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ABSTRACT. In this paper, using a family of new nonlinear mappings called demi-
metric and the C-QQ method, we first prove a strong convergence theorem for
finding a common fixed point for the family in a Banach space which gener-
alizes simultaneously the result for one-paramter nonexpansive semigroups by
Nakajo and Takahashi [15] and the result for proximal point iterations by Oh-
sawa and Takahashi [16]. Furthermore, using the family and the shrinking pro-
jection method, we prove another strong convergence theorem in a Banach space.
We apply these results to obtain well-known and new strong convergence theo-
rems for families of demimetric mappings in a Hilbert space and a Banach space,
respectively.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. For a mapping U : C' — C, we denote by F(U) the set of fixed points of U.
Let k be a real number with 0 < k£ < 1. A mapping U : C' — C'is called a k-strict
pseudo-contraction [5] if

Uz = Uy|® < |z = yl* + kllz = Uz — (y = Uy)||?

for all z,y € C. A mapping U : C' — C'is called generalized hybrid [8] if there exist
a, B € R such that

alUz = Uyl® + (1 = a)llz = Uyl* < BIUz — y|* + (1 = B)l|l= -yl

for all z,y € C. Such a mapping U is called («, (3)-generalized hybrid. Notice that
the class of generalized hybrid mappings covers several well-known mappings. For
example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading
[9,10] for « =2 and § =1, i.e.,

2|Tz — Ty|?* < Tz —y|* + | Ty — 2|, Va,yeC.
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It is also hybrid [22] for a = % and g = %, ie.,

3T — Tyl® < ||z — yl® + 1T — y|* + | Ty —2l*, Vz,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [7].

Recently, Takahashi [23] introduced a new nonlinear mapping as follows: Let E
be a smooth Banach space, let C' be a nonempty, closed and convex subset of E and
let 1 be a real number with 7 € (—o00,1). A mapping U : C — C with F(U) # 0 is
called n-demimetric if, for any z € C' and q € F(U),

2z —q,J(z — Uz)) 2 (1 = )|z — Uz|*.

We know from [23] that a k-strict pseudo-contraction U with F(U) # 0 is k-
demimetric and an («, ()-generalized hybrid mapping U with F(U) # 0 is 0-
demimetric. We also know from [23] that there exists such a mapping in a Banach
space. Let E be a smooth Banach space and let B be a maximal monotone operator
with B710 # ). Then, for the metric resolvent Jy of B for A > 0, we have from [20]
that, for any « € E and ¢ € B~10,

(Jaw — q,J(xz — Jyz)) > 0.

Then we get
(e —xz+x—q,J(x—Jyz)) >0

and hence

(2 — g, J(@— Jaa)) > |z — Jaz|? = 12(1)\\:1,- ~ Tl
So, the metric resolvent Jy with B~10 # ) is (—1)-demimetric.

On the other hand, we know the C-Q method introduced by Solodov and Svaiter
[17] for finding a solution of an optimization problem; see also [15,16]. Furthermore,
we know the shrinking projection method introduced by Takahashi, Takeuchi and
Kubota [24] for finding a fixed point of a nonexpansive mapping.

In this paper, using a family of new nonlinear mappings called demimetric and the
C-Q method, we first prove a strong convergence theorem for finding a common fixed
point for the family in a Banach space which generalizes simultaneously the result
for one-paramter nonexpansive semigroups by Nakajo and Takahashi [15] and the
result for proximal point iterations by Ohsawa and Takahashi [16]. Furthermore,
using the family and the shrinking projection method, we prove another strong
convergence theorem in a Banach space. We apply these results to obtain well-
known and new strong convergence theorems for families of demimetric mappings
in a Hilbert space and a Banach space, respectively.

