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we know, there are not many characterizations of quasiconvexity in terms of such
subdifferentials.

In this paper, we study quasiconvexity of sum of quasiconvex functions. At first,
we show characterizations of quasiconvexity via upper semicontinuous functions in
terms of Q-subdifferential. We introduce a set of quasiconvex functions which is
closed under addition and multiplication by positive scalars. As applications, we
investigate Lagrange duality and surrogate duality for quasiconvex programming.

The remainder of the present paper is organized as follows. In Section 2, we intro-
duce some preliminaries. In Section 3, we show characterizations of quasiconvexity
via upper semicontinuous functions in terms of Q-subdifferential. In Section 4, we
study quasiconvexity of sum of quasiconvex functions. In Section 5, we introduce
some applications.

2. Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Let f be a function from Rn to R = [−∞,+∞]. We denote
the domain of f by domf , that is, domf = {x ∈ Rn | f(x) < +∞}. The epigraph
of f is defined as epif = {(x, r) ∈ Rn ×R | f(x) ≤ r}, and f is said to be convex if
epif is convex. The subdifferential of f at x is defined as ∂f(x) = {v ∈ Rn | ∀y ∈
Rn, f(y) ≥ f(x) + ⟨v, y − x⟩}. Define the level sets of f with respect to a binary
relation ⋄ on R as

L(f, ⋄, α) := {x ∈ Rn | f(x) ⋄ α}
for any α ∈ R. A function f is said to be quasiconvex if for all α ∈ R, L(f,≤, α)
is a convex set. Any convex function is quasiconvex, but the opposite is not always
true. A subset A of Rn is said to be evenly convex if it is the intersection of some
family of open halfspaces. Note that the whole space and the empty set are evenly
convex. Clearly, every evenly convex set is convex. Furthermore, any open convex
set and any closed convex set are evenly convex. A function f is said to be evenly
quasiconvex (strictly evenly quasiconvex) if L(f,≤, α) (L(f,<, α), respectively) is
evenly convex for each α ∈ R. It is clear that every evenly quasiconvex function is
quasiconvex. It is easy to show that every strictly evenly quasiconvex function is
evenly quasiconvex, see the proof of Theorem 3.1. However, converse implications
are not generally true, in detail, see [22,25]. In addition, every lower semicontinuous
(lsc) quasiconvex function is evenly quasiconvex, and every upper semicontinuous
(usc) quasiconvex function is strictly evenly quasiconvex.

In quasiconvex analysis, various types of conjugates and subdifferentials have
been introduced. In this paper, the following subdifferentials and Q-conjugate
play important roles. In [7], Greenberg and Pierskalla introduced the Greenberg-
Pierskalla subdifferential of f at x0 ∈ Rn as follows:

∂GP f(x0) = {v ∈ Rn | ⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0)}.
The Greenberg-Pierskalla subdifferential is closely related to λ-quasiconjugate, in
detail, see [7, 17, 19]. Next, we introduce the following conjugate function and
subdifferential. The Q-conjugate of f , fQ : Rn+1 → R, is defined as follows: for
each (v, t) ∈ Rn+1,

fQ(v, t) = − inf{f(x) | ⟨v, x⟩ ≥ t}.
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In addition, the Q-conjugate of g : Rn+1 → R is the function gQ : Rn → R such
that for each x ∈ Rn

gQ(x) := − inf{g(v, t) | ⟨v, x⟩ ≥ t},
and the Q-biconjugate of f is the function fQQ : Rn → R such that for each x ∈ Rn

fQQ(x) := (fQ)Q(x) = − inf{fQ(v, t) | ⟨v, x⟩ ≥ t}.
Q-subdifferential of f at x ∈ Rn is defined as follows:

∂Qf(x) := {(v, t) ∈ Rn+1 | inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x), ⟨v, x⟩ ≥ t}.
Greenberg-Pierskalla subdifferential, Q-conjugate and Q-subdifferential are special
cases of Moreau’s generalized conjugation, in detail, see [17,19,21,31]. We introduce
the following previous results.

