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Theorem 1.1. Let C be a nonempty, closed and convex subset of H and let T :
C → C be a nonexpansive mapping with F (T ) ̸= ∅. Then, for any x ∈ C, the

sequence
{
Snz ≡ 1

n

∑n−1
k=0 T

kx
}

weakly converges to a fixed point of T .

The following theorem of Mann’s type iteration [8] was proved by Reich [10].

Theorem 1.2. Let C be a nonempty, closed and convex subset of H and let T :
C → C be a nonexpansive mapping with F (T ) ̸= ∅. Let {αn} ⊂ [0, 1) such that∑∞

n=1 αn (1− αn) = ∞. Let {xn} be a sequence in C defined by

xn+1 = αnxn + (1− αn)Txn (n = 1, 2, · · · ) ,
where x1 ∈ C is given. Then, {xn} weakly converges to a fixed point of T .

To extend the above theorems, various classes of nonlinear mappings have been
proposed. A mapping T : C → C is called

(iii) nonspreading [6] if 2 ∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥x− Ty∥2 for all x, y ∈ C,

(iv) hybrid [14] if 3 ∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥x− Ty∥2 for all
x, y ∈ C,

(v) generalized hybrid [5] if there exist α, β ∈ R such that

α ∥Tx− Ty∥2+(1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2+(1− β) ∥x− y∥2 for all x, y ∈ C.

The classes of nonexpansive, nonspreading and hybrid mappings are all generaliza-
tions of firmly nonexpansive mappings. The class of generalized hybrid mappings
contains all mappings (i)–(iv). For mappings (ii)–(v), fixed and attractive point
approximation methods have been extensively studied. Takahashi and Yao [19]
studied nonexpansive, nonspreading and hybrid mappings. They proved fixed point
theorems and demonstrated Baillon’s type weak convergence theorems. Hojo and
Takahashi [4] proved weak and strong convergence theorems of finding a fixed point
for a generalized hybrid mapping in a Hilbert space. Takahashi and Yao [18] stud-
ied generalized hybrid mappings in a Banach space and proved a Mann’s type weak
convergence theorem.

Takahashi, Wong and Yao [17] and Maruyama, Takahashi and Yao [9] introduced
new types of nonlinear mappings, which are more general than mappings (i)–(v). A
mapping T : C → C is called

(vi) normally generalized hybrid [17] if there exist α, β, γ, δ ∈ R such that

(a) α+ β + γ + δ ≥ 0,
(b) α+ β > 0, or α+ γ > 0,

(c) α ∥Tx− Ty∥2+β ∥x− Ty∥2+γ ∥Tx− y∥2+ δ ∥x− y∥2 ≤ 0 for all x, y ∈ C,

(vii) N -generalized hybrid [9] if there exist (αn, βn)
N
n=0 ∈ R2(N+1) such that

(a)
∑N

n=0 αn =
∑N

n=0 βn = 1,

(b)
∑N

n=0 αn ∥Tnx− Ty∥2 ≤
∑N

n=0 βn ∥Tnx− y∥2 for all x, y ∈ C.

The classes of normally generalized hybrid mappings and N -generalized hybrid
mappings contain generalized hybrid mappings. For methods of fixed/attractive
point approximation, see [20], [1] and [2], in addition to [17] and [9].

In this paper, we propose a new class of nonlinear mappings that contains all the
mappings (i)–(vii) as special cases and establish three types of results. First, an
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attractive point theorem is proved (Theorem 3.3 in Section 3). Second, a weak con-
vergence theorem of Baillon’s type is established: an averaged sequence converges
weakly to an attractive point (Theorem 4.2 in Section 4). Finally, we consider a
Mann’s type weak convergence theorem of finding an attractive point (Theorem 5.2
in Section 5) that shows how to approximate attractive points. While the Mann’s
type weak convergence theorem is proved without assuming that the domain of a
mapping is closed, the Baillon’s type theorem does not require even convexity. The
same types of results regarding fixed points are also established as Theorems 3.5,
4.3 and 5.3.

2. Preliminaries and lemmas

In this section, we briefly present background information and results. For more
details, see Takahashi [12], [13] and earlier studies. We know that

(2.1) ∥x+ y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2

for all x, y ∈ H. Let C be a nonempty subset of H. For T : C → H and u ∈ H, it
is easy to verify that u ∈ A (T ) if and only if

(2.2) ∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0

for all y ∈ C. Indeed, for u ∈ H,

u ∈ A (T )

⇐⇒ ∥Ty − u∥2 ≤ ∥y − u∥2 for all y ∈ C

⇐⇒ ∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩+ ∥y − u∥2 ≤ ∥y − u∥2 for all y ∈ C

⇐⇒ ∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0 for all y ∈ C.

