
LNALNA ISSN 2188-8167 
2017



322 WATARU TAKAHASHI

It is also hybrid [22] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [7].
Recently, Takahashi [23] introduced a new nonlinear mapping as follows: Let E

be a smooth Banach space, let C be a nonempty, closed and convex subset of E and
let η be a real number with η ∈ (−∞, 1). A mapping U : C → C with F (U) ̸= ∅ is
called η-demimetric if, for any x ∈ C and q ∈ F (U),

2⟨x− q, J(x− Ux)⟩ ≥ (1− η)∥x− Ux∥2.
We know from [23] that a k-strict pseudo-contraction U with F (U) ̸= ∅ is k-
demimetric and an (α, β)-generalized hybrid mapping U with F (U) ̸= ∅ is 0-
demimetric. We also know from [23] that there exists such a mapping in a Banach
space. Let E be a smooth Banach space and let B be a maximal monotone operator
with B−10 ̸= ∅. Then, for the metric resolvent Jλ of B for λ > 0, we have from [20]
that, for any x ∈ E and q ∈ B−10,

⟨Jλx− q, J(x− Jλx)⟩ ≥ 0.

Then we get

⟨Jλx− x+ x− q, J(x− Jλx)⟩ ≥ 0

and hence

⟨x− q, J(x− Jλx)⟩ ≥ ∥x− Jλx∥2 =
1− (−1)

2
∥x− Jλx∥2.

So, the metric resolvent Jλ with B−10 ̸= ∅ is (−1)-demimetric.
On the other hand, we know the C-Q method introduced by Solodov and Svaiter

[17] for finding a solution of an optimization problem; see also [15,16]. Furthermore,
we know the shrinking projection method introduced by Takahashi, Takeuchi and
Kubota [24] for finding a fixed point of a nonexpansive mapping.

In this paper, using a family of new nonlinear mappings called demimetric and the
C-Q method, we first prove a strong convergence theorem for finding a common fixed
point for the family in a Banach space which generalizes simultaneously the result
for one-paramter nonexpansive semigroups by Nakajo and Takahashi [15] and the
result for proximal point iterations by Ohsawa and Takahashi [16]. Furthermore,
using the family and the shrinking projection method, we prove another strong
convergence theorem in a Banach space. We apply these results to obtain well-
known and new strong convergence theorems for families of demimetric mappings
in a Hilbert space and a Banach space, respectively.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
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for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if, for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [6].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [19] and [20]. We know the
following result:

Lemma 2.1 ( [19]). Let E be a smooth Banach space and let J be the duality
mapping on E. Then, ⟨x − y, Jx − Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is
strictly convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.

Lemma 2.2 ([19]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = PCx;
(2) ⟨z − y, J(x− z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let A be a mapping of E into 2E
∗
. The effective

domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax ̸= ∅}. A
multi-valued mapping A on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all
x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to Browder [4]; see also [20, Theorem
3.5.4].
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Theorem 2.3 ([4]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into
2E

∗
. Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rAxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A−10 = {z ∈ E : 0 ∈ Az}. We know that A−10 is closed and convex; see [20].

For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space
E, define s-LinCn and w-LsnCn as follows: x ∈ s-LinCn if and only if there exists
{xn} ⊂ E such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N.
Similarly, y ∈ w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and
a sequence {yi} ⊂ E such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N.
If C0 satisfies

(2.2) C0 = s-Li
n
Cn = w-Ls

n
Cn,

it is said that {Cn} converges to C0 in the sense of Mosco [12] and we write C0 =
M-limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to
inclusion, then {Cn} converges to

∩∞
n=1Cn in the sense of Mosco. For more details,

see [12]. The following lemma was proved by Tsukada [25].

Lemma 2.4 ( [25]). Let E be a uniformly convex Banach space. Let {Cn} be a
sequence of nonempty, closed and convex subsets of E. If C0 =M-limn→∞Cn exists
and nonempty, then for each x ∈ E, {PCnx} converges strongly to PC0x, where PCn

and PC0 are the mertic projections of E onto Cn and C0, respectively.

