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Abstract. In this paper, we revisit the concept of r-convex functions which

were studied in 1970s. We present several novel examples of r-convex functions

that are new to the existing literature. In particular, for any given r, we show

examples which are r-convex functions. In addition, we extend the concepts of

r-convexity and quasi-convexity to the setting associated with second-order cone.

Characterizations about such new functions are established. These generaliza-

tions will be useful in dealing with optimization problems involved in second-order

cones.

1. Introduction

It is known that the concept of convexity plays a central role in many appli-
cations including mathematical economics, engineering, management science, and
optimization theory. Moreover, much attention has been paid to its generaliza-
tion, to the associated generalization of the results previously developed for the
classical convexity, and to the discovery of necessary and/or sufficient conditions
for a function to have generalized convexities. Some of the known extensions are
quasiconvex functions, r-convex functions [1, 24], and so-called SOC-convex func-
tions [7, 8]. Other further extensions can be found in [19, 23]. For a single variable
continuous, the midpoint-convex function on R is also a convex function. This result
was generalized in [22] by relaxing continuity to lower-semicontinuity and replacing
the number 1

2 with an arbitrary parameter α ∈ (0, 1). An analogous consequence
was obtained in [18,23] for quasiconvex functions.

To understand the main idea behind r-convex function, we recall some concepts
that were independently defined by Martos [17] and Avriel [2], and has been studied
by the latter author. Indeed, this concept relies on the classical definition of convex
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functions and some well-known results from analysis dealing with weighted means
of positive numbers. Let w = (w1, . . . , wm) ∈ Rm, q = (q1, . . . , qm) ∈ Rm be vectors
whose components are positive and nonnegative numbers, respectively, such that∑m

i=1 qi = 1. Given the vector of weights q, the weighted r-mean of the numbers
w1, . . . , wm is defined as below (see [13]):

(1.1) Mr(w; q) =Mr(w1, . . . , wm; q) :=


(

m∑
i=1

qi(wi)
r

)1/r

if r ̸= 0,

m∏
i=1

(wi)
qi if r = 0.

It is well-known from [13] that for s > r, there holds

(1.2) Ms(w1, . . . , wm; q) ≥Mr(w1, . . . , wm; q)

for all q1, . . . , qm ≥ 0 with
∑m

i=1 qi = 1. The r-convexity is built based on the
aforementioned weighted r-mean. For a convex set S ⊆ Rn, a real-valued function
f : S ⊆ Rn → R is said to be r-convex if, for any x, y ∈ S, λ ∈ [0, 1], q2 = λ,
q1 = 1− q2, q = (q1, q2), there has

f(q1x+ q2y) ≤ ln
{
Mr(e

f(x), ef(y); q)
}
.

From (1.1), it can be verified that the above inequality is equivalent to

(1.3) f((1− λ)x+ λy) ≤
{

ln[(1− λ)erf(x) + λerf(y)]1/r if r ̸= 0,
(1− λ)f(x) + λf(y) if r = 0.

Similarly, f is said to be r-concave on S if the inequality (1.3) is reversed. It is clear
from the above definition that a real-valued function is convex (concave) if and only
if it is 0-convex (0-concave). Besides, for r < 0 (r > 0), an r-convex (r-concave)
function is called superconvex (superconcave); while for r > 0 (r < 0), it is called
subconvex (subconcave). In addition, it can be verified that the r-convexity of f on
C with r > 0 (r < 0) is equivalent to the convexity (concavity) of erf on S.

A function f : S ⊆ Rn → R is said to be quasiconvex on S if, for all x, y ∈ S,

f (λx+ (1− λ)y) ≤ max {f(x), f(y)} , 0 ≤ λ ≤ 1.

Analogously, f is said to be quasiconcave on S if, for all x, y ∈ S,

f (λx+ (1− λ)y) ≥ min {f(x), f(y)} , 0 ≤ λ ≤ 1.

From [13], we know that

lim
r→+∞

Mr(w1, . . . , wm; q) ≡M∞(w1, . . . , wm) = max{w1, . . . , wm},

lim
r→−∞

Mr(w1, · · · , wm; q) ≡M−∞(w1, . . . , wm) = min{w1, · · · , wm}.

Then, it follows from (1.2) that M∞(w1, . . . , wm) ≥ Mr(w1, . . . , wm; q) ≥
M−∞(w1, . . . , wm) for every real number r. Thus, if f is r-convex on S, it is also
(+∞)-convex, that is, f(λx + (1 − λ)y) ≤ max{f(x), f(y)} for every x, y ∈ S
and λ ∈ [0, 1]. Similarly, if f is r-concave on S, it is also (−∞)-concave, i.e.,
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f(λx+ (1− λ)y) ≥ min{f(x), f(y)}.

The following review some basic properties regarding r-convex function from [1]
that will be used in the subsequent analysis.

Property 1.1. Let f : S ⊆ Rn → R. Then, the followings hold.

(a) If f is r-convex (r-concave) on S, then f is also s-convex (s-concave) on S
for s > r (s < r).

(b) Suppose that f is twice continuously differentiable on S. For any (x, r) ∈
S × R, we define

ϕ(x, r) = ∇2f(x) + r∇f(x)∇f(x)T .