A mapping T : C → H with F (T ) ̸= ∅ is called quasi-nonexpansive if

∥Tx− u∥ ≤ ∥x− u∥ ,
for all x ∈ C and u ∈ F (T ). It is well-known that all types of mappings (i)–(vii)
with F (T ) ̸= ∅ are quasi-nonexpansive. Furthermore, we know that the set of fixed
points F (T ) of a quasi-nonexpansive mapping is closed and convex (see [5]), which
plays important roles in the existing literature.

Strong and weak convergence of a sequence {xn} in H to a point x ∈ H are
denoted by xn → x and xn ⇀ x, respectively, where weak convergence xn ⇀
x means that ⟨xn, y⟩ → ⟨x, y⟩ for all y ∈ H. It is well-known that a weakly
convergent sequence in a Hilbert space H is bounded. Furthermore, if xn → x and
yn ⇀ y, then ⟨xn, yn⟩ → ⟨x, y⟩. We also know that a Hilbert space satisfies Opial’s
condition, that is, if a sequence {xn} in H satisfies xn ⇀ u and v ̸= u, then

lim inf
n→∞

∥xn − u∥ < lim inf
n→∞

∥xn − v∥ .

We denote the set of natural numbers and real numbers by N and R, respectively.
Let l∞ be the Banach space of bounded real sequences, that is,

l∞ =

{
{xn} : xn ∈ R (∀n ∈ N) and sup

n∈N
|xn| < ∞

}
,

where the norm of l∞ is the supremum norm. Let (l∞)∗ be the dual space of l∞, and
µ ∈ (l∞)∗. For simplicity, we often denote µ ({xn}) by µnxn if no ambiguity arises.
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A linear continuous functional µ ∈ (l∞)∗ is called amean if µ ({1, 1, 1, · · · }) = ∥µ∥ =
1. When a mean additionally satisfies µn (xn) = µn (xn+1), it is called a Banach
limit on l∞. It is well-known that the Banach limit exists, which is demonstrated
using the Hahn–Banach theorem, and for {xn} ∈ l∞,

(2.3) lim inf
n→∞

xn ≤ µnxn ≤ lim sup
n→∞

xn.

As a direct consequence from (2.3), if xn → a ∈ R, then µnxn = a; see [12].
Let C be a nonempty, closed and convex subset of H. We know that for any

x ∈ H, there exists a unique nearest point u ∈ C, that is, ∥x− u∥ = infz∈C ∥x− z∥ .
This correspondence is called the metric projection, and is denoted by PC , that is,
PCx = u. The metric projection is an example of firmly nonexpansive mappings,
and thus, nonexpansive mappings. We know that if PC is the metric projection of
H onto C, then

⟨x− PCx, PCx− z⟩ ≥ 0

for all x ∈ H and z ∈ C.
The following lemmas are used in the proofs of the main theorems of this paper.

Lemma 2.1 ([7, 11]). Let µ be a mean on l∞. Then, for any bounded sequence
{xn} in H, there is a unique element u ∈ co {xn} such that

µn ⟨xn, v⟩ = ⟨u, v⟩

for all v ∈ H, where co {xn} is the closure of the convex hull of {xn : n ∈ N}.

Lemma 2.2 ([15]). Let C be a nonempty, closed and convex subset of H, let T be a
mapping from C to itself and let PC be the metric projection of H onto C. Assume
that A (T ) ̸= ∅. Then, if u ∈ A (T ) , then PCu ∈ F (T ). Thus, if A (T ) ̸= ∅, then
F (T ) ̸= ∅.

Lemma 2.3 ([15]). Let C be a nonempty subset of H and let T be a mapping from
C to H. Then, A (T ) is a closed and convex subset of H.

From this lemma, if A (T ) ̸= ∅, then the metric projection PA(T ) of H onto
A (T ) is well-defined.

Lemma 2.4 ([16]). Let A be a nonempty, closed and convex subset of H, let PA be
te metric projection of H onto A and let {xn} be a sequence in H. If ∥xn+1 − q∥ ≤
∥xn − q∥ for all q ∈ A and n ∈ N, then {PAxn} is a convergent sequence in A.

Lemma 2.5 ([15]). Let C be a nonempty subset of H and let T be a mapping from
C to H. Then, A (T ) ∩ C ⊂ F (T ).