2. PRELIMINARIES

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at © € E by (z,y*). When {z,} is a sequence
in F, we denote the strong convergence of {z,,} to © € FE by x,, — x and the weak
convergence by x, — x. The modulus ¢ of convexity of F is defined by

. T+y
o0 =int {1~ 2 o <1 < 1o - >
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for every € with 0 < € < 2. A Banach space FE is said to be uniformly convex if
d(e) > 0 for every € > 0. It is known that a Banach space E is uniformly convex if
and only if, for any two sequences {x,} and {y,} in E such that

lim ||z,| = lim ||y,|| =1 and lim ||z, + y.| = 2,
—00 n—oo n—oo
lim, o0 |2y, — Yn|| = 0 holds. A uniformly convex Banach space is strictly convex

and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., x, — u and ||z,| — ||u|| imply x,, — u; see [6].
The duality mapping J from E into 2F" is defined by

Ju={2" € B : (z,a") = ||z|* = [|2"|*}

for every x € E. Let U = {z € E : ||z|| = 1}. The norm of E is said to be Gateaux
differentiable if for each x,y € U, the limit

ety - ]

(2'1) t—0 t

exists. In the case, F is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that F is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J, on E*. For more details, see [19] and [20]. We know the
following result:

Lemma 2.1 ([19]). Let E be a smooth Banach space and let J be the duality
mapping on E. Then, (x —y,Jo — Jy) > 0 for all x,y € E. Furthermore, if E is
strictly convex and (x —y, Jx — Jy) =0, then z = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x € E, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call Po the
metric projection of F onto C.

Lemma 2.2 ([19]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x € E and z € C.
Then, the following conditions are equivalent:

(1) z = Pox;
(2) (z—y,J(x—2) >0, VyeC.

Let E be a Banach space and let A be a mapping of F into 28", The effective
domain of A is denoted by dom(A), that is, dom(A) = {z € E : Az # 0}. A
multi-valued mapping A on E is said to be monotone if (x — y,u* — v*) > 0 for all
x,y € dom(A), u* € Az, and v* € Ay. A monotone operator A on FE is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [4]; see also [20, Theorem
3.5.4].
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Theorem 2.3 ([4]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let A be a monotone operator of E into
2E"  Then A is mazimal if and only if for any r > 0,

R(J +rA) = E,
where R(J +rA) is the range of J +rA.

Let F be a uniformly convex Banach space with a Gateaux differentiable norm
and let A be a maximal monotone operator of F into 2F". For all € E and r > 0,
we consider the following equation

0€ J(zy —x) +rAz,.

This equation has a unique solution z,.. We define J, by =, = J.x. Such J,.,r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A710={2z€ E:0¢€ Az}. We know that A~!0 is closed and convex; see [20].

For a sequence {C,,} of nonempty, closed and convex subsets of a Banach space
E, define s-Li, C,, and w-Ls,, C,, as follows: z € s-Li,, C, if and only if there exists
{zn} C E such that {x,} converges strongly to =z and z, € C, for all n € N.
Similarly, y € w-Ls,, Cy, if and only if there exist a subsequence {Cy,} of {C,} and
a sequence {y;} C E such that {y;} converges weakly to y and y; € C,, for all i € N.
If Cy satisfies

(2.2) Cy = s-LiC,, = w-Ls )y,

it is said that {C),} converges to C in the sense of Mosco [12] and we write Cy =
M-limy, 00 Cp. It is easy to show that if {C),} is nonincreasing with respect to
inclusion, then {C),} converges to (),—; Cy in the sense of Mosco. For more details,
see [12]. The following lemma was proved by Tsukada [25].

Lemma 2.4 ([25]). Let E be a uniformly convex Banach space. Let {Cy,} be a
sequence of nonempty, closed and conver subsets of E. If Cy =M-lim,, .o, C), exists
and nonempty, then for each x € E, {Pc,x} converges strongly to Pc,x, where Pg,
and Pc, are the mertic projections of E onto Cy, and Cy, respectively.

3. MAIN RESULTS

Let E be a Banach space and let C' be a nonempty, closed and convex subset of E.
Let {U,} be a sequence of mappings of C' into itself such that NS, F(U,,) # 0. The
sequence {U,, } is said to satisfy the condition (I) [2] if for any bounded sequence {z;, }
of C such that lim,_,« ||zn — Unzn|| = 0, every weak cluster point of {z,} belongs
to N>, F(Uy). In this section, using the C-Q method, we first prove a strong
convergence theorem for finding a common fixed point of a family of demimetric
mappings in a Banach space. Before proving the result, we need the following lemma
for demimetric mappings by Takahashi [23].