Then, f is r-convex on S if and only if ϕ is positive semidefinite for all x ∈ S.
(c) Every r-convex (r-concave) function on a convex set S is also quasiconvex

(quasiconcave) on S.
(d) f is r-convex if and only if (−f) is (−r)-concave.
(e) Let f be r-convex (r-concave), α ∈ R and k > 0. Then f + α is r-convex

(r-concave) and k · f is ( rk )-convex (( rk )-concave).
(f) Let ϕ, ψ : S ⊆ Rn → R be r-convex (r-concave) and α1, α2 > 0. Then, the

function θ defined by

θ(x) =

{
ln
[
α1e

rϕ(x) + α2e
rψ(x)

]1/r
if r ̸= 0,

α1ϕ(x) + α2ψ(x) if r = 0,

is also r-convex (r-concave).
(g) Let ϕ : S ⊆ Rn → R be r-convex (r-concave) such that r ≤ 0 (r ≥ 0) and let

the real valued function ψ be nondecreasing s-convex (s-concave) on R with
s ∈ R. Then, the composite function θ = ψ ◦ ϕ is also s-convex (s-concave).

(h) ϕ : S ⊆ Rn → R is r-convex (r-concave) if and only if, for every x, y ∈ S,
the function ψ given by

ψ(λ) = ϕ ((1− λ)x+ λy)

is an r-convex (r-concave) function of λ for 0 ≤ λ ≤ 1.
(i) Let ϕ be a twice continuously differentiable real quasiconvex function on an

open convex set S ⊆ Rn. If there exists a real number r∗ satisfying

(1.4) r∗ = sup
x∈S, ∥z∥=1

−zT∇2ϕ(x)z

[zT∇ϕ(x)]2

whenever zT∇ϕ(x) ̸= 0, then ϕ is r-convex for every r ≥ r∗. We obtain the
r-concave analog of the above theorem by replacing supremum in (1.4) by
infimum.

In this paper, we will present new examples of r-convex functions in Section 2.
Meanwhile, we extend the r-convexity and quasi-convexity concepts to the setting
associated with second-order cone in Section 4 and Section 5. Applications of r-
convexity to optimization theory can be found in [2, 12, 15]. In general, r-convex
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functions can be viewed as the functions between convex functions and quasi-convex
functions. We believe that the aforementioned extensions will be beneficial for deal-
ing optimization problems involved second-order constraints. We point out that
extending the concepts of r-convex and quasi-convex functions to the setting asso-
ciated with second-order cone, which belongs to symmetric cones, is not easy and
obvious since any two vectors in the Euclidean Jordan algebra cannot be compared
under the partial order ≼Kn , see [8]. Nonetheless, using the projection onto second-
order cone pave a way to do such extensions, more details will be seen in Sections
4 and 5.

To close this section, we recall some background materials regarding second-order
cone. The second-order cone (SOC for short) in Rn, also called the Lorentz cone,
is defined by

Kn =
{
x = (x1, x2) ∈ R× Rn−1 | ∥x2∥ ≤ x1

}
.

For n = 1, Kn denotes the set of nonnegative real number R+. For any x, y in Rn,
we write x ≽Kn y if x−y ∈ Kn and write x ≻Kn y if x−y ∈ int(Kn). In other words,
we have x ≽Kn 0 if and only if x ∈ Kn and x ≻Kn 0 if and only if x ∈ int(Kn).
The relation ≽Kn is a partial ordering but not a linear ordering in Kn, i.e., there
exist x, y ∈ Kn such that neither x ≽Kn y nor y ≽Kn x. To see this, for n = 2, let
x = (1, 1) and y = (1, 0), we have x− y = (0, 1) /∈ Kn, y − x = (0,−1) /∈ Kn.

For dealing with second-order cone programs (SOCP) and second-order cone com-
plementarity problems (SOCCP), we need spectral decomposition associated with
SOC [9]. More specifically, for any x = (x1, x2) ∈ R × Rn−1, the vector x can be
decomposed as

x = λ1u
(1)
x + λ2u

(2)
x ,

where λ1, λ2 and u
(1)
x , u

(2)
x are the spectral values and the associated spectral vectors

of x, respectively, given by

λi = x1 + (−1)i∥x2∥,

u(i)x =

{ 1
2(1, (−1)i x2

∥x2∥) if x2 ̸= 0,
1
2(1, (−1)iw) if x2 = 0.

for i = 1, 2 with w being any vector in Rn−1 satisfying ∥w∥ = 1. If x2 ̸= 0, the
decomposition is unique.

For any function f : R → R, the following vector-valued function associated with
Kn (n ≥ 1) was considered in [7, 8]:

(1.5) f soc(x) = f(λ1)u
(1)
x + f(λ2)u

(2)
x , ∀x = (x1, x2) ∈ R× Rn−1.

If f is defined only on a subset of R, then f soc is defined on the corresponding subset
of Rn. The definition (1.5) is unambiguous whether x2 ̸= 0 or x2 = 0. The cases of

f soc(x) = x1/2, x2, exp(x) are discussed in [10]. In fact, the above definition (1.5)
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is analogous to the one associated with positive semidefinite cone Sn+ [20,21].

Throughout this paper, Rn denotes the space of n-dimensional real column vec-
tors, C denotes a convex subset of R, S denotes a convex subset of Rn, and ⟨· , ·⟩
means the Euclidean inner product, whereas ∥ · ∥ is the Euclidean norm. The nota-
tion “:=” means “define”. For any f : Rn → R, ∇f(x) denotes the gradient of f at

x. C(i)(J) denotes the family of functions which are defined on J ⊆ Rn to R and
have the i-th continuous derivative, while T means transpose.