Proof. Let u ∈ A (T ) ∩ C. We will prove that u = Tu. Since u ∈ A (T ), it holds
that

(2.4) ∥Tx− u∥ ≤ ∥x− u∥

for all x ∈ C. Since u ∈ C, substituting x = u into (2.4), we obtain the desired
result. �
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Lemma 2.6 ([9]). Let x, y, z be elements of a Hilbert space H and let a, b, c be real
numbers such that a+ b+ c = 1. Then,

∥ax+ by + cz∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .

Additionally, if a, b, c ∈ [0, 1], then

∥ax+ by + cz∥2 ≤ a ∥x∥2 + b ∥y∥2 + c ∥z∥2 .

Lemma 2.7. Let H be a Hilbert space, let {xn} be a bounded sequence in H and let
u ∈ H. Then, xn ⇀ u is equivalent to the following condition: for any subsequence
{xni} of {xn} such that xni ⇀ w, it holds w = u.

3. Attractive and fixed point theorems

In this section, we introduce a broad class of nonlinear mappings that contains
all the mappings (i)–(vii) mentioned in Introduction and then prove the existence
of attractive and fixed points.

Definition 3.1. A mapping T : C → C is called normally N -generalized hybrid if
there exist real numbers (αn, βn)

N
n=0 ∈ R2(N+1) such that

(a)
∑N

n=0 (αn + βn) ≥ 0;

(b)
∑N

n=0 αn > 0;

(c)
∑N

n=0 αn ∥Tnx− Ty∥2 +
∑N

n=0 βn ∥Tnx− y∥2 ≤ 0 for all x, y ∈ C.

We also call such a mapping (αn, βn)
N
n=0-normally N -generalized hybrid.

The class of normally N -generalized hybrid mappings contains all the mappings
(i)–(vii) mentioned in Introduction. In fact, if

∑N
n=0 αn = 1 and

∑N
n=0 βn = −1,

it is an N -generalized hybrid mapping, and if N = 1, it is a normally generalized
hybrid mapping. The class of normally generalized hybrid mappings contains the
mappings (i)–(v). In what follows, we consider the case of N = 2 because the
generalization for the case in which T is a normally N -generalized hybrid mapping
is straightforward. A normally 2-generalized hybrid mapping that has a fixed point
is quasi-nonexpansive.

Proposition 3.2. Let C be a nonempty subset of H and let T : C → C be a
(αn, βn)

2
n=0-normally 2-generalized hybrid mapping with F (T ) ̸= ∅. Then, T is

quasi-nonexpansive.

Proof. Let y ∈ C and u ∈ F (T ). We will prove that ∥Ty − u∥ ≤ ∥y − u∥. Since T

is (αn, βn)
2
n=0-normally 2-generalized hybrid,

α2

∥∥T 2u− Ty
∥∥2 + α1 ∥Tu− Ty∥2 + α0 ∥u− Ty∥2

+ β2
∥∥T 2u− y

∥∥2 + β1 ∥Tu− y∥2 + β0 ∥u− y∥2 ≤ 0.

Using u = Tu, we have

(α2 + α1 + α0) ∥u− Ty∥2 + (β2 + β1 + β0) ∥u− y∥2 ≤ 0.
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Since
∑2

n=0 (αn + βn) ≥ 0, it holds that

(α2 + α1 + α0) ∥u− Ty∥2 ≤ − (β2 + β1 + β0) ∥u− y∥2

≤ (α2 + α1 + α0) ∥u− y∥2 .

Since
∑2

n=0 αn > 0, we obtain the desired result. �
The following theorem asserts that a normally 2-generalized hybrid mapping has

an attractive point in H.

Theorem 3.3. Let C be a nonempty subset of H and let T : C → C be a
(αn, βn)

2
n=0-normally 2-generalized hybrid mapping. Assume that there exists z ∈ C

such that {Tnz} is a bounded sequence in C. Then, A (T ) ̸= ∅.

Proof. Let µ ∈ (l∞)∗ be a Banach limit. From Lemma 2.1, for the bounded sequence
{Tnz} , there is a unique element u ∈ H such that

(3.1) µn ⟨Tnz, v⟩ = ⟨u, v⟩
for all v ∈ H. Let y ∈ C. We will show that

∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0,

which means that u ∈ A (T ) from (2.2).
Since T is a normally 2-generalized hybrid mapping,

α2

∥∥Tn+2z − Ty
∥∥2 + α1

∥∥Tn+1z − Ty
∥∥2 + α0 ∥Tnz − Ty∥2

+ β2
∥∥Tn+2z − y

∥∥2 + β1
∥∥Tn+1z − y

∥∥2 + β0 ∥Tnz − y∥2 ≤ 0.

