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Obviously the implications (ii) ⇒ (i) and (iv) ⇒ (iii) hold. Some basic properties
of p-uniform smoothness and q-uniform convexity are collected in the following.

(a) Suppose that 1 < p1 ≤ p2 ≤ 2. If X is p2-uniformly smooth, then it is
p1-uniformly smooth.

(b) Suppose that 2 ≤ q1 ≤ q2 < ∞. If X is q1-uniformly convex, then it is
q2-uniformly convex.

(c) Suppose that 1 < p ≤ 2, and that 1/p + 1/q = 1. Then X (resp. X∗) is
p-uniformly smooth if and only if X∗ (resp. X) is q-uniformly convex.

For more details about p-uniform smoothness and q-uniform convexity, the readers
are referred to [1, 18].

A norm ∥ · ∥ on R2 is said to be absolute if ∥(x, y)∥ = ∥(|x|, |y|)∥ for all (x, y) ∈
R2, normalized if ∥(1, 0)∥ = ∥(0, 1)∥ = 1, and symmetric if ∥(x, y)∥ = ∥(y, x)∥.
The set of all absolute normalized norms on R2 is denoted by AN2. Bonsall and
Duncan [4] showed the following characterization of absolute normalized norms on
R2. Namely, the set AN2 of all absolute normalized norms on R2 is in a one-to-
one correspondence with the set Ψ2 of all convex functions ψ on [0, 1] satisfying
max{1 − t, t} ≤ ψ(t) ≤ 1 for each t ∈ [0, 1] (cf. [14]). The correspondence is given
by the equation ψ(t) = ∥(1− t, t)∥ for each t ∈ [0, 1]. Remark that the norm ∥ · ∥ψ
associated with the function ψ ∈ Ψ2 is given by

∥(x, y)∥ψ =

 (|x|+ |y|)ψ
(

|y|
|x|+ |y|

)
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Now let ANS
2 be the collection of all symmetric absolute normalized norms on

R2, and let ΨS
2 = {ψ ∈ Ψ2 : ψ(1 − t) = ψ(t) for each t ∈ [0, 1]}. Then it follows

that ∥ · ∥ψ ∈ ANS
2 if and only if ψ ∈ ΨS

2 . In other words, the symmetric absolute
normalized norms on R2 and the convex functions in Ψ2 that are symmetric with
respect to 1/2 are in a one-to-one correspondence under the same equation. For
example, the function ψp corresponding to the ℓp-norm ∥ · ∥p is given by

ψp(t) =

{
((1− t)p + tp)1/p if 1 ≤ p <∞,
max{1− t, t} if p = ∞,

and satisfies ψp(1− t) = ψp(t) for each t ∈ [0, 1].

2. The ψ-direct sums

In this section, we collect some results on the ψ-direct sums. The notion of ψ-
direct sums of Banach spaces was first introduced by Takahashi, Kato and Saito [19].
Let X and Y be Banach spaces, and let ψ ∈ Ψ2. Then the ψ-direct sum X ⊕ψ Y of
X and Y is defined to be the space X × Y endowed with the norm

∥(x, y)∥ψ = ∥(∥x∥, ∥y∥)∥ψ
for each (x, y) ∈ X × Y . Naturally, the ψp-direct sum coincides with the usual
p-direct sum.

As in the case of the p-direct sums, the ψ-direct sum X ⊕ψ Y is often inherited
the geometric structure from the summands X and Y . Recall that a Banach space
X is said to be strictly convex if x, y ∈ SX and x ̸= y imply that ∥x+ y∥ < 2.
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Theorem 2.1 (Takahashi, Kato and Saito [19]). Let X and Y be Banach spaces,
and let ψ ∈ Ψ2. Then X ⊕ψ Y is strictly convex if and only if X and Y are strictly
convex and ψ is strictly convex.

Remark 2.2. It is known that if X ⊕p Y is strictly convex if and only X and Y
are. The preceding theorem says that this result is essentially caused by the strict
convexity of the function ψp.

In fact, we have the following result.

Proposition 2.3 (Takahashi, Kato and Saito [19]). Let ψ ∈ Ψ2. Then (R2, ∥ · ∥ψ)
is strictly convex if and only if ψ is strictly convex.