Theorem 2.1. [17,19,21,31] Let f be a function from Rn to R. Then, the following
statements hold:

(i) f ≥ fQQ.
(ii) f = fQQ if and only if f is evenly quasiconvex.
(iii) If f is usc quasiconvex then ∂fQ(x) ̸= ∅ for each x ∈ Rn.
(iv) Let x0 ∈ Rn. The following statements are equivalent:

(1) x0 is a global minimizer of f in Rn,
(2) 0 ∈ ∂GP f(x0),
(3) ∂GP f(x0) = Rn,
(4) (0, 0) ∈ ∂Qf(x0).

(v) ∂Qf(x) = ∂Q(λf)(x) for each x ∈ Rn and λ > 0.
(vi) ∂f(x) ⊂ ∂GP f(x) = {v ∈ Rn | (v, ⟨v, x⟩) ∈ ∂Qf(x)} for each x ∈ Rn.

The following theorem is well known in convex analysis. The proof is easy and
will be omitted. Motivated by the result, we study similar characterizations of
quasiconvexity in the next section.

Theorem 2.2. Let f be a real-valued function on Rn. Then, f is convex if and
only if ∂f(x) ̸= ∅ for each x ∈ Rn.

3. Characterizations of quasiconvexity in terms of Q-subdifferential

In the following theorem, we show characterizations of quasiconvexity via usc
functions in terms of Q-subdifferential.

Theorem 3.1. Let f be an usc function from Rn to R. Then, the following state-
ments are equivalent:

(i) f is quasiconvex,
(ii) f is evenly quasiconvex,
(iii) f is strictly evenly quasiconvex,
(iv) f = fQQ,
(v) for each x ∈ Rn, there exists v ∈ Rn such that (v, ⟨v, x⟩) ∈ ∂Qf(x),
(vi) for each x ∈ Rn, ∂Qf(x) ̸= ∅.

Proof. We show the following implications:

1. (iii) =⇒ (ii) =⇒ (i) =⇒ (iii),
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2. (ii) ⇐⇒ (iv),
3. (iii) =⇒ (v) =⇒ (vi) =⇒ (iv).

1. Assume that (iii) holds. Then, we can easily show that for each α ∈ R,

L(f,≤, α) =
∩
ε>0

L(f,<, α+ ε).

Since L(f,<, α+ ε) is evenly convex for each ε > 0, L(f,≤, α) is the intersection of
some family of open halfspaces. This means that (iii) implies (ii). It is clear that
(ii) implies (i). Since f is usc, if (i) holds then L(f,<, α) is open convex for each
α ∈ R. This means that L(f,<, α) is evenly convex. Hence f is strictly evenly
quasiconvex.

2. By Theorem 2.1, (ii) and (iv) are equivalent.
3. Assume that (iii) holds and let x ∈ Rn. If L(f,<, f(x)) = ∅, then x is a global

minimizer of f in Rn. By Theorem 2.1, (0, ⟨0, x⟩) = (0, 0) ∈ ∂Qf(x). Assume that
L(f,<, f(x)) ̸= ∅, then f(x) > −∞. If f(x) ∈ R, by the assumption, L(f,<, f(x))
is a nonempty evenly convex set and x /∈ L(f,<, f(x)). Hence, there exist v ∈ Rn

and α ∈ R such that for each y ∈ L(f,<, f(x)),

⟨v, x⟩ ≥ α > ⟨v, y⟩ .

For each y ∈ Rn,

⟨v, y⟩ ≥ ⟨v, x⟩ =⇒ y /∈ L(f,<, f(x)) ⇐⇒ f(y) ≥ f(x),

that is, inf{f(y) | ⟨v, y⟩ ≥ ⟨v, x⟩} ≥ f(x). This shows that (v, ⟨v, x⟩) ∈ ∂Qf(x).
Assume that f(x) = ∞, then x /∈ domf . Since f is usc and strictly evenly quasi-
convex, domf is open convex. Hence, there exist v ∈ Rn and α ∈ R such that for
each y ∈ domf ,

⟨v, x⟩ ≥ α > ⟨v, y⟩ .
For each y ∈ Rn,

⟨v, y⟩ ≥ ⟨v, x⟩ =⇒ y /∈ domf ⇐⇒ f(y) = ∞ = f(x),

that is, inf{f(y) | ⟨v, y⟩ ≥ ⟨v, x⟩} ≥ f(x). This shows that (v, ⟨v, x⟩) ∈ ∂Qf(x).
Hence (iii) implies (v). Clearly, (v) implies (vi). Finally, we prove that (vi) implies
(iv). Assume that (vi) holds and let x ∈ Rn. Then there exists (v, t) ∈ ∂fQ(x). By
Theorem 2.1 and the definition of Q-subdifferential,

f(x) ≤ inf{f(y) | ⟨v, y⟩ ≥ t} = −fQ(v, t) ≤ fQQ(x) ≤ f(x).