3. Main results

Let E be a Banach space and let C be a nonempty, closed and convex subset of E.
Let {Un} be a sequence of mappings of C into itself such that ∩∞

n=1F (Un) ̸= ∅. The
sequence {Un} is said to satisfy the condition (I) [2] if for any bounded sequence {zn}
of C such that limn→∞ ∥zn − Unzn∥ = 0, every weak cluster point of {zn} belongs
to ∩∞

n=1F (Un). In this section, using the C-Q method, we first prove a strong
convergence theorem for finding a common fixed point of a family of demimetric
mappings in a Banach space. Before proving the result, we need the following lemma
for demimetric mappings by Takahashi [23].

Lemma 3.1 ([23]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty, closed and convex subset of E. Let η be a real number
with η ∈ (−∞, 1). Let U be an η-demimetric mapping of C into itself. Then F (U)
is closed and convex.
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Theorem 3.2. Let E be a uniformly convex and smooth Banach space and let JE
be the duality mapping on E. Let C be a nonempty, closed and convex subset of
E. Let {ηn} be a sequence of real numbers with ηn ∈ (−∞, 1) and let {Un} be a
family of ηn-demimetric mappings of C into itself with ∩∞

n=1F (Un) ̸= ∅ satisfying
the condition (I). Let x1 ∈ C and let {xn} be a sequence generated by

zn = αnxn + (1− αn)Unxn,

Cn = {z ∈ C : 2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2},
Qn = {z ∈ C : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where for some a, b ∈ R,
0 ≤ αn ≤ a < 1 and 0 < b ≤ 1− ηn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ ∩∞
n=1F (Un), where z0 =

P∩∞
n=1F (Un)x1.

Proof. It is obvious that Cn ∩Qn is closed and convex for all n ∈ N. To show that
∩∞
n=1F (Un) ⊂ Cn for all n ∈ N, let us show that

2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2

for all z ∈ ∩∞
n=1F (Un) and n ∈ N. In fact, we have that for all z ∈ ∩∞

n=1F (Un) and
n ∈ N,

2⟨xn − z, JE(xn − zn)⟩ = 2⟨xn − z, JE((1− αn)(xn − Unxn))⟩
= 2(1− αn)⟨xn − z, JE(xn − Unxn)⟩
≥ (1− αn)(1− ηn)∥xn − Unxn∥2(3.1)

=
(1− αn)

2

1− αn
(1− ηn)∥xn − Unxn∥2

=
1− ηn
1− αn

∥xn − zn∥2

≥ (1− ηn)∥xn − zn∥2.
Then we have that ∩∞

n=1F (Un) ⊂ Cn for all n ∈ N. We show that ∩∞
n=1F (Un) ⊂ Qn

for all n ∈ N. Since Q1 = {z ∈ C : ⟨x1 − z, JE(x1 − x1)⟩ ≥ 0} = C, it is obvious
that ∩∞

n=1F (Un) ⊂ Q1. Suppose that ∩∞
n=1F (Un) ⊂ Qk for some k ∈ N. Then

∩∞
n=1F (Un) ⊂ Ck ∩Qk. By xk+1 = PCk∩Qk

x1, we have that

⟨xk+1 − z, JE(x1 − xk+1)⟩ ≥ 0, ∀z ∈ Ck ∩Qk

and hence
⟨xk+1 − z, JE(x1 − xk+1)⟩ ≥ 0, ∀z ∈ ∩∞

n=1F (Un).

Then we get ∩∞
n=1F (Un) ⊂ Qk+1. We have by mathematical induction that

∩∞
n=1F (Un) ⊂ Qn for all n ∈ N. Thus, we have that ∩∞

n=1F (Un) ⊂ Cn ∩ Qn

for all n ∈ N. This implies that {xn} is well defined.
Since ∩∞

n=1F (Un) is nonempty, closed and convex from Lemma 3.1, there exists
z0 ∈ F (U) such that z0 = P∩∞

n=1F (Un)x1. By xn+1 = PCn∩Qnx1, we have that

∥x1 − xn+1∥ ≤ ∥x1 − y∥
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for all y ∈ Cn ∩Qn. Since z0 ∈ ∩∞
n=1F (Un) ⊂ Cn ∩Qn, we have that

(3.2) ∥x1 − xn+1∥ ≤ ∥x1 − z0∥.
This means that {xn} is bounded.