Thus Theorem 2.1 is interpreted as follows: The direct sum X ⊕ψ Y is strictly
convex if and only if X, Y and (R2, ∥ · ∥ψ) are strictly convex.

In the case of uniform convexity, we have the following result. Remark that strict
convexity and uniform convexity are equivalent for finite-dimensional spaces.

Theorem 2.4 (Saito and Kato [13]). Let X and Y be Banach spaces, and let
ψ ∈ Ψ2. Then X ⊕ψ Y is uniformly convex if and only if X, Y and (R2, ∥ · ∥ψ) are
uniformly convex.

For smoothness, one has the following characterization, where a Banach space X
is said to be smooth if each x ∈ SX has exactly one support functional.

Proposition 2.5 (Mitani, Saito and Suzuki [12]). Let ψ ∈ Ψ2. Then (R2, ∥ · ∥ψ)
is smooth if and only if ψ is differentiable on (0, 1), ψ′

L(0) = −1 and ψ′
R(1) = 1,

where ψ′
L and ψ′

R are, respectively, the left and right derivative of ψ.

As in the case of convexity properties, we have the following theorem.

Theorem 2.6 (Mitani, Oshiro and Saito [9]). Let X and Y be Banach spaces, and
let ψ ∈ Ψ2. Then X⊕ψ Y is smooth if and only if X, Y and (R2, ∥ · ∥ψ) are smooth.

It is well-known that a Banach space X is uniformly convex (resp. uniformly
smooth) if and only if its dual space X∗ is uniformly smooth (resp. uniformly con-
vex). Moreover, it was shown in [9] that

(X ⊕ψ Y )∗ = X∗ ⊕ψ∗ Y ∗,

where ψ∗ is an element of Ψ2 that satisfies (R2, ∥ · ∥ψ)∗ = (R2, ∥ · ∥ψ∗), and is given
by

ψ∗(t) = max
0≤s≤1

(1− s)(1− t) + st

ψ(s)

for each t ∈ [0, 1]. From these facts and Theorem 2.4, we immediately have the
following result. Needless to say, smoothness and uniform smoothness are equivalent
for finite-dimensional spaces.

Corollary 2.7 (Mitani, Oshiro and Saito [9]). Let X and Y be Banach spaces, and
let ψ ∈ Ψ2. Then X ⊕ψ Y is uniformly smooth if and only if X, Y and (R2, ∥ · ∥ψ)
are uniformly smooth.
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We also have the same result for uniform non-squareness. A Banach space X is
said to be uniformly non-square if there exists δ > 0 such that min{∥x + y∥, ∥x −
y∥} < 2(1 − δ) whenever x, y ∈ SX . It should be mentioned that (R2, ∥ · ∥ψ) is
uniformly non-square if and only if ψ ̸∈ {ψ∞, ψ1}; see [14].

Theorem 2.8 (Kato, Saito and Tamura [7]). Let X and Y be Banach spaces, and
let ψ ∈ Ψ2. Then X⊕ψY is uniformly non-square if and only if X, Y and (R2, ∥·∥ψ)
are uniformly non-square.

The same results remain true for the ψ-direct sums of n Banach spaces; see [6, 9],
and also [15] for details of absolute norms on Rn. For infinite dimensional analog
of these results, the readers are referred to [11, 21].

The ψ-direct sum X ⊕ψ X of a Banach space X can be used to characterize the
geometric properties of X itself. For example, it is known that a Banach space X
is strictly convex if and only if ∥x + y∥p < 2p−1(∥x∥p + ∥y∥p) whenever x ̸= y, or
equivalently,

∥x+ y∥ < 1

ψp(1/2)
∥(x, y)∥p

for each x, y ∈ X with x ̸= y. In [10], Mitani and Saito gave the following charac-
terization of strict convexity.

Theorem 2.9 (Mitani and Saito [10]). Let X be a Banach spaces, and let ψ ∈ Ψ2.
Suppose that ψ takes the minimum only at t0. Then X is strictly convex if and only
if

∥(1− t0)x+ t0y∥ <
1

ψ(t0)
∥((1− t0)x, t0y)∥ψ

for each x, y ∈ X with x ̸= y.

Remark that the function ψp is takes the minimum only at 1/2.
We conclude this section with the following characterizations of uniform convexity

and uniform non-squareness analogous to that in the preceding theorem.