2. Examples of r-functions

In this section, we try to discover some new r-convex functions which is verified
by applying Property 1.1. With these examples, we have a more complete picture
about characterizations of r-convex functions. Moreover, for any given r, we also
provide examples which are r-convex functions.

Example 2.1. For any real number p, let f : (0,∞) → R be defined by f(t) = tp.

(a) If p > 0, then f is convex for p ≥ 1, and (+∞)-convex for 0 < p < 1.
(b) If p < 0, then f is convex.

To see this, we first note that f ′(t) = ptp−1, f ′′(t) = p(p− 1)tp−2 and

sup
s·f ′(t) ̸=0,|s|=1

−s · f ′′(t) · s
[s · f ′(t)]2

= sup
p̸=0

(1− p)t−p

p
=

{
∞ if 0 < p < 1,
0 if p > 1 or p < 0.

Then, applying Property 1.1 yields the desired result.

Example 2.2. Suppose that f is defined on (−π
2 ,

π
2 ).

(a) The function f(t) = sin t is ∞-convex.
(b) The function f(t) = tan t is 1-convex.
(c) The function f(t) = ln(sec t) is (−1)-convex.
(d) The function f(t) = ln |sec t+ tan t| is 1-convex.

To see (a), we note that f ′(t) = cos t, f ′′(t) = − sin t, and

sup
−π

2
<t<π

2
,|s|=1

−s · f ′′(t) · s
[s · f ′(t)]2

= sup
−π

2
<t<π

2

sin t

cos2 t
= ∞.

Hence f(t) = sin t is ∞-convex.
To see (b), we note that f ′(t) = sec2 t, f ′′(t) = 2 sec2 t · tan t, and

sup
−π

2
<t<π

2

−f ′′(t)
[f ′(t)]2

= sup
−π

2
<t<π

2

−2 sec2 t · tan t
sec4 t

= sup
−π

2
<t<π

2

(− sin 2t) = 1.

This says that f(t) = tan t is 1-convex.
To see (c), we note that f ′(t) = tan t, f ′′(t) = sec2 t, and

sup
−π

2
<t<π

2

−f ′′(t)
[f ′(t)]2

= sup
−π

2
<t<π

2

−k sec2 t
tan2 t

= sup
−π

2
<t<π

2

(− csc2 t) = −1.

Then, it is clear to see that f(t) = ln(sec t) is (−1)-convex.



372 C.-H. HUANG, H.-L. HUANG, AND J.-S. CHEN

To see (d), we note that f ′(t) = sec t, f ′′(t) = sec t · tan t, and

sup
−π

2
<t<π

2

−f ′′(t)
[f ′(t)]2

= sup
−π

2
<t<π

2

− sec t · tan t
sec2 t

= sup
−π

2
<t<π

2

(− sin t) = 1.

Thus, f(t) = ln |sec t+ tan t| is 1-convex.

Figure 1. Graphs of r-convex functions with various values of r.

In light of Example 2.2(b)-(c) and Property 1.1(e), the next example indicates
that for any given r ∈ R (no matter positive or negative), we can always construct
an r-convex function accordingly. The graphs of various r-convex functions are
depicted in Figure 1.

Example 2.3. For any r ̸= 0, let f be defined on (−π
2 ,

π
2 ).

(a) The function f(t) =
tan t

r
is |r|-convex.

(b) The function f(t) =
ln(sec t)

r
is (−r)-convex.

(a) First, we compute that f ′(t) =
sec2 t

r
, f ′′(t) =

2 sec2 t · tan t
r

, and

sup
−π

2
<t<π

2

−f ′′(t)
[f ′(t)]2

= sup
−π

2
<t<π

2

(−r sin 2t) = |r|.

This says that f(t) =
tan t

r
is |r|-convex.

(b) Similarly, from f ′(t) =
tan t

r
, f ′′(t) =

sec2 t

r
, and

sup
−π

2
<t<π

2

−f ′′(t)
[f ′(t)]2

= sup
−π

2
<t<π

2

(−r csc2 t) = −r.
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Then, it is easy to see that f(t) =
ln(sec t)

r
is (−r)-convex.

Example 2.4. The function f(x) = 1
2 ln(∥x∥

2 + 1) defined on R2 is 1-convex.

For x = (s, t) ∈ R2, and any real number r ̸= 0, we consider the function

ϕ(x, r) = ∇2f(x) + r∇f(x)∇f(x)T

=
1

(∥x∥2 + 1)2

[
t2 − s2 + 1 −2st

−2st s2 − t2 + 1

]
+

r

(∥x∥2 + 1)2

[
s2 st
st t2

]
=

1

(∥x∥2 + 1)2

[
(r − 1)s2 + t2 + 1 (r − 2)st

(r − 2)st s2 + (r − 1)t2 + 1

]
.