Next, we show that limn→∞ ∥xn−xn+1∥ = 0. From the definition of Qn, we have
that xn = PQnx1. From xn+1 = PCn∩Qnx1 we have that xn+1 ∈ Qn. Thus

∥xn − x1∥ ≤ ∥xn+1 − x1∥
for all n ∈ N. This implies that {∥x1 − xn∥} is bounded and nondecreasing. Then
there exists the limit of {∥x1 − xn∥}. Put limn→∞ ∥xn − x1∥ = c. If c = 0, then
limn→∞ ∥xn − xn+1∥ = 0. Assume that c > 0. Since xn = PQnx1, xn+1 ∈ Qn and
xn+xn+1

2 ∈ Qn, we have that

∥x1 − xn∥ ≤ ∥x1 −
xn + xn+1

2
∥ ≤ 1

2
(∥x1 − xn∥+ ∥x1 − xn+1∥)

and hence

lim
n→∞

∥x1 −
xn + xn+1

2
∥ = c.

Since E is uniformly convex, we get that limn→∞ ∥xn − xn+1∥ = 0.
We have from xn+1 ∈ Cn that

(3.3) (1− ηn)∥xn − zn∥2 ≤ 2⟨xn − xn+1, JE(xn − zn)⟩.
We also have that for z ∈ ∩∞

n=1F (Un) and n ∈ N,

(1− ηn)∥xn − zn∥2 ≤ 2⟨xn − z, JE(xn − zn)⟩ ≤ 2∥xn − z∥∥xn − zn∥
and hence

(1− ηn)∥xn − zn∥ ≤ 2∥xn − z∥.
Since 0 < b ≤ 1− ηn, {zn} is bounded. Since limn→∞ ∥xn − xn+1∥ = 0 and {zn} is
bounded, we have from (3.3) that limn→∞ ∥xn − zn∥ = 0. Since

∥xn − zn∥ = (1− αn)∥xn − Unxn∥ ≥ (1− a)∥xn − Unxn∥,
we get that

(3.4) lim
n→∞

∥xn − Unxn∥ = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging
weakly to w. Since {Un} with ∩∞

n=1F (Un) ̸= ∅ satisfies the condition (I), we have
that w ∈ ∩∞

n=1F (Un).
From z0 = P∩∞

n=1F (Un)x1 and w ∈ ∩∞
n=1F (Un), we have from (3.2) that

∥x1 − z0∥ ≤ ∥x1 − w∥ ≤ lim inf
i→∞

∥x1 − xni∥

≤ lim sup
i→∞

∥x1 − xni∥ ≤ ∥x1 − z0∥.

Then we get that

lim
i→∞

∥x1 − xni∥ = ∥x1 − w∥ = ∥x1 − z0∥.

From the Kadec-Klee property of E, we have that x1 − xni → x1 − w and hence

xni → w = z0.
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Therefore, we have xn → z0. This completes the proof. �
Next, using the shrinking projection method, we prove a strong convergence

theorem for finding a common fixed point of a family of demimetric mappings in a
Banach space.

Theorem 3.3. Let E be a uniformly convex and smooth Banach space and let JE
be the duality mapping on E. Let C be a nonempty, closed and convex subset of
E. Let {ηn} be a sequence of real numbers with ηn ∈ (−∞, 1) and let {Un} be a
family of ηn-demimetric mappings of C into itself with ∩∞

n=1F (Un) ̸= ∅ satisfying
the condition (I). Let x1 ∈ C and let C1 = C. Let {xn} be a sequence generated by

zn = αn + (1− αn)Unxn,

Cn+1 = {z ∈ Cn : 2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2},
xn+1 = PCn+1x1, ∀n ∈ N,

where for some a, b ∈ R,
0 ≤ αn ≤ a < 1 and 0 < b ≤ 1− ηn, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ ∩∞
n=1F (Un), where z0 = P∩∞

n=1F (Un)x1.