Since {Tnz} is bounded, we can apply the Banach limit µ to both sides of the
inequality. Then, we obtain

(α2 + α1 + α0)µn ∥Tnz − Ty∥2 + (β2 + β1 + β0)µn ∥Tnz − y∥2 ≤ 0.

Thus, from (2.1),

(α2 + α1 + α0)µn

[
∥Tnz − y∥2 + 2 ⟨Tnz − y, y − Ty⟩+ ∥y − Ty∥2

]
+ (β2 + β1 + β0)µn ∥Tnz − y∥2 ≤ 0.

Since α0 + α1 + α2 + β0 + β1 + β2 ≥ 0, the following holds

(α2 + α1 + α0)µn

[
2 ⟨Tnz − y, y − Ty⟩+ ∥y − Ty∥2

]
≤ 0.

Since α0 + α1 + α2 > 0, we have from (3.1) that

2 ⟨u− y, y − Ty⟩+ ∥y − Ty∥2 ≤ 0.

This completes the proof. �
We can easily obtain the following corollary from Theorem 3.3.

Corollary 3.4. Let C be a nonempty subset of H and let T : C → C be a normally
2-generalized hybrid mapping. Then, the following three statements are equivalent:

(I) for any x ∈ C, {Tnx} is a bounded sequence in C,
(II) there exists z ∈ C such that {Tnz} is a bounded sequence in C,
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(III) A (T ) ̸= ∅.

Proof. (I) =⇒ (II) obviously holds and (II) =⇒ (III) was already established as the
previous theorem.

We will prove (III) =⇒ (I). Let x ∈ C, u ∈ A (T ) and n ∈ N. Then, we have

∥Tnx∥ ≤ ∥Tnx− u∥+ ∥u∥
≤

∥∥Tn−1x− u
∥∥+ ∥u∥

· · · · · ·
≤ ∥x− u∥+ ∥u∥ .

This shows that the sequence {Tnx} is bounded. �
Adding that C is closed and convex in Theorem 3.3, we can obtain the following

fixed point theorem:

Theorem 3.5. Let C be a nonempty, closed and convex subset of H and let T :
C → C be a normally 2-generalized hybrid mapping. Assume that there exists z ∈ C
such that {Tnz} is a bounded sequence in C. Then, F (T ) ̸= ∅.

Proof. From the previous theorem, we have A (T ) ̸= ∅. Then, from Lemma 2.2, we
obtain the desired result. �

The following corollary is directly derived from Corollary 3.4 and Theorem 3.5.

Corollary 3.6. Let C be a nonempty, closed and convex subset of H and let T :
C → C be a normally 2-generalized hybrid mapping. Then, the following four
statements are equivalent:

(I) for any x ∈ C, {Tnx} is a bounded sequence in C,
(II) there exists z ∈ C such that {Tnz} is a bounded sequence in C,
(III) A (T ) ̸= ∅,
(IV) F (T ) ̸= ∅.

4. Weak convergence theorem of Baillon’s type

In this section, we establish a mean convergence theorem of Baillon’s type with-
out relying on either the convexity or closedness of C for normally 2-generalized
mappings in a Hilbert space. The basic technique of the proof was developed by
Takahashi [11]. We start with proving the following lemma.

Lemma 4.1. Let C be a nonempty subset of H and let T : C → C be a (αn, βn)
2
n=0-

normally 2-generalized hybrid mapping. Assume that there is an element z ∈ C such
that {Tnz} is a bounded sequence in C. Define Snz ≡ 1

n

∑n−1
k=0 T

kz and assume
Sniz ⇀ u, where {Sniz} is a subsequence of {Snz}. Then u ∈ A (T ) .