Applying Property 1.1(b), we know that f is r-convex if and only if ϕ is positive
semidefinite, which is equivalent to

(r − 1)s2 + t2 + 1 ≥ 0(2.1) ∣∣∣∣(r − 1)s2 + t2 + 1 (r − 2)st
(r − 2)st s2 + (r − 1)t2 + 1

∣∣∣∣ ≥ 0.(2.2)

It is easy to verify the inequality (2.1) holds for all x ∈ R2 if and only if r ≥ 1.
Moreover, we note that∣∣∣∣(r − 1)s2 + t2 + 1 (r − 2)st

(r − 2)st s2 + (r − 1)t2 + 1

∣∣∣∣ ≥ 0

⇐⇒ s2t2 + s2 + t2 + 1 + (r − 1)2s2t2 + (r − 1)(s4 + s2 + t4 + t2)− (r − 2)2s2t2 ≥ 0

⇐⇒ s2 + t2 + 1 + (2r − 2)s2t2 + (r − 1)(s4 + s2 + t4 + t2) ≥ 0,

and hence the inequality (2.2) holds for all x ∈ R2 whenever r ≥ 1. Thus, we
conclude by Property 1.1(b) that f is 1-convex on R2.

Figure 2. Graphs of 1-convex functions f(x) = 1
2 ln(∥x∥

2 + 1).
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3. Properties of SOC-functions

As mentioned in Section 1, another contribution of this paper is extending the
concept of r-convexity to the setting associated with second-order cone. To this
end, we recall what SOC-convex function means. For any x = (x1, x2) ∈ R× Rn−1

and y = (y1, y2) ∈ R× Rn−1, we define their Jordan product as

x ◦ y = (xT y , y1x2 + x1y2).

We write x2 to mean x ◦ x and write x + y to mean the usual componentwise
addition of vectors. Then, ◦,+, together with e′ = (1, 0, . . . , 0)T ∈ Rn and for
any x, y, z ∈ Rn, the following basic properties [10, 11] hold: (1) e′ ◦ x = x, (2)
x ◦ y = y ◦x, (3) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), (4) (x+ y) ◦ z = x ◦ z+ y ◦ z. Notice that
the Jordan product is not associative in general. However, it is power associative,
i.e., x ◦ (x ◦x) = (x ◦x) ◦x for all x ∈ Rn. Thus, we may, without loss of ambiguity,
write xm for the product of m copies of x and xm+n = xm ◦ xn for all positive
integers m and n. Here, we set x0 = e′. Besides, Kn is not closed under Jordan
product.

For any x ∈ Kn, it is known that there exists a unique vector in Kn denoted by
x1/2 such that (x1/2)2 = x1/2 ◦ x1/2 = x. Indeed,

x1/2 =
(
s,
x2
2s

)
, where s =

√
1

2

(
x1 +

√
x21 − ∥x2∥2

)
.

In the above formula, the term x2/s is defined to be the zero vector if x2 = 0 and
s = 0, i.e., x = 0. For any x ∈ Rn, we always have x2 ∈ Kn, i.e., x2 ≽Kn 0. Hence,
there exists a unique vector (x2)1/2 ∈ Kn denoted by |x|. It is easy to verify that
|x| ≽Kn 0 and x2 = |x|2 for any x ∈ Rn. It is also known that |x| ≽Kn x. For any
x ∈ Rn, we define [x]+ to be the nearest point projection of x onto Kn, which is
the same definition as in Rn+. In other words, [x]+ is the optimal solution of the
parametric SOCP: [x]+ = argmin{∥x− y∥ | y ∈ Kn}. In addition, it can be verified
that [x]+ = (x+ |x|)/2; see [10,11].

Property 3.1 ([11, Proposition 3.3]). For any x = (x1, x2) ∈ R× Rn−1, we have

(a) |x| = (x2)1/2 = |λ1|u(1)x + |λ2|u(2)x .

(b) [x]+ = [λ1]+u
(1)
x + [λ2]+u

(2)
x = 1

2(x+ |x|).

Next, we review the concepts of SOC-monotone and SOC-convex functions which
are introduced in [7].

Definition 3.2. For a real valued function f : R → R,
(a) f is said to be SOC-monotone of order n if its corresponding vector-valued

function f soc defined as in (1.5) satisfies

x ≽Kn y =⇒ f soc(x) ≽Kn f soc(y).

The function f is said to be SOC-monotone if f is SOC-monotone of all
order n.
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(b) f is said to be SOC-convex of order n if its corresponding vector-valued
function f soc defined as in (1.5) satisfies

(3.1) f soc((1− λ)x+ λy) ≼Kn (1− λ)f soc(x) + λf soc(y)

for all x, y ∈ Rn and 0 ≤ λ ≤ 1. Similarly, f is said to be SOC-concave of
order n on C if the inequality (3.1) is reversed. The function f is said to be
SOC-convex (respectively, SOC-concave) if f is SOC-convex of all order n
(respectively, SOC-concave of all order n).

The concepts of SOC-monotone and SOC-convex functions are analogous to ma-
trix monotone and matrix convex functions [5,14], and are special cases of operator
monotone and operator convex functions [3,6,16]. Examples of SOC-monotone and
SOC-convex functions are given in [7]. It is clear that the set of SOC-monotone
functions and the set of SOC-convex functions are both closed under linear combi-
nations and under pointwise limits.

Property 3.3 ([8, Theorem 3.1]). Let f ∈ C(1)(J) with J being an open interval
and dom(f soc) ⊆ Rn. Then, the following hold.