Theorem 2.10 (Mitani and Saito [10]). Let X be a Banach spaces, and let ψ ∈ Ψ2.
Suppose that ψ takes the minimum only at t0. Then X is uniformly convex if and
only if for each ε > 0, there exists δ > 0 such that

∥(1− t0)x+ t0y∥ ≤ 1− δ

ψ(t0)
∥((1− t0)x, t0y)∥ψ

whenever x, y ∈ BX with ∥x− y∥ ≥ ε.

Theorem 2.11 (Mitani and Saito [10]). Let X be a Banach spaces, and let ψ ∈ Ψ2.
Suppose that ψ takes the minimum at t0 ∈ (0, 1). Then X is uniformly non-square
if and only if there exists δ > 0 such that

∥(1− t0)x+ t0y∥ ≤ 1− δ

ψ(t0)
∥((1− t0)x, t0y)∥ψ

whenever x, y ∈ BX with ∥(1− t0)x− t0y∥ ≥ 1− δ.
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3. Generalized Beckner inequalities

To study new geometric properties, generalized Beckner’s inequalities play a fun-
damental role. The original Becker inequality is the following: Let 1 < p ≤ q <∞,
and let γp,q =

√
(p− 1)/(q − 1). Then the inequality(

|u+ γp,qv|q + |u− γp,qv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p

holds for each u, v ∈ R. This was shown in 1975 by Beckner [2]. It is also known
that γp,q in the above inequality is the best constant, that is, if γ ∈ [0, 1] and the
inequality (

|u+ γv|q + |u− γv|q

2

)1/q

≤
(
|u+ v|p + |u− v|p

2

)1/p

holds for each u, v ∈ R, then we have γ ≤ γp,q. In [20], we constructed an elementary
proof of these facts.

Beckner’s inequality is easily extended to Banach spaces; see [8, Corollary 1.e.15]
for the proof.

Theorem 3.1. Let 1 < p ≤ q < ∞, and let γp,q =
√

(p− 1)/(q − 1). Then the
inequality(

∥x+ γp,qy∥q + ∥x− γp,qy∥q

2

)1/q

≤
(
∥x+ y∥p + ∥x− y∥p

2

)1/p

holds for each x, y ∈ X.

Using the functions ψp and ψq, Beckner’s inequality can be viewed as follows:

Let 1 < p ≤ q <∞, and let γp,q =
√

(p− 1)/(q − 1). Then the inequality

∥(u+ γp,qv, u− γp,qv)∥q
2ψq(

1
2)

≤ ∥(u+ v, u− v)∥p
2ψp(

1
2)

holds for each u, v ∈ R. From this observation, we considered in [16] generalized
Beckner’s inequality. Namely, for each φ,ψ ∈ Ψ2, let

Γ(φ,ψ) =

{
γ ∈ [0, 1] :

φ(1−γu2 )

ψ(1−u2 )
≤
φ(12)

ψ(12)
for all u ∈ [0, 1]

}
,

and let γφ,ψ = maxΓ(φ,ψ). Then we have the following result.

Theorem 3.2 (Generalized Beckner’s inequality [16]). Let X be a Banach space.
Suppose that φ,ψ ∈ ΨS

2 , and that γ ∈ Γ(φ,ψ). Then the inequality

∥(x+ γy, x− γy)∥φ
2φ(12)

≤
∥(x+ y, x− y)∥ψ

2ψ(12)

holds for each x, y ∈ X.

We remark that the value γφ,ψ is the best constant for the inequality in the
preceding theorem. Some conditions that γφ,ψ > 0 can be found in [16].
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4. ψ-uniform smoothness

We start this section with the definition of ψ-uniform smoothness.

Definition 4.1 ([17]). Let ψ ∈ Ψ2. Then a Banach space X is said to be ψ-
uniformly smooth if there exists M > 0 such that ρX(τ) ≤ ∥(1,Mτ)∥ψ − 1 for each
τ ∈ [0, 1].

As the following lemma shows, p-uniform smoothness is equivalent to ψp-uniform
smoothness, and so the notion of ψ-uniform smoothness is a natural generalization
of that of p-uniform smoothness.

Proposition 4.2 ([17]). Let X be a Banach space, and let 1 < p ≤ 2. Then X is
p-uniformly smooth if and only if it is ψp-uniformly smooth.