Proof. Let y ∈ C. We will prove that ∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0. Since T
is a normally 2-generalized hybrid mapping, we have

α2

∥∥∥T k+2z − Ty
∥∥∥2 + α1

∥∥∥T k+1z − Ty
∥∥∥2 + α0

∥∥∥T kz − Ty
∥∥∥2

+ β2

∥∥∥T k+2z − y
∥∥∥2 + β1

∥∥∥T k+1z − y
∥∥∥2 + β0

∥∥∥T kz − y
∥∥∥2 ≤ 0
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for all k ∈ N∪{0}. We have from (2.1) that

α2

[∥∥∥T k+2z − y
∥∥∥2 + 2

⟨
T k+2z − y, y − Ty

⟩
+ ∥y − Ty∥2

]
+ α1

[∥∥∥T k+1z − y
∥∥∥2 + 2

⟨
T k+1z − y, y − Ty

⟩
+ ∥y − Ty∥2

]
+ α0

[∥∥∥T kz − y
∥∥∥2 + 2

⟨
T kz − y, y − Ty

⟩
+ ∥y − Ty∥2

]
+ β2

∥∥∥T k+2z − y
∥∥∥2 + β1

∥∥∥T k+1z − y
∥∥∥2 + β0

∥∥∥T kz − y
∥∥∥2 ≤ 0.

Thus, it holds that

(α2 + α1 + α0) ∥y − Ty∥2 + (α2 + β2)
∥∥∥T k+2z − y

∥∥∥2
+ (α1 + β1)

∥∥∥T k+1z − y
∥∥∥2 + (α0 + β0)

∥∥∥T kz − y
∥∥∥2

+ 2
⟨
α2T

k+2z + α1T
k+1z + α0T

kz − (α2 + α1 + α0) y, y − Ty
⟩
≤ 0.

Using the condition
∑2

n=0 (αn + βn) ≥ 0, we obtain

(α2 + α1 + α0) ∥y − Ty∥2 + (α2 + β2)
∥∥∥T k+2z − y

∥∥∥2
+ (α1 + β1)

∥∥∥T k+1z − y
∥∥∥2 − [(α2 + β2) + (α1 + β1)]

∥∥∥T kz − y
∥∥∥2

+ 2⟨α2T
k+2z + α1T

k+1z + (α2 + α1 + α0)T
kz − (α2 + α1)T

kz

− (α2 + α1 + α0) y, y − Ty⟩ ≤ 0.

Thus,

(α2 + α1 + α0) ∥y − Ty∥2 + (α2 + β2)

(∥∥∥T k+2z − y
∥∥∥2 − ∥∥∥T kz − y

∥∥∥2)
+ (α1 + β1)

(∥∥∥T k+1z − y
∥∥∥2 − ∥∥∥T kz − y

∥∥∥2)
+ 2⟨α2

(
T k+2z − T kz

)
+ α1

(
T k+1z − T kz

)
+ (α2 + α1 + α0)T

kz

− (α2 + α1 + α0) y, y − Ty⟩ ≤ 0.
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Summing these inequalities with respect to k from 0 to n− 1, we have

(α2 + α1 + α0)n ∥y − Ty∥2

+ (α2 + β2)
(∥∥Tn+1z − y

∥∥2 + ∥Tnz − y∥2 − ∥Tz − y∥2 − ∥z − y∥2
)

+ (α1 + β1)
(
∥Tnz − y∥2 − ∥z − y∥2

)
+ 2⟨α2

(
Tn+1z + Tnz − Tz − z

)
+ α1 (T

nz − z) + (α2 + α1 + α0)

n−1∑
k=0

T kz

− (α2 + α1 + α0)ny, y − Ty⟩ ≤ 0

for all n ∈ N. Dividing by n, we have

(α2 + α1 + α0) ∥y − Ty∥2

+
α2 + β2

n

(∥∥Tn+1z − y
∥∥2 + ∥Tnz − y∥2 − ∥Tz − y∥2 − ∥z − y∥2

)
+

α1 + β1
n

(
∥Tnz − y∥2 − ∥z − y∥2

)
+ 2⟨α2

n

(
Tn+1z + Tnz − Tz − z

)
+

α1

n
(Tnz − z) + (α2 + α1 + α0)Snz

− (α2 + α1 + α0) y, y − Ty⟩ ≤ 0.

Replacing n by ni and taking the limit as i → ∞, we obtain

(α2 + α1 + α0) ∥y − Ty∥2 + 2 ⟨(α2 + α1 + α0)u− (α2 + α1 + α0) y, y − Ty⟩ ≤ 0.

Since α2 + α1 + α0 > 0, we obtain that ∥y − Ty∥2 + 2 ⟨u− y, y − Ty⟩ ≤ 0 for all
y ∈ C. This means u ∈ A (T ). �

Theorem 4.2. Let C be a nonempty subset of H and let T : C → C be a normally
2-generalized hybrid mapping with A (T ) ̸= ∅. Let PA(T ) be the metric projection

from H onto A (T ). Then, for any x ∈ C, the sequence
{
Snx ≡ 1

n

∑n−1
k=0 T

kx
}

converges weakly to u ∈ A (T ), where u = limn→∞ PA(T )T
nx.