(a) f is SOC-monotone of order 2 if and only if f ′(τ) ≥ 0 for any τ ∈ J ;
(b) f is SOC-monotone of order n ≥ 3 if and only if the 2× 2 matrix f (1)(t1)

f(t2)− f(t1)

t2 − t1
f(t2)− f(t1)

t2 − t1
f (1)(t2)

 ≽ O for all t1, t2 ∈ J and t1 ̸= t2.

Property 3.4 ([8, Theorem 4.1]). Let f ∈ C(2)(J) with J being an open interval
in R and dom(f soc) ⊆ Rn. Then, the following hold.

(a) f is SOC-convex of order 2 if and only if f is convex;
(b) f is SOC-convex of order n ≥ 3 if and only if f is convex and the inequality

(3.2)
1

2
f (2)(t0)

[f(t0)− f(t)− f (1)(t)(t0 − t)]

(t0 − t)2
≥ [f(t)− f(t0)− f (1)(t0)(t− t0)]

(t0 − t)4

holds for any t0, t ∈ J and t0 ̸= t.

Property 3.5 ([4, Theorem 3.3.7]). Let f : S → R where S is a nonempty open
convex set in Rn. Suppose f ∈ C2(S). Then, f is convex if and only if ∇2f(x) ≽ O,
for all x ∈ S.

Property 3.6 ([7, Proposition 4.1]). Let f : [0,∞] → [0,∞] be continuous. If f is
SOC-concave, then f is SOC-monotone.

Property 3.7 ( [11, Proposition 3.2]). Suppose that f(t) = et and g(t) = ln t.
Then, the corresponding SOC-functions of et and ln t are given as below.

(a) For any x = (x1, x2) ∈ R× Rn−1,

f soc(x) = ex =

{
ex1
(
cosh(∥x2∥), sinh(∥x2∥) x2

∥x2∥

)
if x2 ̸= 0,

(ex1 , 0) if x2 = 0,

where cosh(α) = (eα + e−α)/2 and sinh(α) = (eα − e−α)/2 for α ∈ R.
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(b) For any x = (x1, x2) ∈ int(Kn), lnx is well-defined and

gsoc(x) = lnx =

{
1
2

(
ln(x21 − ∥x2∥2), ln

(
x1+∥x2∥
x1−∥x2∥

)
x2

∥x2∥

)
if x2 ̸= 0,

(lnx1, 0) if x2 = 0.

With these, we have the following technical lemmas that will be used in the
subsequent analysis.

Lemma 3.8. Let f : R → R be f(t) = et and x = (x1, x2) ∈ R × Rn−1, y =
(y1, y2) ∈ R× Rn−1. Then, the following hold.

(a) f is SOC-monotone of order 2 on R.
(b) f is not SOC-monotone of order n ≥ 3 on R.
(c) If x1 − y1 ≥ ∥x2∥ + ∥y2∥, then ex ≽Kn ey. In particular, if x ∈ Kn, then

ex ≽Kn e(0,0).

Proof. (a) By applying Property 3.3(a), it is clear that f is SOC-monotone of order
2 since f ′(τ) = eτ ≥ 0 for all τ ∈ R.
(b) Take x = (2, 1.2,−1.6), y = (−1, 0,−4), then we have x−y = (3, 1.2, 2.4) ≽Kn 0.
But, we compute that

ex − ey = e2
(
cosh(2), sinh(2)

(1.2,−1.6)

2

)
− e−1

(
cosh(4), sinh(4)

(0,−4)

4

)
=

1

2

[
(e4 + 1, .6(e4 − 1),−.8(e4 − 1))− (e3 + e−5, 0,−e3 + e−5)

]
= (17.7529, 16.0794,−11.3999) �Kn 0.

The last inequality is because ∥(16.0794,−11.3999)∥ = 19.7105 > 17.7529.
We also present an alternative argument for part(b) here. First, we observe that

(3.3) det

[
f (1)(t1)

f(t2)−f(t1)
t2−t1

f(t2)−f(t1)
t2−t1 f (1)(t2)

]
= et1+t2 −

(
et2 − et1

t2 − t1

)2

≥ 0

if and only if 1 ≥

(
e(t2−t1)/2 − e(t1−t2)/2

t2 − t1

)2

. Denote s := (t2− t1)/2, then the above

inequality holds if and only if 1 ≥ (sinh(s)/s)2. In light of Taylor Theorem, we
know sinh(s)/s = 1+ s2/6+ s4/120+ · · · > 1 for s ̸= 0. Hence, (3.3) does not hold.
Then, applying Property 3.3(b) says f is not SOC-monotone of order n ≥ 3 on R.
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(c) The desired result follows by the following implication:

ex ≽Kn ey

⇐⇒ ex1 cosh(∥x2∥)− ey1 cosh(∥y2∥)

≥
∥∥∥∥ex1 sinh(∥x2∥) x2

∥x2∥
− ey1 sinh(∥y2∥)

y2
∥y2∥

∥∥∥∥
⇐⇒ [ex1 cosh(∥x2∥)− ey1 cosh(∥y2∥)]2

−
∥∥∥∥ex1 sinh(∥x2∥) x2

∥x2∥
− ey1 sinh(∥y2∥)

y2
∥y2∥

∥∥∥∥2
= e2x1 + e2y1

−2ex1+y1
[
cosh(∥x2∥) cosh(∥y2∥)− sinh(∥x2∥) sinh(∥y2∥)

⟨x2, y2⟩
∥x2∥∥y2∥

]
≥ 0

⇐= e2x1 + e2y1 − 2ex1+y1 cosh(∥x2∥+ ∥y2∥) ≥ 0

⇐⇒ cosh(∥x2∥+ ∥y2∥) ≤
e2x1 + e2y1

2ex1+y1
=
ex1−y1 + ey1−x1

2
= cosh(x1 − y1)

⇐⇒ x1 − y1 ≥ ∥x2∥+ ∥y2∥.