Lemma 3.1 ([23]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let n be a real number
with n € (—oo,1). Let U be an n-demimetric mapping of C into itself. Then F(U)
15 closed and convez.
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Theorem 3.2. Let E be a uniformly conver and smooth Banach space and let Jg
be the duality mapping on E. Let C be a nonempty, closed and convex subset of
E. Let {n,} be a sequence of real numbers with n, € (—oco,1) and let {U,} be a
family of n,-demimetric mappings of C into itself with N0 F(Uy) # 0 satisfying
the condition (I). Let z1 € C and let {z,} be a sequence generated by

Zn = Ty + (1 — an)Upxy,
Cn={2€C:2(xy—2z,Jp(zy — 21)) > (
Qn={z€C:(xy— 2z Jg(x1 —x,)) > 0},
Tnt1 = Po,ng,r1, Vn €N,

— M) |20 — ZnH2}v

where for some a,b € R,

0<ap,<a<land0<b<1l-—mn, VnelN.
Then the sequence {x,} converges strongly to a point zg € N3 F(U,,), where zp =
Pres  Fwa®1-

Proof. It is obvious that C), N @, is closed and convex for all n € N. To show that
N>, F(Uy,) C C, for all n € N, let us show that

2(wp — 2, Jp(Tn — 2n)) > (1 — nn)"xn - Zn||2

for all z € NS, F(U,) and n € N. In fact, we have that for all z € N, F(U,,) and
n €N,

2xy — 2z, Jp(xn — 2)) = 2(xy, — 2, Jp((1 — an)(xn — Upzyp)))
=2(1 — ap)(zn — 2, Jp(zn — Upzy))
(1
(

(3.1) > (1= an)(1 —mn)llzn — Unf’fn||2
1—ay)?
=Ll e~ Vsl
n
1—
= Tl =zl

> (1 =n)llzn — ZnH2'
Then we have that N9, F'(Uy,,) C C,, for all n € N. We show that N0, F'(Uy,) C Qy,
for all n € N. Since Q1 = {z € C : (1 — 2z, Jg(x1 — x1)) > 0} = C, it is obvious
that N9, F'(U,) C Q1. Suppose that N2, F(U,) C Qy for some k € N. Then
N F(Uy,) C Cp N Qg By 2441 = Poyng, o1, we have that
(g1 — 2, Je(T1 — T41)) >0, Vz e CprNQg
and hence
<£13k+1 - 2, JE(xl — xk+1)> >0, Vze ﬁ%ole(Un).
Then we get N0, F(Uy) C Qi+1. We have by mathematical induction that
N> F(Uy) C @y for all n € N. Thus, we have that N7, F(U,) C Cp, N Qy
for all n € N. This implies that {z,} is well defined.

Since NS, F'(U,) is nonempty, closed and convex from Lemma 3.1, there exists
29 € F(U) such that zy = Pree Fw,)®1- BY Tnt1 = Po,n@, 1, we have that

21 = Zngall < [l =yl
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for all y € C, N Q. Since zg € NY2, F(Uy,) C Cy, N Qy, we have that

(3.2) |21 = Zpga || < Jlza = 2ol|-
This means that {z,} is bounded.
Next, we show that lim,, o ||y, — Zp+1|| = 0. From the definition of @Q,,, we have

that x, = Pg,x1. From z,, 11 = Pc,ng,*1 we have that x,11 € Q,. Thus
|z = z1]| < [|#n41 — 2|

for all n € N. This implies that {||z1 — z,||} is bounded and nondecreasing. Then
there exists the limit of {||z1 — x,||}. Put lim, o ||z, — x1]] = ¢. If ¢ = 0, then
limy, o0 || 2y, — Zn41]| = 0. Assume that ¢ > 0. Since z,, = Pg,x1, Tnt1 € Qrn and
L;"“ € Qn, we have that

Tn + Tpyl 1
s = all < flor = 2220 < 2y — ]+ o — 2]
and hence N
lim [jog — 22—
n—o00 2
Since E is uniformly convex, we get that lim,,_,« |2, — zpt1]| = 0.
We have from z,1 € C, that
(3.3) (1 =na)llzn — ZnH2 < 2(Tp — Tny1, JE(Tn — 20))-

We also have that for z € N2, F(U,) and n € N,
(1= )| — 2al? < 200 — 2, Ju(Tn — 20)) < 2|20 — 2|||T0 — 2a]]
and hence
(L= nu)llzn = 2all < 2|20 — 2]|.