Proof. It is obvious that Cn are closed and convex for all n ∈ N. We show that
∩∞
n=1F (Un) ⊂ Cn for all n ∈ N. It is obvious that ∩∞

n=1F (Un) ⊂ C = C1. Suppose
that ∩∞

n=1F (Un) ⊂ Ck for some k ∈ N. To show that ∩∞
n=1F (Un) ⊂ Cn for all n ∈ N,

let us show that

2⟨xk − z, JE(xk − zk)⟩ ≥ (1− ηk)∥xk − zk∥2

for all z ∈ ∩∞
n=1F (Un). In fact, we have that for all z ∈ ∩∞

n=1F (Un),

2⟨xk − z, JE(xk − zk)⟩ = 2⟨xk − z, (1− αk)JE(xk − Ukxk)⟩
≥ (1− αk)(1− ηk)∥xk − Ukxk∥2

=
(1− αk)

2

1− αk
(1− ηk)∥xk − Ukxk∥2(3.5)

=
1− ηk
1− αk

∥xk − zk∥2

≥ (1− ηk)∥xk − zk∥2.
Then, ∩∞

n=1F (Un) ⊂ Ck+1. We have by mathematical induction that ∩∞
n=1F (Un) ⊂

Cn for all n ∈ N. This implies that {xn} is well defined.
Since ∩∞

n=1F (Un) is nonempty, closed and convex from Lemma 3.1, there exists
z0 ∈ ∩∞

n=1F (Un) such that z0 = P∩∞
n=1F (Un)x1. From xn = PCnx1, we have that

∥x1 − xn∥ ≤ ∥x1 − y∥
for all y ∈ Cn. Since z0 ∈ ∩∞

n=1F (Un) ⊂ Cn, we have that

(3.6) ∥x1 − xn∥ ≤ ∥x1 − z0∥.
Let C0 =

∩∞
n=1Cn. Since C0 ⊃ ∩∞

n=1F (Un) ̸= ∅, we have that C0 is nonempty.
Since C0 = M-limn→∞Cn and xn = PCnx1 for every n ∈ N, by Lemma 2.4 we have

xn → x0 = PC0x1.
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This also implies that

(3.7) ∥xn − xn+1∥ → 0.

We have from xn+1 ∈ Cn+1 that

(3.8) (1− ηn)∥xn − zn∥2 ≤ 2⟨xn − xn+1, JE(xn − zn)⟩.

We also have that for z ∈ ∩∞
n=1F (Un) and n ∈ N,

(1− ηn)∥xn − zn∥2 ≤ 2⟨xn − z, JE(xn − zn)⟩ ≤ 2∥xn − z∥∥xn − zn∥

and hence

(1− ηn)∥xn − zn∥ ≤ 2∥xn − z∥.
Since 0 < b ≤ 1 − ηn, {zn} is bounded. Since limn→∞ ∥xn − xn+1∥ = 0 from (3.7)
and {zn} is bounded, we have from (3.8) that limn→∞ ∥xn − zn∥ = 0. Since

∥xn − zn∥ = (1− αn)∥xn − Unxn∥ ≥ (1− a))∥xn − Unxn∥,

we get that

(3.9) lim
n→∞

∥xn − Unxn∥ = 0.

Since {xn} converges strongly to x0, {xn} converges weakly to x0. Since {Un}
with ∩∞

n=1F (Un) ̸= ∅ satisfies the condition (I), we have that x0 ∈ ∩∞
n=1F (Un).

From z0 = P∩∞
n=1F (Un)x1, x0 ∈ ∩∞

n=1F (Un), xn → x0 and (3.6), we have that

∥x1 − z0∥ ≤ ∥x1 − x0∥ = lim
n→∞

∥x1 − xn∥

≤ ∥x1 − z0∥.

Then we get that x0 = z0. Therefore, we have xn → x0 = z0. This completes the
proof. �

4. Applications

In this section, using Theorems 3.2 and 3.3, we get well-known and new strong
convergence theorems in Hilbert spaces and Banach spaces, respectively. We know
the following lemma obtained by Marino and Xu [11].

Lemma 4.1 ([11]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → C be a
k-strict pseudo-contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

We also know the following lemma from Kocourek, Takahashi and Yao [8].