�

Lemma 3.9. Let f(t) = et be defined on R, then f is SOC-convex of order 2.
However, f is not SOC-convex of order n ≥ 3.

Proof. (a) By applying Property 3.4 (a), it is clear that f is SOC-convex since
exponential function is a convex function on R.
(b) As below, it is a counterexample which shows f(t) = et is not SOC-convex of
order n ≥ 3. To see this, we compute that

e[(2,0,−1)+(6,−4,−3)]/2 = e(4,−2,−2)

= e4
(
cosh(2

√
2) , sinh(2

√
2) · (−2,−2)/(2

√
2)
)

+ (463.48,−325.45,−325.45)

and

1

2

(
e(2,0,−1) + e(6,−4,−3)

)
=

1

2

[
e2(cosh(1), 0,− sinh(1)) + e6(cosh(5), sinh(5) · (−4,−3)/5)

]
= (14975,−11974,−8985).

We see that 14975− 463.48 = 14511.52, but

∥(−11974,−8985)− (−325.4493,−325.4493)∥ = 14515 > 14511.52

which is a contradiction. �
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Lemma 3.10 ([8, Proposition 5.1]). The function g(t) = ln t is SOC-monotone of
order n ≥ 2 on (0,∞).

In general, to verify the SOC-convexity of et (as shown in Proposition 3.1), we
observe that the following fact

0 ≺Kn erf
soc(λx+(1−λ)y) ≼Kn w =⇒ rf soc(λx+ (1− λ)y) ≼Kn ln(w)

is important and often needed. Note for x2 ̸= 0, we also have some observations as
below.

(a) ex ≻Kn 0 ⇐⇒ cosh(∥x2∥) ≥ | sinh(∥x2∥)| ⇐⇒ e−∥x2∥ > 0 .

(b) 0 ≺Kn ln(x) ⇐⇒ ln(x21 − ∥x2∥2) >
∣∣∣ln(x1+∥x2∥

x1−∥x2∥

)∣∣∣ ⇐⇒ ln(x1 − ∥x2∥) >
0 ⇐⇒ x1 − ∥x2∥ > 1. Hence (1, 0) ≺Kn x implies 0 ≺Kn ln(x).

(c) ln(1, 0) = (0, 0) and e(0,0) = (1, 0).

4. SOC-r-convex functions

In this section, we define the so-called SOC-r-convex functions which is viewed
as the natural extension of r-convex functions to the setting associated with second-
order cone.

Definition 4.1. Suppose that r ∈ R and f : C ⊆ R → R where C is a convex
subset of R. Let f soc : S ⊆ Rn → Rn be its corresponding SOC-function defined as
in (1.5). The function f is said to be SOC-r-convex of order n on C if, for x, y ∈ S
and λ ∈ [0, 1], there holds

(4.1) f soc(λx+ (1− λ)y) ≼Kn

{
1
r ln

(
λerf

soc(x) + (1− λ)erf
soc(y)

)
r ̸= 0,

λf soc(x) + (1− λ)f soc(y) r = 0.

Similarly, f is said to be SOC-r-concave of order n on C if the inequality (4.1)
is reversed. We say f is SOC-r-convex (respectively, SOC-r-concave) on C if f is
SOC-r-convex of all order n (respectively, SOC-r-concave of all order n) on C.

It is clear from the above definition that a real function is SOC-convex (SOC-
concave) if and only if it is SOC-0-convex (SOC-0-concave). In addition, a function
f is SOC-r-convex if and only if −f is SOC-(−r)-concave. From [1, Theorem 4.1], it
is shown that ϕ : R → R is r-convex with r ̸= 0 if and only if erϕ is convex whenever
r > 0 and concave whenever r < 0. However, we observe that the exponential
function et is not SOC-convex for n ≥ 3 by Lemma 3.9. This is a hurdle to build
parallel result for general n in the setting of SOC case. As seen in Proposition 4.5,
the parallel result is true only for n = 2. Indeed, for n ≥ 3, only one direction holds
which can be viewed as a weaker version of [1, Theorem 4.1].

Proposition 4.2. Let f : [0,∞) → [0,∞) be continuous. If f is SOC-r-concave
with r ≥ 0, then f is SOC-monotone.
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Proof. For any 0 < λ < 1, we can write λx = λy + (1−λ)λ
(1−λ) (x− y). If r = 0, then f

is SOC-concave and SOC-monotone by Property 3.6. If r > 0, then

f soc(λx) ≽Kn
1

r
ln
(
λerf

soc(y) + (1− λ)erf
soc( λ

1−λ
(x−y))

)
≽Kn

1

r
ln
(
λer(0,0) + (1− λ)er(0,0)

)
=

1

r
ln (λ(1, 0) + (1− λ)(1, 0))

= 0,

where the second inequality is due to x − y ≽Kn 0 and Lemmas 3.8-3.10. Letting
λ → 1, we obtain that f soc(x) ≽Kn f soc(y), which says that f is SOC-monotone.
�

In fact, in light of Lemma 3.8-3.10, we have the following Lemma which is useful
for subsequent analysis.

