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A SUFFICIENT CONDITION FOR A STRONG FORM OF THE

EGOROV THEOREM IN NON-ADDITIVE MEASURE THEORY

TOSHIAKI MUROFUSHI AND SATORU SUJINO

Abstract. This paper shows that the conjunction of the continuity from below,
the uniform subadditive continuity, and the order continuity of the non-additive
measure is a sufficient condition for the consequent of the strong form of the
Egorov theorem, i.e., for the statement that strong almost everywhere conver-
gence implies strong almost uniform convergence; a sequence {fn} of measurable
functions is said to converge strongly almost everywhere to a measurable function
f if {fn} converges pointwise to f except on a strong null set, where a strong null
set w.r.t. a non-additive measure µ is defined to be a measurable set N such that
µ(N ∪ B) = µ(B) for every measurable set B; a sequence {fn} of measurable
functions is said to converge strongly almost uniformly to a measurable function f
w.r.t. a non-additive measure µ if, for every ε > 0, there exists a measurable
set Aε such that µ(Aε ∪ B) ≤ µ(B) + ε for every measurable set B and {fn}
converges uniformly to f on the complement of Aε.

1. Introduction

The Egorov theorem in the classical measure theory asserts that, if the measure
is finite, then almost everywhere convergence implies almost uniform convergence.
The non-additive measure theory has at least three mutually nonequivalent def-
initions of null set (for instance, [4, 5]). The corresponding definitions of almost
everywhere convergence are also nonequivalent to one another. The same ought to
apply to the definition of almost uniform convergence as well. Therefore, in non-
additive measure theory, the consequent of the Egorov theorem, i.e, the implication
of almost uniform convergence from almost everywhere convergence, has mutually
nonequivalent forms; none of which holds without additional conditions other than
the finiteness of the non-additive measure. The papers [4, 6] discuss conditions for
the consequent of the Egorov theorem based on two nonequivalent definitions of
null set. This paper discusses the Egorov theorem based on the definition of null
set in [5], which we call the strong form of the Egorov theorem, and the paper gives
a sufficient condition for the consequent of the strong form of the Egorov theorem,
which has not been discussed so far.

This paper deals with the concepts of null set, almost everywhere convergence,
and almost uniform convergence defined in two nonequivalent ways; we distinguish
them by the adjectives “weak” and “strong.”
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2. Preliminaries: definitions and existing results

Throughout this paper, (X,F) is assumed to be a measurable space.

Definition 2.1. A non-additive measure on F is a set function µ : F → [0,∞]
satisfying the following two conditions:

(1) µ(∅) = 0,
(2) A,B ∈ F , A ⊂ B ⇒ µ(A) ≤ µ(B).

In the rest of the paper, µ is assumed to be a non-additive measure on F .

Definition 2.2. (1) µ is said to be continuous from below [resp. continuous
form above] if, for every increasing [resp. decreasing] sequence {An} of
measurable sets, it holds that µ (limn→∞An) = limn→∞ µ(An).

(2) [3] µ is said to be order continuous if, for every decreasing sequence {An}
of measurable sets such that An ↓ ∅, it holds that limn→∞ µ(An) = 0.

(3) µ is said to be subadditive if the inequality

µ(A ∪B) ≤ µ(A) + µ(B)

holds whenever A and B are measurable sets.
(4) [2, 7] µ is said to be uniformly subadditively continuous if for every ε > 0

there exists δ > 0 such that the inequality

µ(A ∪B) ≤ µ(B) + ε

holds whenever A and B are measurable sets and µ(A) < δ.
(5) [7] µ is said to be null-additive if µ(A ∪B) = µ(B) whenever A and B are

measurable sets and µ(A) = 0.

In [7], uniform subadditive continuity is called uniform autocontinuity.
By definition, subadditivity implies uniform subadditive continuity, and uniform

subadditive continuity implies null-additivity.

Remark 2.3. In the above-mentioned definition of uniform subadditive continuity,
and in the below-mentioned definitions of strong null set and strong almost uniform
convergence, the comparison between µ(A∪B) and µ(B) can be replaced with the
comparison between µ(B \A) and µ(B) and with the comparison between µ(A△B)
and µ(B); that is, for every ε ≥ 0 and for every measurable set A, the following
holds:

∀B ∈ F [µ(A ∪B) ≤ µ(B) + ε] ⇔ ∀B ∈ F [µ(B \A) ≥ µ(B)− ε]

⇔ ∀B ∈ F [µ(B)− ε ≤ µ(A△B) ≤ µ(B) + ε].

Definition 2.4. (1) A measurable set A is called a (µ-)weak null set if µ(A)=0,
where (µ-) means that we write “µ-weak null set” when we specify the non-
additive measure µ explicitly, and we write merely “weak null set” when the
non-additive measure µ is clear from the context (the same goes in what
follows).

(2) [1,5] A measurable set A is called a (µ-)strong null set if µ(A ∪B) = µ(B)
for every measurable set B.
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By definition, Proposition 2.5 below is obvious.

Proposition 2.5. (1) Every strong null set is a weak null set.
(2) Let µ be null-additive. Then a measurable set N is a weak null set iff N is

a strong null set.

Proposition 2.6 below, which gives properties of weak null sets, is derived directly
from the definition.

Proposition 2.6. (1) The empty set is a weak null set.
(2) Every measurable subset of a weak null set is a weak null set.

The following proposition gives properties of strong null sets.

Proposition 2.7 ([5]). (1) The empty set is a strong null set.
(2) Every measurable subset of a strong null set is a strong null set.
(3) Every finite union of strong null sets is a strong null set.
(4) If µ is continuous from below or continuous from above, then every countable

union of strong null sets is a strong null set.

