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SOME GENERALIZATIONS OF NON-HERMITIAN

UNCETRAINTY RELATION DESCRIBED BY THE

GENERALIZED QUASI-METRIC ADJUSTED SKEW
INFORMATION

KENJIRO YANAGI

ABSTRACT. Recently in [10] we obtained non-hermitian extensions of Heisenberg
type and Schrédinger type uncertainty relations for generalized quasi-metric ad-
justed skew information or generalized quasi-metric adjusted correlation measure
and applied to the inequalities related to fidelity and trace distance for differ-
ent two generalized states which were given by Audenaert et al; and Powers-
Stérmer [1,2,5]. In this paper we give some more generalizations of these uncer-
tainty relations and show that several results obtained in [3,5] are given as the
corollaries in our theorems.

1. INTRODUCTION

Let My (C)(resp. M, 4,(C)) be the set of all n x n complex matrices (resp.
all n x n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product
(X,Y) =Tr[X*Y]. Let M, +(C) be the set of strictly positive elements of M,,(C)
and M, 4+ 1(C) be the set of density matrices. A function f : (0,4+00) — R is said
operator monotone if, for any n € N, and A, B € M, +(C) such that 0 < A < B,
the inequality 0 < f(A) < f(B) holds. An operator monotone function is said
symmetric if f(z) = xf(z~!) and normalized if f(1) = 1.

Definition 1.1. Let §,p be the class of functions f : (0,+00) — (0,400) satisfying

(1) f(1) =1,
(2) tf(t7Y) = f (1),

(3) f is operator monotone.

Example 1.2. Ezamples of elements of Fop are given by the following list, for any
x>0,
2z z+1 z—1
frip(z) = et fsep(x) = ——, feru(z) = ogz’
VT +1\° (z— 1)
= =o(l - 1).
fwy (z) ( 5 ; fwyp(r) =a(l —a) o DEe 1) € (0,1)
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For f € §,p define f(0) = limg, o f(z). We introduce the sets of regular and
non-regular functions

Sop = {f € Bopl £(0) # 0}, o, = {f € Topl£(0) = 0}

and notice that trivially §,, = ggp U 3:;;,. In Kubo-Ando theory of matrix means
one associates a mean to each operator monotone function f € §,p, by the formula

mf(A,B) _ A1/2f(A—1/ZBA—1/2)A1/2’

where A, B € M,, +(C). By using the notion of matrix means we define the gener-
alized monotone metrics for X,Y € M, (C) by the following formula

(X,Y)p =Tr[X ms(La,Rp)"'Y],
where LA(X) = AX, Rp(X) = XB.

2. GENERALIZED QUASI-METRIC ADJUSTED SKEW INFORMATION AND
CORRELATION MEASURE

Definition 2.1. Let g, f € §y, satisfy

(z—1)?
9 =)
for some k > 0. We define
F(g) = ala) — (x—1)2
(21) Ag( ) g( ) k f(l’) € go}"

Definition 2.2. Notation as in Definition 2.1. For X,Y € M,(C) and A,B €
M, +(C), we define the following quantities:
(1) I9D(X,Y) = K(La — Rp)X. (La — Rp)Y);
= kTr[X*(La — Rp)mys(La,R) "' (La — Rp)Y]
=Tr[X*mg(La, Rp)Y| — TT[X*mAg(LA,RB)Y],

2) 17} ><X> Ly x, x),

(3) WEH (X,Y) = Tr[X*my(La, Rp)Y] + Tr[X*m s (La, Rp)Y],
(4) J%NX) vl (X, X),
(5) U (x \/Igf) x)J9D(X).

The quantities Il(fé)( X) and I‘Eff;) (X,Y) are said generalized quasi-metric adjusted
skew information and generalized quasi-metric adjusted correlation measure, respec-
tively.

Theorem 2.3. For f € §,,, it holds

1 2
195 (X) - 190 () = DGR E VP > 6 (105 e y) - 19 (x - 7))
where X,Y € M, (C) and A, B € M,, +(C).
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Proof. Since the first inequality was proved in [10], we prove the second inequality.
Since

z%) (X +Y) = Trl(X*+Y*)mg(La, Rp)(X +Y)]
~Tr[(X* +Y")my s (La, Rp)(X +Y)],
19X —Y) = Tri(X* —Y*)my(La, Rp)(X — V)]
—Tr|(X* = Y")mys (La, Rp)(X = Y)],
we have
Iﬁfﬁ (X+Y)—I§1%§)(X—Y) = 2Tr[X*my(La, Rp)Y] + 2TrY*my(L 4, Rp)X]
= 2Tr[X*m s (La, Rp)Y]=2Tr[Y " m,s(La, Rp)X]
g g
= or{f) (X Y) + 209D (v, x)
— 4Re{F D(X,Y)}.
Similarly we have
1D (X +7) + 18D (X - v) =208 (x) + 1905 (v)).
Then
LXY) = Re{TYH (X, v)} +iIm{T{f) (X, v)}

= 1(1(9 f)(X +Y) — 19 (X~ Y) +im{TR (X, V).