Lemma 4.2 ([8]). Let H be a Hilbert space, let C be a nonempty, closed and convex
subset of H and let U : C → C be generalized hybrid. If xn ⇀ z and xn−Uxn → 0,
then z ∈ F (U).

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let k be a real number with k ∈ [0, 1). Let U : C → C be a k-strict
pseudo-contraction such that F (U) ̸= ∅. Define Un = βnI +(1−βn)U for all n ∈ N
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such that 0 ≤ βn < 1 and supn∈N βn < 1. Let x1 ∈ C and let {xn} be a sequence
generated by

zn = Unxn,

Cn = {z ∈ C : 2⟨xn − z, xn − zn⟩ ≥ (1− k)∥xn − zn∥2},
Qn = {z ∈ C : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ F (U), where z0 = PF (U)x1.

Proof. Since U is a k-strict pseudo-contraction of C into itself such that F (U) ̸= ∅,
U is k-demimetric. We also have that for x ∈ C and p ∈ F (Un) = F (U),

2⟨x− p, x− Unx⟩ = 2⟨x− p, x− (βnx+ (1− βn)Ux)⟩
= 2(1− βn)⟨x− p, x− Ux⟩
≥ (1− βn)(1− k)∥x− Ux∥2

= (1− βn)
2 1− k

1− βn
∥x− Ux∥2

=
1− k

1− βn
∥x− (βnx+ (1− βn)Ux)∥2

≥ (1− k)∥x− (βnx+ (1− βn)Ux)∥2

= (1− k)∥x− Unx∥2

and hence {Un} is a family of k-demimetric mappings of C into C such that F (U) =
∩∞
n=1F (Un). Furthermore, let {un} be a bounded sequence of C such that un −

Unun → 0. Then we have

(1− βn)(un − Uun) = un − Unun → 0

and hence un −Uun → 0. It follows from Lemma 4.1 that every weak cluster point
of {un} belongs to F (U) = ∩∞

n=1F (Un). This means that the family {Un} satisfies
the condition (I). Therefore, putting αn = 0 in Theorem 3.2, we have the desired
result from Theorem 3.2. �
Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let U : C → C be a generalized hybrid mapping with F (U) ̸= ∅. Define
Un = βnI + (1 − βn)U for all n ∈ N such that 0 ≤ βn < 1 and supn∈N βn < 1. Let
x1 ∈ C and let {xn} be a sequence generated by

zn = Unxn,

Cn = {z ∈ C : ∥z − zn∥ ≤ ∥z − xn∥},
Qn = {z ∈ C : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ F (U), where z0 = PF (U)x1.

Proof. Since U is a generalized hybrid mapping of C into itself such that F (U) ̸= ∅,
U is 0-demimetric. Thus, the inequality

2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2
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in Theorem 3.2 is

2⟨xn − z, xn − zn⟩ ≥ ∥xn − zn∥2.
Using this inequality and 2⟨xn − z, xn − zn⟩ = ∥xn − zn∥2 + ∥z − xn∥2 − ∥z − zn∥2,
we have ∥z − zn∥2 ≤ ∥z − xn∥2, that is, ∥z − zn∥ ≤ ∥z − xn∥ in Theorem 4.4. As in
the proof of Theorem 4.3, we also have that for x ∈ C and p ∈ F (Un) = F (U),

2⟨x− p, x− Unx⟩ = 2⟨x− p, x− (βnx+ (1− βn)Ux)⟩
= 2(1− βn)⟨x− p, x− Ux⟩
≥ (1− βn)∥x− Ux∥2

≥ ∥x− Unx∥2

and hence {Un} is a family of 0-demimetric mappings of C into C such that F (U) =
∩∞
n=1F (Un). Furthermore, let {un} be a bounded sequence of C such that un −

Unun → 0. Then we have

(1− αn)(un − Uun) = un − Unun → 0

and hence un −Uun → 0. It follows from Lemma 4.2 that every weak cluster point
of {un} belongs to F (U) = ∩∞

n=1F (Un). This means that the family {Un} satisfies
the condition (I). Therefore, putting αn = 0 in Theorem 3.2, we have the desired
result from Theorem 3.2. �

As a direct result of Theorem 4.4, we have the following theorem proved by
Nakajo and Takahashi [15].