For each ψ ∈ Ψ2, let ψ
′
R denote the right derivative of ψ, that is, let

ψ′
R(s) = lim

t→0+

ψ(s+ t)− ψ(s)

t

for each s ∈ [0, 1).
The relationship between uniform smoothness and ψ-uniform smoothness is as

follows.

Proposition 4.3 ([17]). Suppose that ψ ∈ Ψ2 and that ψ′
R(0) = −1. Then every

ψ-uniformly smooth Banach space is uniformly smooth.

A function ψ ∈ Ψ2 is said to have the property (∗) if there existsM > 0 satisfying

∥(1, τ)∥ψ + τ2 ≤ ∥(1,Mτ)∥ψ
for each τ ∈ [0, 1]. We can prove that the function ψp has the property (∗) for each
1 ≤ p ≤ 2.

The property (∗) will be frequently used in the rest of this paper.

Proposition 4.4 ([17]). Let ψ ∈ Ψ2 with the property (∗). Then every 2-uniformly
smooth Banach space is ψ-uniformly smooth.

We shall characterize ψ-uniform smoothness using norm inequalities in the ψ-
direct sum X ⊕ψ X (and the φ-direct sum X ⊕φ X).

Theorem 4.5 ([17]). Let X be a Banach space and ψ ∈ ΨS
2 with the property (∗).

Suppose that γψ,ψ2 > 0. Then the following are equivalent.

(i) The space X is ψ-uniformly smooth.
(ii) There exists M > 0 such that

∥(x+ y, x− y)∥ψ
2ψ(12)

≤ ∥(x,My)∥ψ

for each x, y ∈ X.
(iii) For any φ ∈ ΨS

2 with γφ,ψ > 0 there exists an Mφ > 0 such that

∥(x+ y, x− y)∥φ
2φ(12)

≤ ∥(x,Mφy)∥ψ

for each x, y ∈ X.
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(iv) For some φ ∈ ΨS
2 with γφ,ψ > 0 there exists an Mφ > 0 such that

∥(x+ y, x− y)∥φ
2φ(12)

≤ ∥(x,Mφy)∥ψ

for each x, y ∈ X.

As a consequence, we have the following well-known characterizations of p-uniform
smoothness; see, for example, Beauzamy [1] and Takahashi-Hashimoto-Kato [18].

Corollary 4.6. Let X be a Banach space and let 1 < p ≤ 2. Then the following
are equivalent.

(i) The space X is p-uniformly smooth.
(ii) There exists M > 0 such that

∥x+ y∥p + ∥x− y∥p

2
≤ ∥x∥p + ∥My∥p

for each x, y ∈ X.
(iii) For any s ∈ (1,∞), there exists Ms > 0 such that(

∥x+ y∥s + ∥x− y∥s

2

)1/s

≤ (∥x∥p + ∥Msy∥p)1/p

for each x, y ∈ X.
(iv) For some s ∈ (1,∞), there exists Ms > 0 such that(

∥x+ y∥s + ∥x− y∥s

2

)1/s

≤ (∥x∥p + ∥Msy∥p)1/p

for each x, y ∈ X.

5. ψ∗-uniform convexity and duality

We next consider the notion of ψ∗-uniform convexity of Banach spaces. Recall
that for each ψ ∈ Ψ2 the function ψ∗ defined by

ψ∗(t) = max
0≤s≤1

(1− s)(1− t) + st

ψ(s)

for each t ∈ [0, 1] satisfies ψ∗ ∈ Ψ2 and (R2, ∥ · ∥ψ)∗ = (R, ∥ · ∥ψ∗), and so is called

the dual function of ψ; see [9]. Clearly, ψ ∈ ΨS
2 if and only if ψ∗ ∈ ΨS

2 .

Definition 5.1 ([17]). Let ψ ∈ Ψ2. Then a Banach space X is said to be ψ-
uniformly convex if there exists K > 0 such that ∥(1 − δX(ε),Kε)∥ψ ≤ 1 for each
ε ∈ [0, 2].

The following result shows that this is also a natural generalization of the notion
of q-uniform convexity. Remark that for 1 ≤ p ≤ q ≤ ∞ with p−1 + q−1 = 1 we
have ψ∗

q = ψp.