Since 0 < b <1 — 1y, {2,} is bounded. Since lim,,_,o ||z, — Zn41]| = 0 and {z,} is
bounded, we have from (3.3) that lim,_,« ||Zn — 2,|| = 0. Since

[#n = znll = (1 — o) || — Unan|| = (1 = a)||an — Unanl,
we get that
(3.4) lim ||z, — Upzy,|| = 0.
n—o0

Since {z,} is bounded, there exists a subsequence {zp,} of {z,} converging
weakly to w. Since {U,} with N{, F(U,) # 0 satisfies the condition (I), we have
that w € N2, F(U,,).

From zo = Phee p,)z1 and w € Np24 F(Uy), we have from (3.2) that

lz1 = zol] < [lz1 — w]| < liminf [lz; — 2y, ||
1—00

< limsup [|[21 — zn, || < [|z1 — 20-
71— 00

Then we get that
Lim {2y — 2, || = 21 — w| = [lz1 = 20]|-
1—00
From the Kadec-Klee property of E, we have that z; — x,, = 1 — w and hence

Tp;, — W = 2.
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Therefore, we have x,, — zp. This completes the proof. O

Next, using the shrinking projection method, we prove a strong convergence
theorem for finding a common fixed point of a family of demimetric mappings in a
Banach space.

Theorem 3.3. Let E be a uniformly convex and smooth Banach space and let Jg
be the duality mapping on E. Let C be a nonempty, closed and convex subset of
E. Let {n,} be a sequence of real numbers with n, € (—oc0,1) and let {U,} be a
family of ny,-demimetric mappings of C' into itself with N2, F(Uy) # 0 satisfying
the condition (I). Let z1 € C and let Cy = C. Let {z,} be a sequence generated by

Zn = ap + (1 - an)Unxna

Crni1={2€Cp:2xy —2,J5(xn —22)) > (1 — n0)||zn — 20},

Tptl = Pcn_Hﬂ?l, Vn € N,
where for some a,b € R,

0<a,<a<land0<b<1-—7m, Vnel

Then {zn} converges strongly to a point zg € N3, F'(Uy), where 2o = Pree | p(,)®1-

Proof. 1t is obvious that C), are closed and convex for all n € N. We show that
N> F(Uy) C C, for all n € N. It is obvious that N> F(U,) C C = C}. Suppose
that N2, F'(U,,) C Cj for some k € N. To show that N2>, F(U,) C Cy, for alln € N,
let us show that

2(xy, — 2, Jp(er — 2)) > (1= me) ||k — 2
for all z € N2, F(Uy). In fact, we have that for all z € N2, F\(U,,),
2z — 2z, Jp(zy — 21)) = 2(xp — 2z, (1 — ag)Je(xp — Ugzy))
> (1= ag) (1 =) [Jag — Uy |®

(1-— Oék)2
(3.5) R (1 — )|z — Upgl®
1 —
"1 o, [ETR

> (1= i) ||zw — 2

Then, NS, F'(Uy) C Cky1. We have by mathematical induction that N2, F'(U,) C
C,, for all n € N. This implies that {z,} is well defined.

Since N2, F(U,,) is nonempty, closed and convex from Lemma 3.1, there exists
zp € N2 F(U,,) such that zp = Pree p,)®1- From x, = Pc, 1, we have that
lz1 = 2]l < a1 =y
for all y € Cy,. Since zg € N2 F(Uy) C Cp, we have that
(3.6) [21 = znl| < [l — 2.

Let Cy = (2, Cy. Since Cy D NS, F(Uy,) # 0, we have that Cj is nonempty.
Since Cp = M-lim,,_, Cy, and x,, = Pg, 21 for every n € N, by Lemma 2.4 we have

Ty — o = Pcoib‘l.
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This also implies that
(3.7) |xrn — Tnt1]] — 0.
We have from z,11 € Cy41 that
(3-8) (1= n0)llzn = zall® < 22 = Tnt1, Jo(@n — 20)).
We also have that for z € N7, F'(Uy,) and n € N,
(1 = na)llzn = zall? < 2(wn — 2, Jp(2n — 20)) < 2]l — 2[ll|lzn — 20l

and hence
(1= n)llzn — 2all < 2[|zn — 2.