Theorem 4.5 ([15]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let U : C → C be a nonexpansive mapping with F (U) ̸= ∅. Let
x1 ∈ C and let {xn} be a sequence generated by

zn = βnxn + (1− βn)Uxn,

Cn = {z ∈ C : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where {βn} is chosen so that, for some a ∈ R,

0 ≤ βn ≤ a < 1, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ F (U), where z0 = PF (U)x1.

Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. For α > 0, a mapping A : C → H is called α-inverse strongly monotone if

⟨x− y,Ax−Ay⟩ ≥ α∥Ax−Ay∥2, ∀x, y ∈ C.

If A is α-inverse strongly monotone and 0 < λ ≤ 2α, then I − λA : C → H is
nonexpansive. In fact, we have that for all x, y ∈ C,

∥(I − λA)x− (I − λA)y∥2 = ∥x− y − λ(Ax−Ay)∥2

= ∥x− y∥2 − 2λ⟨x− y,Ax−Ay⟩+ λ2∥Ax−Ay∥2

≤ ∥x− y∥2 − 2λα∥Ax−Ay∥2 + λ2∥Ax−Ay∥2
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= ∥x− y∥2 + λ(λ− 2α)∥Ax−Ay∥2

≤ ∥x− y∥2.

Thus, I − λA is nonexpansive; see [1, 13, 21] for more results of inverse strongly
monotone mappings. The variational inequalty problem for A : C → H is to find a
point u ∈ C such that

(4.1) ⟨Au, x− u⟩ ≥ 0, ∀x ∈ C.

The set of solutions of (4.1) is denoted by V I(C,A). We also have that, for λ > 0,
u = PC(I − λA)u if and only if u ∈ V I(C,A). In fact, let λ > 0. Then, for u ∈ C,

u = PC(I − λA)u ⇐⇒ ⟨(I − λA)u− u, u− y⟩ ≥ 0, ∀y ∈ C

⇐⇒ ⟨−λAu, u− y⟩ ≥ 0, ∀y ∈ C

⇐⇒ ⟨Au, u− y⟩ ≤ 0, ∀y ∈ C

⇐⇒ ⟨Au, y − u⟩ ≥ 0, ∀y ∈ C

⇐⇒ u ∈ V I(C,A).

Using these results, we obtain the following theorem for inverse strongly monotone
operators in a Hilbert space.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let γ > 0 and let A : C → H be a γ-inverse strongly monotone
operator with V I(C,A) ̸= ∅. Let x1 ∈ C and let {xn} be a sequence generated by

zn = αnxn + (1− αn)PC(I − λnA)xn,

Cn = {z ∈ C : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N.

where, for some a, b ∈ R,

0 ≤ αn ≤ a < 1 and 0 < b ≤ λn ≤ 2γ, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ V I(C,A), where z0 = PV I(C,A)x1.

Proof. Define Un = PC(I−λnA) for all n ∈ N. Since Un is a nonexpansive mapping
of C into itself, Un is 0-demimetric. As in the proof of Theorem 4.4, the inequality

2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2

in Theorem 3.2 is ∥z − zn∥ ≤ ∥z − xn∥ in Theorem 4.6. We also know that
∩∞
n=1F (Un) = V I(C,A). Furthermore, let {zn} be a bounded sequence of C such

that zn − PC(I − λnA)zn → 0. Then, without loss of generality, we may assume
that zn ⇀ p for some p ∈ C and zn−PC(I−λnA)zn → 0. Put vn = PC(I−λnA)zn.
Since PC is the metric projection, we have that

⟨(I − λnA)zn − vn, vn − u⟩ ≥ 0, ∀u ∈ C.

Thus, we have that for all n ∈ N,

⟨λnAu− λnAvn, u− vn⟩ ≥ ⟨(I − λnA)zn − vn, u− vn⟩+ ⟨λnAu− λnAvn, u− vn⟩.
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Then, we have that

⟨λnAu, u− vn⟩ ≥ ⟨(I − λnA)zn − vn + λnAvn, u− vn⟩+ ⟨λnAu− λnAvn, u− vn⟩.