Lemma 4.3. Let z ∈ Rn and w ∈ int(Kn). Then, the following hold.

(a) For n = 2 and r > 0, z ≼Kn ln(w)/r ⇐⇒ rz ≼Kn ln(w) ⇐⇒ erz ≼Kn w.
(b) For n = 2 and r > 0, z ≼Kn ln(w)/r ⇐⇒ rz ≽Kn ln(w) ⇐⇒ erz ≽Kn w.
(c) For n ≥ 2, if erz ≼Kn w, then rz ≼Kn ln(w).

Proposition 4.4. For n = 2 and let f : R → R. Then, the following hold.

(a) The function f(t) = t is SOC-r-convex (SOC-r-concave) on R for r > 0
(r < 0).

(b) If f is SOC-convex, then f is SOC-r-convex (SOC-r-concave) for r > 0
(r < 0).

Proof. (a) For r > 0, x, y ∈ Rn and λ ∈ [0, 1], we note that the corresponding
vector-valued SOC-function of f(t) = t is f soc(x) = x. Therefore, to prove the
desired result, we need to verify that

f soc(λx+ (1− λ)y) ≼Kn
1

r
ln
(
λerf

soc(x) + (1− λ)erf
soc(y)

)
.

To this end, we see that

λx+ (1− λ)y ≼Kn
1

r
ln (λerx + (1− λ)ery)

⇐⇒ λrx+ (1− λ)ry ≼Kn ln (λerx + (1− λ)ery)

⇐⇒ eλrx+(1−λ)ry ≼Kn λerx + (1− λ)ery,

where the first “⇐⇒” is true due to Lemma 4.3, whereas the second “⇐⇒” holds
because et and ln t are SOC-monotone of order 2 by Lemma 3.8 and Lemma 3.10.
Then, using the fact that et is SOC-convex of order 2 gives the desired result.
(b) For any x, y ∈ Rn and 0 ≤ λ ≤ 1, it can be verified that

f soc(λx+ (1− λ)y) ≼Kn λf soc(x) + (1− λ)f soc(y)

≼Kn
1

r
ln
(
λerf

soc(x) + (1− λ)erf
soc(y)

)
,
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where the second inequality holds according to the proof of (a). Thus, the desired
result follows. �

Proposition 4.5. Let f : R → R. Then f is SOC-r-convex if erf is SOC-convex
(SOC-concave) for n ≥ 2 and r > 0 (r < 0). For n = 2, we can replace “if” by “if
and only if”.

Proof. Suppose that erf is SOC-convex. For any x, y ∈ Rn and 0 ≤ λ ≤ 1, using
that fact that ln t is SOC-monotone (Lemma 3.10) yields

erf
soc(λx+(1−λ)y) ≼Kn λerf

soc(x) + (1− λ)erf
soc(y)

=⇒ rf soc(λx+ (1− λ)y) ≼Kn ln
(
λerf

soc(x) + (1− λ)erf
soc(y)

)
⇐⇒ f soc(λx+ (1− λ)y) ≼Kn

1

r
ln
(
λerf

soc(x) + (1− λ)erf
soc(y)

)
.

When n = 2, et is SOC-monotone as well, which implies that the “=⇒” can be
replaced by “⇐⇒”. Thus, the proof is complete. �

Combining with Property 3.4, we can characterize the SOC-r-convexity as follows.

Proposition 4.6. Let f ∈ C(2)(J) with J being an open interval in R and dom(f soc) ⊆
Rn. Then, for r > 0, the followings hold.

(a) f is SOC-r-convex of order 2 if and only if erf is convex;
(b) f is SOC-r-convex of order n ≥ 3 if erf is convex and satisfies the inequality

(3.2).

Next, we present several examples of SOC-r-convex and SOC-r-concave functions
of order 2. For examples of SOC-r-convex and SOC-r-concave functions (of order
n), we are still unable to discover them.

Example 4.7. For n = 2, the following hold.

(a) The function f(t) = t2 is SOC-r-convex on R for r ≥ 0.
(b) The function f(t) = t3 is SOC-r-convex on [0,∞) for r > 0, while it is

SOC-r-concave on (−∞, 0] for r < 0.
(c) The function f(t) = 1/t is SOC-r-convex on [−r/2, 0) or (0,∞) for r > 0,

while it is SOC-r-concave on (−∞, 0) or (0,−r/2] for r < 0.
(d) The function f(t) =

√
t is SOC-r-convex on [1/r2,∞) for r > 0, while it is

SOC-r-concave on [0,∞) for r < 0.
(e) The function f(t) = ln t is SOC-r-convex (SOC-r-concave) on (0,∞) for

r > 0 (r < 0).

Proof. (a) First, we denote h(t) := ert
2
. Then, we have h′(t) = 2rtert

2
and h′′(t) =

(1 + 2rt2)2rert
2
. From Property 3.5, we know h is convex if and only if h′′(t) ≥ 0.

Thus, the desired result holds by applying Property 3.4 and Proposition 4.5. The
arguments for other cases are similar and we omit them. �
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5. SOC-quasiconvex functions

In this section, we define the so-called SOC-quasiconvex functions which is a
natural extension of quasiconvex functions to the setting associated with second-
order cone.