4
Since
Ty EY? = 16(1(9 DX +Y) - 190X - )+ m{r§L) (X, 7)})?
> 16(1” DX +y) - 1§ (x - )2,
we have the result. O

By setting ¢ = fsip, f = fwy, k = i, A=DB=pe M,;1(C), we have the
following corollary.

Corollary 2.4 ([4], Theorem 3.3). Let X,Y € M,(C) and p € My 4+1(C) be a
quantum state. Then

LI - 11V 2 5 (I +¥) = [T I(X = ¥))%

where |I,|(X) = —3Tr([p*/2, X*|[p*/2, X]] and [X,Y] = XY -V X.
We note the equation

[La—Rpl =Y > 1N = il Liguyion Rl (1

i=1 j=1
where A =710 Ailgi)(#il, B = " pjlpj) (1] are the spectral decompositions.
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Theorem 2.5. For f € §y,, if

(2.2) g9(x) + Af(x) > £ ()

for some £ > 0, then the followings hold for X,Y € M, (C) and A, B € M,, . (C)
(1) USEx)- U (v) 2 T L4 - RolYIP:
@) U o v ) = GNP x v,

)

Proof. Since (1) was proved in [10], we prove (2). By Lemma 3.3 and Lemma 3.4
in [3]

2
my(e,)? —m gy (e,)? > t(e— ) 2 kLSO (my . 0) — m gy (2,2
Then

2
O g ,) — mpg ).

mg(x7y) + mAg(:c,y) >

Hence we have

TEE W) = Y Amgg) +ms O ) (@Y [o) 2

\Y
=
=

N
[
i
3
<
&
=
<

) = mps (i, 115) (i Y [105) 12

k
]
f 0 2/6 b
_ (k) I,(Ag,é) (Y).

By the first inequality in Theorem 2.3

k
D YP < 18P0 - 190 (v) < 195 (x) - TP ).

) )

Then

Similarly we have

TR0 - L)) = o= r ) ()
Therefore we get the result. O

By setting A = B = p € M,, 1 1(C) we have the following corollary.
Corollary 2.6 ([3, Theorem 3.5] ). If f,g € §op satisfy (2.2), then

UeH(x) - vl (y) > 10 )2£|o rrOD (X, Y2,

where X,Y € M, (C) and p € My, + 1(C). Here Uég’f) (X) and C’orr,()g’f) (X,Y) are
defined in [3].
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Remark 2.7. When X =Y € M,(C), the following holds.

F(0)2 _ f(0)%

7f
TR X2 = S

However it is unknown the relationship between ﬂOTWWEf’IJ;)(X, Y)|
and k0| Tr[X*|La — Rp|Y]|.

Example 2.8. Let SUZ']' = <¢Z|X|’QZJ]>, yU = <¢1|Y|¢J>
(1) When g = frsp, f = fwyp, k=12 ¢=2,

KOTr[X|La — Rp|Y]2 = (1 —a IZ\A - wjlzizyis .

\
[\

f(0)%¢

ST YR = el - @) YOO - )N = )T

5,J
(2) When g = fwy, f= fwyp, k=19, 1= 3,

5
3 __
kO Tr[X|La — Rp|Y]]* = gell—a !Z N — il Tiyis

f (0)

T 1
(3) When g = (Z5H) u (3<y<), f=fwy, k=%, £=2,

kO Tr(X|La— Rp|Y][? *\ZP\ — pilTi5yis 17,

O ) (x, )P fer I T

T 1
(4) When g = (Z5H) / (3 <y<, f:fWYa k=55, (=2,

ROTr[X|La — Rp|Y]? IZ Ao — wjlTigi5 17,

O 1 _
O )P = ) S0/ — Vi) Tl
1,

TP (X)[2 < kOTr[X*|La — Rp|X] P2

INTAC ROl fal—a@xa PN = g )Ty
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