Since A is monotone and λn > 0, we have that

⟨Au, u− vn⟩ ≥
1

λn
⟨(I − λnA)zn − vn + λnAvn, u− vn⟩+ ⟨Au−Avn, u− vn⟩

=
⟨zn − vn

λn
+Avn −Azn, u− vn

⟩
+ ⟨Au−Avn, u− vn⟩

=
⟨zn − vn

λn
+Avn −Au+Au−Azn, u− vn

⟩
+ ⟨Au−Avn, u− vn⟩(4.2)

=
⟨zn − vn

λn
+Au−Azn, u− vn

⟩
=

⟨zn − vn
λn

, u− vn

⟩
+ ⟨Au−Azn, u− zn + zn − vn⟩

≥
⟨zn − vn

λn
, u− vn

⟩
+ ⟨Au−Azn, zn − vn⟩.

From zn − vn → 0 and zn−vn
λn

→ 0, we have

(4.3) ⟨Au, u− p⟩ ≥ 0.

Take ut = (1− t)p+ ty for all t ∈ (0, 1) and y ∈ C. From (4.3) and t > 0, we have
that ⟨Aut, ut − p⟩ ≥ 0 and hence ⟨Aut, y − p⟩ ≥ 0. Since ut = (1 − t)p + ty → p as
t → 0 and A is continuous, we have that ⟨Ap, y− p⟩ ≥ 0. This implies p ∈ V I(C,A)
from which it follows that the family {Un} satisfies the condition (I). Therefore, we
have the desired result from Theorem 3.2. �

Let C be a nonempty subset of a Hilbert space H. A family S = {T (t) : t ∈
[0,∞)} of mappings of C into itself satisfying the following conditions is said to be
a one-parameter nonexpansive semigroup on C:

(1) For each t ∈ [0,∞), T (t) is nonexpansive;
(2) T (0) = I;
(3) T (t+ s) = T (t)T (s) for every t, s ∈ [0,∞);
(4) for each x ∈ C, t 7→ T (t)x is continuous.

Theorem 4.7. Let H be a Hilbert space and let C be a nonempty, closed convex
subset of H. Let S = {T (t) : t ∈ [0,∞)} be a one-parameter nonexpansive semigroup
on C with the common fixed point set F (S) = ∩t∈[0,∞)F (T (t)) ̸= ∅. Define Unx =
1
tn

∫ tn
0 T (s)xds for all x ∈ C and n ∈ N with tn → ∞. Let x1 ∈ C and let {xn} be

a sequence generated by
zn = αnxn + (1− αn)

1
tn

∫ tn
0 T (s)xnds,

Cn = {z ∈ C : ∥zn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨xn − z, x1 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N,

where, for some a ∈ R,
0 ≤ αn ≤ a < 1, ∀n ∈ N.
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Then the sequence {xn} converges strongly to a point z0 ∈ F (S), where z0 =
PF (S)x1.

Proof. Since Un is a nonexpansive mapping of C into itself, Un is 0-demimetric.
Thus, the inequality

2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2

in Theorem 3.2 is

2⟨xn − z, xn − zn⟩ ≥ ∥xn − zn∥2.
Using this inequality and 2⟨xn−z, xn−zn⟩ = ∥xn−zn∥2+∥z−xn∥2−∥z−zn∥2, we
have ∥z−zn∥2 ≤ ∥z−xn∥2, that is, ∥z−zn∥ ≤ ∥z−xn∥ in Theorem 4.7. We also know
from [19] that ∩∞

n=1F (Un) = F (S). Furthermore, let {un} be a bounded sequence
of C such that un − Unun → 0. Then we have from [14] that un − T (s)un → 0
for all s ∈ [0,∞). Since T (s) is nonexpansive, every weak cluster point u0 of {un}
belongs to F (T (s)); see [21]. Then, u0 ∈ ∩∞

n=1F (Un) = F (S). This means that the
family {Un} satisfies the condition (I). Therefore, we have the desired result from
Theorem 3.2. �

Theorem 4.8. Let E be a uniformly convex and smooth Banach space. Let JE be
the duality mapping on E. Let A be a maximal monotone operator of E into E∗

and let Jλ be the metric resolvent of A for λ > 0. Let x1 ∈ E and let {xn} be a
sequence generated by

zn = αnxn + (1− αn)Jλnxn,

Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Qnx1, ∀n ∈ N.