Since 0 < b < 1 — 1y, {2} is bounded. Since lim, o ||Tn — Zp41]| = 0 from (3.7)

and {z,} is bounded, we have from (3.8) that lim,_, ||zn — 2»| = 0. Since
[ — znll = (1 — an)|[wn — Unan|| = (1 — a))||zn — Unzall,

we get that

(3.9) nh_g)lo |z, — Upzpl| = 0.

Since {zy} converges strongly to xg, {z,} converges weakly to zg. Since {U,}
with N0, F'(Uy,) # 0 satisfies the condition (I), we have that xo € NS, F(Uy,).
From zy = Pm;jo:lF(Un)xh xo € NS F(Uy), vn — x0 and (3.6), we have that

|21 — 20l| < [|o1 — 20l = lim |21 — 24|
n—oo
< |lz1 — 2ol|-

Then we get that o = z9. Therefore, we have x, — zg = 2z9. This completes the
proof. O

4. APPLICATIONS

In this section, using Theorems 3.2 and 3.3, we get well-known and new strong
convergence theorems in Hilbert spaces and Banach spaces, respectively. We know
the following lemma obtained by Marino and Xu [11].

Lemma 4.1 ([11]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k be a real number with 0 < k <1 and letU : C — C be a
k-strict pseudo-contraction. If x, — z and x,, — Ux,, — 0, then z € F(U).

We also know the following lemma from Kocourek, Takahashi and Yao [8].

Lemma 4.2 ([8]). Let H be a Hilbert space, let C' be a nonempty, closed and convex
subset of H and let U : C — C be generalized hybrid. If r, — z and x, — Uz, — 0,
then z € F(U).

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let k be a real number with k € [0,1). Let U : C — C be a k-strict
pseudo-contraction such that F(U) # 0. Define U, = B + (1 — B,)U for allm € N
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such that 0 < B, < 1 and sup,enfn < 1. Let 21 € C and let {x,} be a sequence
generated by

zn = Upxp,
Cpn=1{2€C:2xn— 2,0 — 2,) > (1 = k)||lzn — 20|},
Qn={2€C:(xy—z,x1 —xy) > 0},
Tnt+1 = Pe,ng,r1, Yn €N
Then {zn} converges strongly to a point zo € F(U), where 20 = Pp)1.

Proof. Since U is a k-strict pseudo-contraction of C' into itself such that F(U) # 0,
U is k-demimetric. We also have that for z € C and p € F(U,,) = F(U),
=2(1—pp)(x —p,x —Ux)
> (1= Bn)(1 = k)l|lz — Uz|f?

1—k
= (=B’ 15 e~ Ual?
1-k
=15 o= Bz + (1= BV

> (1= k)llz = (Bpz + (1 = Ba)U)|?
= (1= k)l = Unz|?
and hence {U,,} is a family of k-demimetric mappings of C into C such that F(U) =
N>, F(Uy). Furthermore, let {u,} be a bounded sequence of C' such that wu, —
U,u, — 0. Then we have
(1 - ﬁn)(un - Uun) =u, — Upuy, — 0

and hence u, — Uu, — 0. It follows from Lemma 4.1 that every weak cluster point
of {u,} belongs to F(U) = N2, F(U,). This means that the family {U,,} satisfies
the condition (I). Therefore, putting o, = 0 in Theorem 3.2, we have the desired
result from Theorem 3.2. O

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let U : C — C be a generalized hybrid mapping with F(U) # (. Define
Up = Bl + (1 = 5,)U for all n € N such that 0 < 3, < 1 and sup,,cn fBn < 1. Let
z1 € C and let {z,} be a sequence generated by

Zn = Unwfm

Cn={2€C:|lz =z <z — zall},

Qn=12€C:{(ry,— 2,21 —xy) >0},

Tn41 = PCannl‘]_, Vn € N.
Then {xn} converges strongly to a point zy € F(U), where 20 = Pp(1)71.