Proof. Note from Lemma 2.3 that the metric projection PA(T ) is well-defined. Let

x ∈ C and define Snx ≡ 1
n

∑n−1
k=0 T

kx ∈ H. Since A (T ) ̸= ∅, from Corollary 3.4,
{Tnx} is bounded. It is obvious that

(4.1)
∥∥Tn+1x− q

∥∥ ≤ ∥Tnx− q∥

for all q ∈ A (T ) and n ∈ N. Thus, from Lemma 2.4, the sequence
{
PA(T )T

nx
}
is

convergent in A (T ).
Let v ≡ limn→∞ PA(T )T

nx ∈ A (T ). To prove Snx ⇀ v, we will show that if
{Snix} is a subsequence of {Snx} such that Snix ⇀ u, then u = v. From Lemma
4.1, we have that u ∈ A (T ). Note that the real sequence

{∥∥Tnx− PA(T )T
nx

∥∥} is
monotone decreasing. Indeed, from PA(T )T

nx ∈ A (T ) and (4.1),∥∥Tn+1x− PA(T )T
n+1x

∥∥ ≤
∥∥Tn+1x− PA(T )T

nx
∥∥(4.2)

≤
∥∥Tnx− PA(T )T

nx
∥∥
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for all n ∈ N∪{0}. Since PA(T ) is the metric projection from H onto A (T ) and
u ∈ A (T ), ⟨

T kx− PA(T )T
kx, PA(T )T

kx− u
⟩
≥ 0

for all k ∈ N∪{0}. Thus,⟨
T kx− PA(T )T

kx, PA(T )T
kx− v + v − u

⟩
≥ 0.

Using (4.2), we have⟨
T kx− PA(T )T

kx, − (v − u)
⟩

≤
⟨
T kx− PA(T )T

kx, PA(T )T
kx− v

⟩
≤

∥∥∥T kx− PA(T )T
kx

∥∥∥ ∥∥∥PA(T )T
kx− v

∥∥∥
≤

∥∥x− PA(T )x
∥∥ ∥∥∥PA(T )T

kx− v
∥∥∥

for all k ∈ N∪{0}. Summing these inequalities with respect to k from 0 to n − 1,
we obtain⟨

n−1∑
k=0

T kx−
n−1∑
k=0

PA(T )T
kx, − (v − u)

⟩
≤

∥∥x− PA(T )x
∥∥ ·

n−1∑
k=0

∥∥∥PA(T )T
kx− v

∥∥∥ .
Dividing by n, we have⟨

Snx− 1

n

n−1∑
k=0

PA(T )T
kx, − (v − u)

⟩
≤

∥∥x− PA(T )x
∥∥ · 1

n

n−1∑
k=0

∥∥∥PA(T )T
kx− v

∥∥∥ .
Replacing n by nij and taking the limit as j → ∞, we obtain that

⟨u− v, − (v − u)⟩ ≤ 0.

This implies that u = v. �

Adding that C is closed and convex in Theorem 4.2, we obtain a Baillon’s type
weak convergence theorem of finding a fixed point for a normally 2-generalized
hybrid mapping in Hilbert spaces.

Theorem 4.3. Let C be a nonempty, closed and convex subset of H and let T :
C → C be a normally 2-generalized hybrid mapping with F (T ) ̸= ∅. Then, for any

x ∈ C, the sequence
{
Snx ≡ 1

n

∑n−1
k=0 T

kx
}

converges weakly to u ∈ F (T ).

Proof. Since F (T ) ̸= ∅ is assumed, from Corollary 3.6, we have A (T ) ̸= ∅. Further-
more, from Lemma 2.3, A (T ) is a closed and convex subset of H. Thus, the metric

projection PA(T ) and is well-defined. Let x ∈ C and define Snx ≡ 1
n

∑n−1
k=0 T

kx ∈ C.
From Theorem 4.2, Snx converges weakly to u = limn→∞ PA(T )T

nx ∈ A (T ).
To complete the proof, we will show that u ∈ F (T ). Since C is convex, {Snx}

is a sequence in C. Since C is weakly closed in H and Snx ⇀ u, we have u ∈ C.
Since u ∈ A (T ) ∩ C, from Lemma 2.5, we obtain u ∈ F (T ). �
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5. Weak convergence theorem of Mann’s type

In this section, we present a Mann’s type weak convergence theorem for normally
2-generalized hybrid mappings to their attractive points in Hilbert spaces. At the
outset, an additional lemma is prepared.

