||? — |S*T e — PS*TV |2
< ||S*T!e — PS*T!2||> — ||S"TV2 — PS'T x|
and hence {PS*T'z} is a Cauchy net; see [8,16]. Therefore {PS*T!z} converges
strongly to a point ¢ € A(S) N A(T) since A(S) N A(T) is closed. Next, consider an
arbitrary subsequence {S,,x} of {S,x} convergent weakly to a point v. From the

proof of Theorem 3.2, we know that

1 - n mn
0<(B1— Oq)m Y ISP T e — Sy|* + | T — Sy
=0

—[IST" — Sy||* — |IT'z — Sy|*}

1 n
+ (B2 — az)m Z{”SnHTll“ - Sy||2 - ||Tl$ - SZ/||2} + Sy - Z/||2
1=0

1 n
+ 2<Sna: + Blm > (M + ST — ST — T'a)
=0
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1 n
+ By 2 (ST = Tla) — Sy, Sy — v,
=0

where S, = ﬁ Y o o SkTlx. Letting n; — oo, we obtain

0 < [1Sy —yl* + 2(v — Sy, Sy — y).
Then, we obtain
0 < [1Sy —yl* +2(v — Sy, Sy —y)
= 1Sy = yl* + llv = ylI* + 1Sy = Sy|I> — llo = Sy* |5y — yII*
= llv —yl* ~ Ilv - Syl
and hence [jv—Sy|| < |Jlv—y||. This implies that v € A(S). Similarly, let T: C' — C
be an (o}, ab, 1, B5)-generalized hybrid mapping. Replacing S and T by T and S in
the proof, respectively, we have v € A(T"). Therefore v € A(S)NA(T"). Rewriting the
characterization of the metric projection P, we have that for any u € A(S) N A(T),
0< <5’le$ — PS*Ty, PSP — u>
and hence
<Sle£U — PS*Tl g u— q> < <Sle:r — PS*Tle, PSFT e — q>
< ||S*T'z — PS*T'z|| - | PS*T'x — q||

where K is an upper bound for ||S*T'2z — PS¥T'z|. Summing up these inequalities
for k=0,1,...,nand [ = 0,1,...,n and dividing by (n + 1)2, we arrive to

1 n n 1 n.on
Snx—ﬁZZPSkTZx,u—q SKﬁZZHPSkT%—QH-
(n+1) (n+1)

k=0 =0 k=0 (=0
Letting n; — 0o, we get
(v—gq,u—q) <0.
This holds for any u € A(S) N A(T). Therefore we have Pv = ¢. But because
v e A(S)NA(T), we have v = g. Thus the sequence {S,z} converges weakly to the

point ¢ € A(S) N A(T). In particular, if C' is closed and convex, {S,x} converges
weakly to an element ¢ of F/(S) N F(T). O

Using Theorem 4.1, we get the nonlinear ergodic theorem (Theorem 1.1) by
Kohsaka [5]. Furthermore, we can prove the following nonlinear ergodic theorem by
Lin and Takahashi [9] for 2-generalized hybrid mappings in a Hilbert space.

Theorem 4.2 ([9]). Let H be a Hilbert space, let C' be a nonempty subset of H and
let T' be a 2-generalized hybrid mapping of C into itself such that A(T) is nonempty.
Then for any x € C,

1 n—1
Snx = - kZOTk:U
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converges weakly to zo € A(T), where zo = limy, o0 Po(r)T"z. Additionally, if
C is closed and convezx, then {Spx} converges weakly to zo € F(T'), where zp =
lim,,— o0 PpmT"z.

Using Theorem 4.1, we also have the following nonlinear ergodic theorem by
Takahashi and Takeuchi [15].

Theorem 4.3 ([15]). Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a generalized hybrid mapping of C into itself such that A(T) is nonempty.

Then for any x € C,
1 n—1
Spr ==Y T"
" k=0 '

converges weakly to zo € A(T), where zo = limy, o0 Po(r)yT"z. Additionally, if
C is closed and convezx, then {Spx} converges weakly to zo € F(T'), where zg =
lim,,— o0 PpmT"z.
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