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) satisfy the conditions such that

0 ≤ αn ≤ a < 1, and 0 < b ≤ λn

for some a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ A−10, where
z0 = PA−10x1.

Proof. Since Jλn is the metric resolvent of A, Jλn is (−1)-demimetric. Thus, the
inequality

2⟨xn − z, JE(xn − zn)⟩ ≥ (1− ηn)∥xn − zn∥2

in Theorem 3.2 is

⟨xn − z, JE(xn − zn)⟩ ≥ ∥xn − zn∥2.
Using this inequality and ∥xn−zn∥2 = ⟨xn−zn, JE(xn−zn)⟩, we have the inequality

⟨zn − z, JE(xn − zn)⟩ ≥ 0

in Theorem 4.8. Assume that {xn} is a sequence in E such that xn ⇀ p and
xn−Jλnxn → 0. It is clear that Jλnxn ⇀ p and ∥JE(xn−Jλnxn)∥ = ∥xn−Jλnxn∥ →
0. Since Jλn is the metric resolvent of A, we have that

xn − Jλnxn
λn

∈ AJλnxn.
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Since A is monotone, we have⟨
Jλnxn − u,

xn − Jλnxn
λn

− v∗
⟩
≥ 0

for all (u, v∗) ∈ A. From Jλnxn ⇀ p, JE(xn − Jλnxn) → 0 and 0 < b ≤ λn, we have
that

⟨p− u,−v∗⟩ ≥ 0.

Since A is maximal, we get 0 ∈ Ap and hence p = Jλnp. Therefore, we have the
desired result from Theorem 3.2. �

Theorem 4.8 is the result of Ohsawa and Takahashi [16]. Similarly, using Theorem
3.3, we have the following results.

Theorem 4.9. Let H be a Hilbert space. Let k be a real number with k ∈ [0, 1). Let
C be a nonempty, closed and convex subset of H and let U : C → C be a k-strict
pseudo-contraction such that F (U) ̸= ∅. Define Un = βnI +(1−βn)U for all n ∈ N
such that 0 ≤ βn < 1 and supn∈N βn < 1. For x1 ∈ C and C1 = C, let {xn} be a
sequence generated by

zn = Unxn,

Cn+1 = {z ∈ Cn : 2⟨xn − z, xn − zn⟩ ≥ (1− k)∥xn − zn∥2},
xn+1 = PCn+1x1, ∀n ∈ N.

Then {xn} converges strongly to z0 ∈ F (U), where z0 = PF (U)x1.

Theorem 4.10. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let U : C → C be a generalized hybrid mapping with F (U) ̸= ∅.
Define Un = βnI+(1−βn)U for all n ∈ N such that 0 ≤ βn < 1 and supn∈N βn < 1.
For x1 ∈ C and C1 = C, let {xn} be a sequence generated by

zn = Unxn,

Cn+1 = {z ∈ Cn : ∥zn − z∥ ≤ ∥xn − zn∥},
xn+1 = PCn+1x1, ∀n ∈ N.

Then {xn} converges strongly to z0 ∈ F (U), where z0 = PF (U)x1.

Using Theorem 3.3, we also have the following strong convergence theorem for
finding a zero point of a maximal monotone operator in a Banach space.

Theorem 4.11. Let E be a uniformly convex and smooth Banach space. Let JE
be the duality mapping on E. Let A be a maximal monotone operator of E. Let Jλ
be the metric resolvent of A for λ > 0. Suppose that A−10 ̸= ∅. For x1 ∈ C and
C1 = C, let {xn} be a sequence generated by

zn = αnxn + (1− αn)Jλnxn,

Cn+1 = {z ∈ Cn : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
xn+1 = PCn+1x1, ∀n ∈ N,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞) satisfy the conditions such that

0 ≤ αn ≤ a < 1, and 0 < b ≤ λn
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for some a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ A−10, where
z0 = PA−10x1.
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