Proof. Since U is a generalized hybrid mapping of C' into itself such that F(U) # 0,
U is 0-demimetric. Thus, the inequality

2(wp — 2, Jp(rn — 20)) = (1 —nn) |20 — Zn”2
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in Theorem 3.2 is

Uy — 2,Tp — 2n) > ||Tn — 2al*
Using this inequality and 2(z,, — 2,2, — 2n) = |0 — 2al]? + |2 — 2al]? — ||z — 22]|?,
we have ||z — 2, ||? < ||z — @, ||%, that is, ||z — zu|| < ||z — 2| in Theorem 4.4. As in
the proof of Theorem 4.3, we also have that for x € C and p € F(U,) = F(U),

2(x —p,x — Upz) =2(x —p,x — (Bpx + (1 — Bn)Ux))
=2(1—-pp){(z —p,x —Uxz)
> (1= Bn)llx — Uz
> ||z — Unz||?

and hence {U,,} is a family of 0-demimetric mappings of C' into C' such that F(U) =
N>, F(Uy). Furthermore, let {u,} be a bounded sequence of C such that w, —
U,u, — 0. Then we have

(1 — apn)(up — Uuy) = up — Upupy, — 0

and hence u, — Uu, — 0. It follows from Lemma 4.2 that every weak cluster point
of {u,} belongs to F(U) = N7, F(U,). This means that the family {U,,} satisfies
the condition (I). Therefore, putting «;,, = 0 in Theorem 3.2, we have the desired
result from Theorem 3.2. O

As a direct result of Theorem 4.4, we have the following theorem proved by
Nakajo and Takahashi [15].

Theorem 4.5 ([15]). Let H be a Hilbert space and let C' be a nonempty, closed and
convez subset of H. Let U : C — C be a nonexpansive mapping with F(U) # (. Let
x1 € C and let {z,} be a sequence generated by

Zn = Bnan + (1 — Bn)Uzy,
Cn={2€C:|lzn — 2| < llzn — 2[l},
Qn={z€C:{(xy— 2,21 —xp) >0},
Tptl = PCnﬂQn:E]_, Vn € N,
where {8y} is chosen so that, for some a € R,
0<B,<a<l, VneN.
Then {zn} converges strongly to a point zo € F(U), where 20 = Pp)1.

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of
H. For a > 0, a mapping A : C' — H is called a-inverse strongly monotone if

<a:—y,Ax—Ay> ZO&HA.%'—AyHQ, Vx,yEC

If A is a-inverse strongly monotone and 0 < A < 2a, then I — MNA : C — H is
nonexpansive. In fact, we have that for all z,y € C,

I = AA)z — (I = AA)y|* = ||lz — y — MAz — Ay)||?
=z =yl = 2Mz — y, Az — Ay) + || Az — Ay|®
< llo = yl* - 2Xal Az — Ay||? + X*|| Az — Ay|]?
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= ||z = y[I” + A(X = 20)[| Az — Ay]?
<l —yl*.
Thus, I — AA is nonexpansive; see [1,13,21] for more results of inverse strongly

monotone mappings. The variational inequalty problem for A : C' — H is to find a
point u € C' such that

(4.1) (Au,x —u) >0, VreC.

The set of solutions of (4.1) is denoted by VI(C, A). We also have that, for A > 0,
u= Po(I — AA)u if and only if uw € VI(C, A). In fact, let A > 0. Then, for u € C,

u=Po(l —AA)u<= (I - \A)u—u,u—y) >0, Vyel
—= (-Mu,u—y) >0, VyeC
— (Au,u—y) <0, Vyel
— (Au,y —u) >0, YyeC
—ueVICA).
Using these results, we obtain the following theorem for inverse strongly monotone

operators in a Hilbert space.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let~ > 0 and let A: C — H be a y-inverse strongly monotone
operator with VI(C, A) # (). Let x1 € C and let {x,} be a sequence generated by

Zn = @y + (1 — ap)Po(I — My A)zp,

Cn={2€C:lzn -zl <llan — 2},

Qn={z€C:{(xy,— 2,21 —2xp) >0},

Tn4+1 = PCannl‘]_, Vn € N.
where, for some a,b € R,

0<a,<a<l and 0<b< A, <2y, VneN

Then {xn} converges strongly to a point zg € VI(C, A), where zo = Py ¢ )71

Proof. Define U,, = Po(I — A\, A) for all n € N. Since U, is a nonexpansive mapping
of C into itself, U, is O-demimetric. As in the proof of Theorem 4.4, the inequality