This shows that f(x) = fQQ(x). This completes the proof. �

4. Quasiconvexity of sum of quasiconvex functions

In this section, we study quasiconvexity of sum of quasiconvex functions. Espe-
cially, we introduce a set of quasiconvex functions which is closed under addition
and multiplication by positive scalars. For the sake of simplicity, we assume that
functions are real-valued.

By Theorem 3.1, we show the following characterization of quasiconvexity of sum
of real-valued usc functions in terms of Q-subdifferential.
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Theorem 4.1. Let f and g be real-valued usc functions. Then, f+g is quasiconvex
if and only if for each x ∈ Rn, ∂Q(f + g)(x) ̸= ∅.

Next, we show sufficient conditions for quasiconvexity of sum of quasiconvex
functions. The following lemma is important.

Lemma 4.2. Let f and g be real-valued functions on Rn. Then, for each x ∈ Rn,

∂Q(f + g)(x) ⊃ ∂Qf(x) ∩ ∂Qg(x).

Proof. Let x ∈ Rn and (v, t) ∈ ∂Qf(x) ∩ ∂Qg(x). Then,

inf{(f + g)(y) | ⟨v, y⟩ ≥ t} ≥ inf{f(y) | ⟨v, y⟩ ≥ t}+ inf{g(y) | ⟨v, y⟩ ≥ t}
≥ f(x) + g(x).

This shows that (v, t) ∈ ∂Q(f + g)(x). �
Theorem 4.3. Let f and g be real-valued usc quasiconvex functions. For each
x ∈ Rn, assume that at least one of the following conditions is satisfied:

(i) L(f,<, f(x)) ⊂ L(g,<, g(x)),
(ii) L(g,<, g(x)) ⊂ L(f,<, f(x)),
(iii) ∂Qf(x) ⊂ ∂Qg(x),
(iv) ∂Qg(x) ⊂ ∂Qf(x).

Then, f + g is quasiconvex.
In addition, for each x ∈ Rn, (i) =⇒ (iv), (ii) =⇒ (iii).

Proof. Let x ∈ Rn. At first, we show that (i) =⇒ (iv). Assume that (i) holds and
(v, t) ∈ ∂Qg(x). Then

L(v,≥, t) ⊂ L(g,≥, g(x)) ⊂ L(f,≥, f(x)).

This shows that (v, t) ∈ ∂Qf(x). Similarly, we can prove that (ii) =⇒ (iii).
Let x ∈ Rn. By Theorem 3.1, ∂Qf(x) ̸= ∅ and ∂Qg(x) ̸= ∅ since f and g are usc

quasiconvex. If (iii) holds, then

∂Qf(x) ∩ ∂Qg(x) = ∂Qf(x) ̸= ∅.
If (iv) holds, then

∂Qf(x) ∩ ∂Qg(x) = ∂Qg(x) ̸= ∅.
Hence, if at least one of the conditions (i), (ii), (iii), and (iv) is satisfied, then
∂Qf(x) ∩ ∂Qg(x) ̸= ∅. By Lemma 4.2, ∂Q(f + g)(x) ̸= ∅. Hence by Theorem 4.1,
f + g is quasiconvex. �

Next, we show a set of quasiconvex functions which is closed under addition and
multiplication by positive scalars.

Theorem 4.4. Let f be a real-valued usc quasiconvex function on Rn, and Ff as
follows:

Ff = {g : Rn → R, usc | ∂GP f(x) ⊂ ∂GP g(x), ∀x ∈ Rn}.
Then, the following statements holds:

(i) f ∈ Ff ,
(ii) a constant function on Rn is an element of Ff ,
(iii) for each g ∈ Ff , g is quasiconvex,



292 SATOSHI SUZUKI

(iv) for each g1, . . . , gm ∈ Ff , and α1, . . . , αm > 0,
∑m

i=1 αigi ∈ Ff ,
(v) for each g1, . . . , gm ∈ Ff , maxi=1,...,m gi ∈ Ff .