Lemma 5.1. Let C be a nonempty subset of H and let T : C → C be a (αn, βn)
2
n=0-

normally 2-generalized hybrid mapping. If a sequence {xn} in C satisfies Txn−xn →
0, T 2xn − xn → 0 and xn ⇀ u, then u ∈ A (T ).

Proof. Let y ∈ C. We will show that

∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0,

which means that u ∈ A (T ). Since T is (αn, βn)
2
n=0-normally 2-generalized hybrid,

α2

∥∥T 2xn − Ty
∥∥2 + α1 ∥Txn − Ty∥2 + α0 ∥xn − Ty∥2

+ β2
∥∥T 2xn − y

∥∥2 + β1 ∥Txn − y∥2 + β0 ∥xn − y∥2 ≤ 0.

Using (2.1), we have

α2

[∥∥T 2xn − xn
∥∥2 + 2

⟨
T 2xn − xn, xn − Ty

⟩
+ ∥xn − Ty∥2

]
+ α1

[
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − Ty⟩+ ∥xn − Ty∥2

]
+ α0 ∥xn − Ty∥2

+ β2

[∥∥T 2xn − xn
∥∥2 + 2

⟨
T 2xn − xn, xn − y

⟩
+ ∥xn − y∥2

]
+ β1

[
∥Txn − xn∥2 + 2 ⟨Txn − xn, xn − y⟩+ ∥xn − y∥2

]
+ β0 ∥xn − y∥2 ≤ 0.

Since {xn} , {Txn} and
{
T 2xn

}
are bounded sequences, we can apply a Banach limit

µ ∈ (l∞)∗ to both sides of the inequality. From Txn − xn → 0 and T 2xn − xn → 0,
we have ∥T 2xn − xn∥2 → 0, ∥Txn − xn∥2 → 0, ⟨T 2xn − xn, xn − Ty⟩ → 0 and
⟨Txn − xn, xn − y⟩ → 0. Then, we obtain

(α2 + α1 + α0)µn ∥xn − Ty∥2 + (β2 + β1 + β0)µn ∥xn − y∥2 ≤ 0.

Since α0 + α1 + α2 + β0 + β1 + β2 ≥ 0,

(α2 + α1 + α0)µn ∥xn − Ty∥2 ≤ − (β2 + β1 + β0)µn ∥xn − y∥2

≤ (α2 + α1 + α0)µn ∥xn − y∥2 .
It holds from α2 + α1 + α0 > 0 that

µn ∥xn − Ty∥2 ≤ µn ∥xn − y∥2 .
We obtain

µn

[
∥xn − y∥2 + 2 ⟨xn − y, y − Ty⟩+ ∥y − Ty∥2

]
≤ µn ∥xn − y∥2 ,

and thus,

µn

[
2 ⟨xn − y, y − Ty⟩+ ∥y − Ty∥2

]
≤ 0.

Since xn ⇀ u, we obtain 2 ⟨u− y, y − Ty⟩ + ∥y − Ty∥2 ≤ 0. This completes the
proof. �
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Now, we can prove a Mann’s type weak convergence theorem for a normally
2-generalized hybrid mapping in Hilbert spaces.

Theorem 5.2. Let C be a nonempty and convex subset of H and let T : C → C be
a normally 2-generalized hybrid mapping with A (T ) ̸= ∅. Let PA(T ) be the metric
projection from H onto A (T ) . Let {an} , {bn} , {cn} be real sequences in the interval
(0, 1) such that an + bn + cn = 1 and 0 < a ≤ an, bn, cn ≤ b < 1 for any n ∈ N.
Define a sequence {xn} in C as

xn+1 = anxn + bnTxn + cnT
2xn

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges weakly to
an element u of A (T ) , where u = limn→∞ PA(T )xn.

Proof. First, note that the real sequence {∥xn − q∥} is monotone decreasing for all
q ∈ A (T ). Indeed, from Lemma 2.6 and Proposition 3.2,

∥xn+1 − q∥ =
∥∥an (xn − q) + bn (Txn − q) + cn

(
T 2xn − q

)∥∥(5.1)

≤ an ∥xn − q∥+ bn ∥Txn − q∥+ cn
∥∥T 2xn − q

∥∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥
= ∥xn − q∥

for all q ∈ A (T ) and n ∈ N. As direct consequences, the sequence {xn} is bounded,
and {∥xn − q∥} is convergent for all q ∈ A (T ). Furthermore, from Lemma 2.4,{
PA(T )xn

}
is convergent in A (T ).