Proposition 5.2 ([17]). Let 2 ≤ q < ∞. Then a Banach space X is q-uniformly
convex if and only if it is ψq-uniformly convex.

The following proposition shows a basic duality between the functions ψ and ψ∗.
We remark that ψ∗∗ = ψ.
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Proposition 5.3 ([17]). Let ψ ∈ Ψ2. Then ψ′
R(0) = −1 if and only if ψ∗(t) > 1− t

for each t ∈ (0, 1/2].

This duality provides the following natural implication.

Proposition 5.4 ([17]). Suppose that ψ ∈ Ψ2 and that ψ′
R(0) = −1. Then every

ψ∗-uniformly convex Banach space is uniformly convex.

The notion of ψ∗-uniform convexity also has characterizations using norm in-
equalities. To show the characterization, we make use of the following duality
between two norm inequalities concerning with the pairs φ,ψ and φ∗, ψ∗. The fact
that (X ⊕ψ X)∗ = X∗ ⊕ψ∗ X∗ plays an important role in the proof.

Lemma 5.5 ([17]). Let φ,ψ ∈ ΨS
2 and K > 0. Then the following are equivalent.

(i) The inequality

∥(x+ y, x− y)∥φ
2φ(12)

≤ ∥(x,Ky)∥ψ.

holds for each x, y ∈ X.
(ii) The inequality

∥(f + g, f − g)∥φ∗

2φ∗(12)
≥ ∥(f,K−1g)∥ψ∗ .

holds for each f, g ∈ X∗.

The equivalence remains true even if X is replaced with X∗.

We now present characterizations using norm inequalities.

Theorem 5.6 ([17]). Let X be a Banach space and ψ ∈ ΨS
2 with the property (∗).

Suppose that γψ,ψ2 > 0. Then the following are equivalent

(i) The space X is ψ∗-uniformly convex.
(ii) There exists M > 0 such that

∥(x+ y, x− y)∥ψ∗

2ψ(12)
≥ ∥(x,My)∥ψ∗

for each x, y ∈ X.
(iii) For any φ ∈ ΨS

2 with γφ,ψ > 0 there exists an Mφ > 0 such that

∥(x+ y, x− y)∥φ
2φ(12)

≥ ∥(x,Mφy)∥ψ∗

for each x, y ∈ X.
(iv) For some φ ∈ ΨS

2 with γφ,ψ > 0 there exists an Mφ > 0 such that

∥(x+ y, x− y)∥φ
2φ(12)

≥ ∥(x,Mφy)∥ψ∗

for each x, y ∈ X.

As well as the case of ψ-uniform smoothness, we have the following characteriza-
tions of q-uniform convexity as a corollary.
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Corollary 5.7. Let X be a Banach space, and let 2 ≤ q <∞. Then, the following
are equivalent:

(i) The space X is q-uniformly convex.
(ii) There exists M > 0 such that

∥x+ y∥q + ∥x− y∥q

2
≥ ∥x∥q + ∥My∥q

for each x, y ∈ X.
(iii) For any t ∈ (1,∞), there exists Mt > 0 such that(

∥x+ y∥t + ∥x− y∥t

2

)1/t

≥ (∥x∥q + ∥Mty∥q)1/q

for each x, y ∈ X.
(iv) For some t ∈ (1,∞), there exists Mt > 0 such that(

∥x+ y∥t + ∥x− y∥t

2

)1/t

≥ (∥x∥q + ∥Mty∥q)1/q

for each x, y ∈ X.

Theorem 5.6 together with Lemma 5.5 and Theorem 4.5 also show the duality
between ψ-uniform smoothness and ψ∗-uniform convexity.

Corollary 5.8 ([17]). Let X be a Banach space and ψ ∈ ΨS
2 with the property (∗).

Suppose that γψ,ψ2 > 0.

(i) The space X is ψ-uniformly smooth if and only if X∗ is ψ∗-uniformly convex.
(ii) The space X∗ is ψ-uniformly smooth if and only if X is ψ∗-uniformly convex.

We conclude this paper with the following consequence of Corollary 5.8.

Corollary 5.9 ([17]). Let ψ ∈ Ψ2 with the property (∗). Suppose that γψ,ψ2 > 0.
Then every 2-uniformly convex Banach space is ψ∗-uniformly convex.
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