Proof. It is clear that (i) holds. For each constant function α and x ∈ Rn, x
is a global minimizer of α in Rn. Hence, by Theorem 2.1, Greenberg-Pierskalla
subdifferential of α at x is the whole space Rn. This means that (ii) holds.

(iii) Let g ∈ Ff and x ∈ Rn. By Theorem 3.1, there exists v0 ∈ Rn such that

(v0, ⟨v0, x⟩) ∈ ∂Qf(x) since f is usc quasiconvex. By Theorem 2.1,

v0 ∈ ∂GP f(x) ⊂ ∂GP g(x) = {v ∈ Rn | (v, ⟨v, x⟩) ∈ ∂Qg(x)}.

By Theorem 3.1, g is quasiconvex.
(iv) Let g1, . . . , gm ∈ Ff , α1, . . . , αm > 0, and x ∈ Rn. By Lemma 4.2 and

Theorem 2.1,

∂Q

(
m∑
i=1

αigi

)
(x) ⊃ ∂Q (α1g1) (x) ∩ · · · ∩ ∂Q (αmgm) (x)

= ∂Qg1(x) ∩ · · · ∩ ∂Qgm(x)

⊃ ∂Qf(x).

We can easily show that ∂GP f(x) ⊂ ∂GP (
∑m

i=1 αigi) (x) by Theorem 2.1. Hence∑m
i=1 αigi ∈ Ff .
(v) Let g1, . . . , gm ∈ Ff , and x ∈ Rn. Then, there exists i0 ∈ {1, . . . ,m} such

that maxi=1,...,m gi(x) = gi0(x). For each v ∈ ∂GP gi0(x),

max
i=1,...,m

gi(x) = gi0(x)

≤ inf{gi0(y) | ⟨v, y⟩ ≥ ⟨v, x⟩}

≤ inf

{
max

i=1,...,m
gi(y)

∣∣∣∣∣ ⟨v, y⟩ ≥ ⟨v, x⟩

}
.

This shows that v ∈ ∂GP (maxi=1,...,m gi) (x). Hence,

∂GP f(x) ⊂ ∂GP gi0(x) ⊂ ∂GP

(
max

i=1,...,m
gi

)
(x).

This completes the proof. �

5. Applications to duality theorems

In this section, we investigate Lagrange duality and surrogate duality for quasi-
convex programming as applications of our results. In addition, we show an example
of Ff , a set of quasiconvex functions which is closed under addition and multipli-
cation by positive scalars.

Let f be a real-valued usc quasiconvex function, I an index set, f0, gi ∈ Ff ,
and assume that A = {x ∈ Rn | gi(x) ≤ 0,∀i ∈ I} ̸= ∅. Consider the following
quasiconvex programming problem (P ):

(P )

{
minimize f0(x),
subject to gi(x) ≤ 0,∀i ∈ I.
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In convex and quasiconvex programming, two types of duality theorems have been
studied mainly. The following equation is called Lagrange duality:

inf
x∈A

f0(x) = max
λ∈R(I)

+

inf
x∈Rn

{
f0(x) +

∑
i∈I

λigi(x)

}
,

where R(I)
+ = {λ ∈ RI | ∀i ∈ I, λi ≥ 0, {i ∈ I | λi ̸= 0} is finite}. The following

equation is called surrogate duality:

inf
x∈A

f0(x) = max
λ∈R(I)

+

inf

{
f0(x)

∣∣∣∣ ∑
i∈I

λigi(x) ≤ 0

}
.

Sum of constraint functions and the objective function appears in both of these
dualities. In convex programming, Lagrange duality have been studied mainly.
Since the set of all convex functions is closed under addition and multiplication by
positive scalars, Lagrange dual problem is also a convex programming problem. In
quasiconvex programming, surrogate duality have been studied mainly. However,
since the set of all quasiconvex functions is not closed under addition, we assume that
constraint functions are convex, see [14,29,32,34]. Then, surrogate dual problem is
also a quasiconvex programming problem.