Recall that a function f : S ⊆ Rn → R is said to be quasiconvex on S if, for any
x, y ∈ S and 0 ≤ λ ≤ 1, there has

f(λx+ (1− λ)y) ≤ max {f(x), f(y)} .
We point out that the relation ≽Kn is not a linear ordering. Hence, it is not possible
to compare any two vectors (elements) via ≽Kn . Nonetheless, we note that

max{a, b} = b+ [a− b]+ =
1

2
(a+ b+ |a− b|), for any a, b ∈ R.

This motivates us to define SOC-quasiconvex functions in the setting of second-order
cone.

Definition 5.1. Let f : C ⊆ R → R and 0 ≤ λ ≤ 1. The function f is said to be
SOC-quasiconvex of order n on C if, for any x, y ∈ Rn, there has

f soc(λx+ (1− λ)y) ≼Kn f soc(y) + [f soc(x)− f soc(y)]+

where

f soc(y) + [f soc(x)− f soc(y)]+

=


f soc(x) if f soc(x) ≽Kn f soc(y),
f soc(y) if f soc(x) ≺Kn f soc(y),

1
2 (f

soc(x) + f soc(y) + |f soc(x)− f soc(y)|) if f soc(x)− f soc(y) /∈ Kn ∪ (−Kn).

Similarly, f is said to be SOC-quasiconcave of order n if

f soc(λx+ (1− λ)y) ≽Kn f soc(x)− [f soc(x)− f soc(y)]+ .

The function f is called SOC-quasiconvex (SOC-quasiconcave) if it is SOC-quasiconvex
of all order n (SOC-quasiconcave of all order n).

Proposition 5.2. Let f : R → R be f(t) = t. Then, f is SOC-quasiconvex on R.

Proof. First, for any x = (x1, x2) ∈ R × Rn−1, y = (y1, y2) ∈ R × Rn−1, and
0 ≤ λ ≤ 1, we have

f soc(y) ≼Kn f soc(x) ⇐⇒ (1− λ)f soc(y) ≼Kn (1− λ)f soc(x)

⇐⇒ λf soc(x) + (1− λ)f soc(y) ≼Kn f soc(x).

Recall that the corresponding SOC-function of f(t) = t is f soc(x) = x. Thus, for all
x ∈ Rn, this implies f soc(λx+(1−λ)y) = λf soc(x)+(1−λ)f soc(y) ≼Kn f soc(x) under
this case: f soc(y) ≼Kn f soc(x). The argument is similar to the case of f soc(x) ≼Kn

f soc(y). Hence, it remains to consider the case of f soc(x) − f soc(y) /∈ Kn ∪ (−Kn),
i.e., it suffices to show that

λf soc(x) + (1− λ)f soc(y) ≼Kn
1

2
(f soc(x) + f soc(y) + |f soc(x)− f soc(y)|) .
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To this end, we note that

|f soc(x)− f soc(y)| ≽Kn f soc(x)− f soc(y)

and

|f soc(x)− f soc(y)| ≽Kn f soc(y)− f soc(x),

which respectively implies

1

2
(f soc(x) + f soc(y) + |f soc(x)− f soc(y)|) ≽Kn x,(5.1)

1

2
(f soc(x) + f soc(y) + |f soc(x)− f soc(y)|) ≽Kn y.(5.2)

Then, adding up (5.1) ×λ and (5.2) ×(1− λ) yields the desired result. �

Proposition 5.3. If f : C ⊆ R → R is SOC-convex on C, then f is also SOC-
quasiconvex on C.

Proof. For any x, y ∈ Rn and 0 ≤ λ ≤ 1, it can be verified that

f soc(λx+(1−λ)y) ≼Kn λf soc(x)+(1−λ)f soc(y) ≼Kn f soc(y)+[f soc(x)− f soc(y)]+ ,

where the second inequality holds according to the proof of Proposition 5.2. Thus,
the desired result follows. �

From Proposition 5.3, we can easily construct examples of SOC-quasiconvex func-
tions. More specifically, all the SOC-convex functions which were verified in [7] are

SOC-quasiconvex functions, for instances, t2 on R, and t3, 1
t , t

1/2 on (0,∞).

6. Final remarks

In this paper, we revisit the concept of r-convex functions and provide a way to
construct r-convex functions for any given r ∈ R. We also extend such concept to
the setting associated with SOC which will be helpful in dealing with optimization
problems involved in second-order cones. In particular, we obtain some characteri-
zations for SOC-r-convexity and SOC-quasiconvexity.

Indeed, this is just the first step and there still have many things to clarify. For
example, in Section 4, we conclude that SOC-convexity implies SOC-r-convexity for
n = 2 only. The key role therein relies particularly on the SOC-convexity and SOC-
monotonicity of et. However, for n > 2, the expressions of ex and ln(x) associated
with second-order cone are very complicated so that it is hard to compare any two
elements. In other words, when n = 2, the SOC-convexity and SOC-monotonicity of
et make things much easier than the general case n ≥ 3. To conquer this difficulty,
we believe that we have to derive more properties of ex. In particular, “Does SOC-
r-convex function have similar results as shown in Property 1.1?” is an important
future direction.

Manuscript received
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