Next, we verify that xn − Txn → 0 and T 2xn − xn → 0. We obtain from Lemma
2.6 and Proposition 3.2 that

∥xn+1 − q∥2 =
∥∥an (xn − q) + bn (Txn − q) + cn

(
T 2xn − q

)∥∥2
= an ∥xn − q∥2 + bn ∥Txn − q∥2 + cn

∥∥T 2xn − q
∥∥2

− anbn ∥xn − Txn∥2 − bncn
∥∥Txn − T 2xn

∥∥2 − cnan
∥∥T 2xn − xn

∥∥2
≤ ∥xn − q∥2 − anbn ∥xn − Txn∥2 − bncn

∥∥Txn − T 2xn
∥∥2

− cnan
∥∥T 2xn − xn

∥∥2
for all q ∈ A (T ) and n ∈ N. Thus,

anbn ∥xn − Txn∥2 + bncn
∥∥Txn − T 2xn

∥∥2 + cnan
∥∥T 2xn − xn

∥∥2(5.2)

≤ ∥xn − q∥2 − ∥xn+1 − q∥2

for all q ∈ A (T ) and n ∈ N. Since {∥xn − q∥} is convergent for any q ∈ A (T ) and
0 < a ≤ an, bn, cn ≤ b < 1, we have from (5.2) that

(5.3) xn − Txn → 0 and T 2xn − xn → 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} and u ∈ H such
that xni ⇀ u. From Lemma 5.1 and (5.3), we have u ∈ A (T ). We will prove that
xn ⇀ u. For that aim, we demonstrate

(5.4) [xnk
⇀ u1 and xnl

⇀ u2] =⇒ u1 = u2,
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where {xnk
} and {xnl

} are subsequences of {xn}. Suppose by way of contradiction
that u1 ̸= u2. From Lemma 5.1, (5.3) and the assumptions xnk

⇀ u1 and xnl
⇀ u2,

we have u1, u2 ∈ A (T ), and thus, two real sequences {∥xn − u1∥} and {∥xn − u2∥}
are convergent. From Opial’s condition,

lim
n→∞

∥xn − u1∥ = lim
k→∞

∥xnk
− u1∥

< lim
k→∞

∥xnk
− u2∥

= lim
n→∞

∥xn − u2∥

= lim
l→∞

∥xnl
− u2∥

< lim
l→∞

∥xnl
− u1∥

= lim
n→∞

∥xn − u1∥ .

This is a contradiction. Thus, u1 = u2. To conclude xn ⇀ u, from Lemma 2.7, it
is sufficient to show that if xnj ⇀ w, then w = u, where

{
xnj

}
is a subsequence

of {xn}. Assume that xnj ⇀ w. Since xni ⇀ u, from (5.4), we get that w = u.
Therefore, we obtain xn ⇀ u.

To complete the proof, we will show that u = limn→∞ PA(T )xn. Let v ≡
limn→∞ PA(T )xn. Since u ∈ A (T ) , it holds that⟨

xn − PA(T )xn, PA(T )xn − u
⟩
≥ 0

for all n ∈ N. Since xn ⇀ u and PA(T )xn → v, we obtain ⟨u− v, v − u⟩ ≥ 0. This
means that u = v. �

Adding that C is closed in Theorem 5.2, we obtain a Mann’s type weak conver-
gence theorem of finding a fixed point for a normally 2-generalized hybrid mapping
in Hilbert spaces.

Theorem 5.3. Let C be a nonempty, closed and convex subset of H and let T : C →
C be a normally 2-generalized hybrid mapping with F (T ) ̸= ∅. Let {an} , {bn} , {cn}
be real sequences in the interval (0, 1) such that an + bn + cn = 1 and 0 < a ≤
an, bn, cn ≤ b < 1 for all n ∈ N. Define a sequence {xn} in C as

xn+1 = anxn + bnTxn + cnT
2xn

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges weakly to
an element u of F (T ) .

Proof. From Theorem 5.2, we have that the sequence {xn} in C converges weakly
to u = limn→∞ PA(T )xn ∈ A (T ). Since C is closed and convex in H and xn ⇀ u,
we have u ∈ C. Since u ∈ A (T ) ∩ C, from Lemma 2.5, we obtain u ∈ F (T ). �
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