By using our results in this paper, the Lagrange dual problem and surrogate
dual problem of (P ) are also quasiconvex programming since Ff is closed under
addition and multiplication by positive scalars. We can solve the problem (P ) by
using Lagrange and surrogate duality theorems.

Finally, we introduce an example of Ff .

Example 5.1. Let f be the following real-valued continuous function on Rn:

f(x) = ∥x∥.
Then, Ff is the following set:

Ff =

{
g : Rn → R, usc

∣∣∣∣∣∀x ∈ Rn, L(g,<, g(x)) ⊂ {y ∈ Rn | ⟨x, y⟩ < ⟨x, x⟩}
g(0) = min

x∈Rn
g(x)

}
.

Let g ∈ Ff . Since 0 ∈ Rn is a global minimizer of f in Rn, 0 ∈ ∂GP f(0) ⊂
∂GP g(0) by Theorem 2.1. This shows that 0 is a global minimizer of g in Rn.
Let x ∈ Rn. We show that x ∈ ∂GP f(x). Actually, if x = 0, then ∂GP f(x) =
Rn. Furthermore, if x ̸= 0, then we can check that ∂GP f(x) = {λx | λ > 0}.
Since g ∈ Ff , x ∈ ∂GP f(x) ⊂ ∂GP g(x). By the definition of Greenberg-Pierskalla
subdifferential,

inf{g(y) | ⟨x, y⟩ ≥ ⟨x, x⟩} ≥ g(x),

that is,
L(g,<, g(x)) ⊂ {y ∈ Rn | ⟨x, y⟩ < ⟨x, x⟩}.

Let g be a real-valued usc function on Rn. Assume that L(g,<, g(x)) ⊂ {y ∈
Rn | ⟨x, y⟩ < ⟨x, x⟩} for each x ∈ Rn and g(0) = minx∈Rn g(x). Let x ∈ Rn. If
x = 0, then it is clear that ∂GP f(x) = ∂GP g(x) = Rn. Assume that x ̸= 0 and let
v ∈ ∂GP f(x). Then, there exists λ > 0 such that v = λx. By the assumption,

L(g,<, g(x)) ⊂ {y ∈ Rn | ⟨x, y⟩ < ⟨x, x⟩} = {y ∈ Rn | ⟨λx, y⟩ < ⟨λx, x⟩},
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that is, v = λx ∈ ∂GP g(x). This shows that g ∈ Ff .
Additionally, we show the following inclusion:

Ff ⊃ {g : Rn → R | ∀α ∈ R, ∃r ∈ [0,+∞] s.t. L(g,<, α) = B(0, r)},
where B(0, r) = {x ∈ Rn | ∥x∥ < r} for each r > 0, B(0, 0) = ∅, and B(0,∞) = Rn.

Let g be a real-valued function, and assume that for each α ∈ R, there exists
r ∈ [0,+∞] such that L(g,<, α) = B(0, r). It is clear that g is usc quasiconvex.
Let x ∈ Rn, then there exists rx ∈ [0,+∞] such that L(g,<, g(x)) = B(0, rx). Since
x /∈ L(g,<, g(x)), ∥x∥ ≥ rx. Hence,

L(g,<, g(x)) = B(0, rx) ⊂ B(0, ∥x∥) = L(f,<, f(x)).

By Theorem 4.3, ∂GP f(x) ⊂ ∂GP g(x), that is, g ∈ Ff .

6. Conclusion

In this paper, we study quasiconvexity of sum of quasiconvex functions. We show
characterizations of quasiconvexity via usc functions in terms of Q-subdifferential
and Q-conjugate in Theorem 3.1. By using these characterizations, we show suffi-
cient conditions for quasiconvexity of sum of quasiconvex functions in Theorem 4.3.
In Theorem 4.4, we introduce Ff , a set of quasiconvex functions which is closed
under addition and multiplication by positive scalars. In addition, we show an ex-
ample of Ff in Section 5. Finally, as applications, we study Lagrange duality and
surrogate duality for quasiconvex programming by using our results.

Acknowledgements. The author is grateful to anonymous referee for many com-
ments and suggestions improved the quality of the paper.
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