2(zn — 2, Jg(@n — 2n)) = (1 — nn)||2n — Zn||2
in Theorem 3.2 is ||z — z,|| < ||z — zp|| in Theorem 4.6. We also know that
N> F(U,) = VI(C,A). Furthermore, let {z,} be a bounded sequence of C' such
that z, — Po(I — A\yA)z, — 0. Then, without loss of generality, we may assume
that z, — p for some p € C and z, — Po(I — A\, A)z, — 0. Put v, = Po(I =\, A)zp,.
Since Pg is the metric projection, we have that
(I = AA)zy — vy, v —u) >0, YueC.
Thus, we have that for all n € N,

(AMAu — Ay Avp, u —vy) > (I — M\yA)zy — Unyu — vp) + (A Au — N\ Avy, u — vy).
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Then, we have that
(AAu,u—vy) > (I — AMA)zn — U + AAvp, u — vy) + (AAu — Ay Avp, u — o).

Since A is monotone and A, > 0, we have that

(Au,u — vy) > %((I — MA)zn — vp + AAvy, u— vy) + (Au — Avy,u — vy,)

v

_ <Z’n)\— "y Av, — Azn,u—vn> + (Au — Avg, u — vy,)
(4.2) = <Z”)\ + Av, — Au+ Au — Az, u — vn> + (Au — Avy,u — vy)
— <z”)\_n +Au—Azn,u—vn>
:<Z”)\_ vn>+<Au—Azn,u—zn+zn—vn)
5

n> + (Au — Az, zp — Up).

From z, — v, — 0 and Z"/\;n”" — 0, we have

(4.3) (Au,u —p) > 0.

Take uy = (1 —t)p+ty for all t € (0,1) and y € C. From (4.3) and ¢ > 0, we have
that (Aug, ug —p) > 0 and hence (Aug,y —p) > 0. Since uy = (1 —¢)p+ty — p as
t — 0 and A is continuous, we have that (Ap,y —p) > 0. This implies p € VI(C, A)

from which it follows that the family {U,} satisfies the condition (I). Therefore, we
have the desired result from Theorem 3.2. g

Let C' be a nonempty subset of a Hilbert space H. A family S = {T'(t) : ¢t €
[0,00)} of mappings of C into itself satisfying the following conditions is said to be
a one-parameter nonexpansive semigroup on C":

(1) For each t € [0,00), T'(t) is nonexpansive;
(2) T(0) = I

(3) T'(t+s) =T(t)T(s) for every t,s € [0,00);
(4) for each z € C, t — T'(t)x is continuous.

Theorem 4.7. Let H be a Hilbert space and let C' be a nonempty, closed convex
subset of H. Let S = {T'(t) : t € [0,00)} be a one-parameter nonexpansive semigroup
on C with the common fized point set F(S) = Myejo,00)F(T'(t)) # 0. Define Upa =

fo" s)xds for all x € C and n € N with t, — oo. Let 1 € C and let {x,} be
a sequence generated by

Zn = QpTy + ( fO" S)xpds,
Cn={2€C: IIZn - le < lon — 21},
Qn={z€C:(xy,— 2,21 —x,) >0},
Tptl = PCnﬂanla Vn € N,

where, for some a € R,
0<a,<a<l, VnelN
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Then the sequence {x,} converges strongly to a point zy € F(S), where zy =
PF(S)ml-

Proof. Since U, is a nonexpansive mapping of C into itself, U, is 0-demimetric.
Thus, the inequality
2(xn — 2, Jp(zn — 2)) 2 (1= mn)[lzn — Zn”Q
in Theorem 3.2 is
2<$n — 2, Tn — ZTL> > H‘/En - an2'

Using this inequality and 2(x, — 2, Tp — 25) = ||Tn — 20> + |2 — 2al]? = || 2 — 20 ||?, We
have ||z—2, || < ||[z—2x]|?, that is, ||2—2,|| < ||z—2, || in Theorem 4.7. We also know
from [19] that N0, F'(U,,) = F(S). Furthermore, let {u,} be a bounded sequence
of C such that w, — Upu, — 0. Then we have from [14] that u,, — T(s)u, — 0
for all s € [0,00). Since T'(s) is nonexpansive, every weak cluster point ug of {u,}
belongs to F(T'(s)); see [21]. Then, ug € N0, F(U,) = F(S). This means that the
family {U,} satisfies the condition (I). Therefore, we have the desired result from
Theorem 3.2. g

Theorem 4.8. Let E be a uniformly convex and smooth Banach space. Let Jg be
the duality mapping on E. Let A be a maximal monotone operator of E into E*
and let Jy be the metric resolvent of A for A > 0. Let x1 € E and let {x,} be a
sequence generated by

Zn = oy, + (1 — ay)Jy, Tn,
Chn={z€FE:(z—2z,Jp(xn — 2z)) >0},
Qn={2€E:{(ry,— 2z Jp(xr1 —x,)) >0},
Tn+1 = Pe,ng,r1, Yn €N
where {an} C [0,1] and {\,} C (0,00) satisfy the conditions such that
0<a,<a<l, and 0<b< )\,

for some a,b € R. Then {x,} converges strongly to a point zg € A~'0, where
20 = PAflog’El.
Proof. Since Jy, is the metric resolvent of A, Jy, is (—1)-demimetric. Thus, the
inequality
2an — 2, Jp(@n — 2n)) 2 (1 = nn)[|zn — Zn||2
in Theorem 3.2 is
(@n = 2, Jp (@0 — 2n)) 2 &0 — 20l

Using this inequality and ||z, — 2,||?> = (2 — 2n, JE(Tn —21)), we have the inequality

(zn — 2, JE(Tr, — 21)) > 0
in Theorem 4.8. Assume that {x,} is a sequence in E such that x, — p and
xp—Jy, xn — 0. It is clear that Jy, x, — p and || Jg(x,—JIx, zn)|| = ||2n—JIr, Znll —
0. Since J), is the metric resolvent of A, we have that

Tp — J)\nxn

N, S AJ)WQZn.
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Since A is monotone, we have
Tn — J)\nxn

J n — W
< An L u )\n

for all (u,v*) € A. From Jy, x, — p, Jg(xn — Jy,zn) — 0 and 0 < b < \,, we have
that

—v*>20

(p—u,—v*) > 0.
Since A is maximal, we get 0 € Ap and hence p = J,,p. Therefore, we have the
desired result from Theorem 3.2. U

Theorem 4.8 is the result of Ohsawa and Takahashi [16]. Similarly, using Theorem
3.3, we have the following results.

Theorem 4.9. Let H be a Hilbert space. Let k be a real number with k € [0,1). Let
C be a nonempty, closed and convex subset of H and let U : C' — C be a k-strict
pseudo-contraction such that F(U) # 0. Define Uy, = Bl + (1 — 5,)U for alln € N
such that 0 < B, < 1 and sup, ey fn < 1. For z1 € C and Cy = C, let {x,} be a
sequence generated by

zn = UpTy,

Cni1={2€Ch: 2wy — 2,20 — 2) > (1 — E)||zn — 2a|%},

Tny1 = Po,,, 71, VneN.
Then {xn} converges strongly to zo € F(U), where 2o = PpnT1.
Theorem 4.10. Let H be a Hilbert space and let C be a monempty, closed and
convex subset of H. Let U : C — C be a generalized hybrid mapping with F(U) # 0.

Define Uy, = BnI+(1—,)U for alln € N such that 0 < 8, < 1 and sup,ey Bn < 1.
For xy € C and C; = C, let {x,} be a sequence generated by

zn = UpZy,
Cnr1={2€ Cp: |lzn — 2| < |20 — 20ll},
Tny1 = Po,, 71, Vn €N

Then {zn} converges strongly to zo € F(U), where 20 = Pp)1.

Using Theorem 3.3, we also have the following strong convergence theorem for
finding a zero point of a maximal monotone operator in a Banach space.

Theorem 4.11. Let E be a uniformly convexr and smooth Banach space. Let Jg
be the duality mapping on E. Let A be a maximal monotone operator of E. Let J)y
be the metric resolvent of A for X\ > 0. Suppose that A~'0 # 0. For xy € C and
Cy = C, let {zy,} be a sequence generated by

Zn = Oy + (1 — ay)Jy, Tn,

Cni1=1{2€Cy: (zn— 2z, Jg(xn — 2)) > 0},

Tny1 = Po,,, 11, Vn €N,
where {on} C [0,1] and {\,} C (0,00) satisfy the conditions such that

0<a,<a<l, and 0<b< A\,
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for some a,b € R. Then {x,} converges strongly to a point zg € A~'0, where
20 = PA—10:L'1.
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