Generally, weak null sets do not have the properties corresponding to Proposi-
tion 2.7 (3) and (4).

Throughout the paper, every measurable function is assumed to be finite real-
valued.

Definition 2.8. Let {fn} be a sequence of measurable functions, and f a measur-
able function.

(1) {fn} is said to converge (µ-)weakly almost everywhere [resp. (µ-)strongly
almost everywhere] to f if there exists a weak [resp. strong] null set N such
that {fn(x)} converges to f(x) for every x ∈ X \N .

(2) {fn} is said to converge (µ-)weakly almost uniformly to f if, for every ε > 0,
there exists a measurable set Aε such that µ(Aε) ≤ ε and {fn} converges
uniformly to f on X \Aε.

(3) {fn} is said to converge (µ-)strongly almost uniformly to f if, for every ε > 0,
there exists a measurable set Aε such that for every measurable set B

µ(Aε ∪B) ≤ µ(B) + ε

and that {fn} converges uniformly to f on X \Aε.

Proposition 2.9 below is derived directly from the definitions.

Proposition 2.9. Let {fn} be a sequence of measurable functions, and f a mea-
surable function.

(1) If {fn} converges strongly almost everywhere to f , then {fn} converges
weakly almost everywhere to f .

(2) If {fn} converges strongly almost uniformly to f , then {fn} converges weakly
almost uniformly to f .
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By definition, the following proposition is also obvious.

Proposition 2.10. (1) If µ is null-additive, then weak almost everywhere con-
vergence is equivalent to strong almost everywhere convergence.

(2) If µ is uniformly subadditively continuous, then weak almost uniform con-
vergence is equivalent to strong almost uniform convergence.

Earlier studies in non-additive measure theory (for example, [4,6]) discussed con-
ditions for the consequent of the weak form of the Egorov theorem, i.e, for the
implication of weak almost uniform convergence from weak almost everywhere con-
vergence, and the following theorem was obtained.

Theorem 2.11 ([4]). If µ is continuous from below and above, then weak almost
everywhere convergence implies weak almost uniform convergence.

This paper discusses conditions for the consequent of the strong form of the
Egorov theorem, i.e, the implication of strong almost uniform convergence from
strong almost everywhere convergence.

3. Supremum increment ∆µ and the main result

Definition 3.1. The supremum increment ∆µ : F → [0,∞] of µ is defined by

∆µ(A) := sup{µ(A ∪B)− µ(B) | B ∈ Fµ<∞},
where Fµ<∞ := {B ∈ F | µ(B) < ∞}.

By definition, Proposition 3.2 below is obvious.

Proposition 3.2. The supremum increment ∆µ is a subadditive non-additive mea-
sure, and for every measurable set A, it holds that µ(A) ≤ ∆µ(A). Furthermore,
if µ is subadditive, then ∆µ = µ.

Proposition 3.3 below is derived directly from Definitions 2.4 and 3.1.

Proposition 3.3. Let N be an arbitrary measurable set. N is a µ-strong null set
iff N is a ∆µ-weak null set.

The following corollary is obtained by Proposition 3.3 and Definition 2.8.

Corollary 3.4. Let {fn} be a sequence of measurable functions and f a measurable
function. The sequence {fn} converges µ-strongly almost everywhere to f iff {fn}
converges ∆µ-weakly almost everywhere to f .

The following proposition is derived directly from Definitions 2.8 and 3.1.

Proposition 3.5. Let {fn} be a sequence of measurable functions and f a mea-
surable function. The sequence {fn} converges µ-strongly almost uniformly tof iff
{fn} converges ∆µ-weakly almost uniformly to f .

Corollary 3.6 below is obtained by Corollary 3.4 and Proposition 3.5.

Corollary 3.6. The implication of µ-strong almost uniform convergence from
µ-strong almost everywhere convergence is equivalent to the implication of ∆µ-weak
almost uniform convergence from ∆µ-weak almost everywhere convergence.
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The following corollary follows from Corollary 3.6 and Theorem 2.11.

Corollary 3.7. If ∆µ is continuous from below and above, then µ-strong almost
everywhere convergence implies µ-strong almost uniform convergence.

We consider to represent sufficient conditions for the continuity of ∆µ from below
and above by only using µ. Propositions 3.8 and 3.9 below, which give the conditions
represented by µ, are the main results of this paper. The proofs of Propositions 3.8
and 3.9 and Remark 3.10 will be given in Appendix.

Proposition 3.8. If µ is continuous from below, then so is ∆µ.

Proposition 3.9. If µ is uniformly subadditively continuous and order continuous,
then ∆µ is continuous from above.

Remark 3.10. Even if µ is continuous from above, ∆µ is not necessarily continuous
from above.

The following main theorem is obtained by Corollary 3.7, Propositions 3.8 and
3.9.

Theorem 3.11. If µ is continuous from below, uniformly subadditively continuous,
and order continuous, then strong almost everywhere convergence implies strong
almost uniform convergence.

Theorem 3.11 above can be proved directly without the supremum increment ∆µ,
i.e., without using Corollary 3.7, Propositions 3.8 and 3.9; the proof will be shown
in Appendix.

4. Conclusions

We have given a sufficient condition for the consequent of the strong form of
the Egorov theorem; we have applied the existing result that the continuity from
below and above is a sufficient condition for the consequent of the weak form of the
Egorov theorem to the fact that the consequent of the strong form with respect to
µ is equivalent to the consequent of the weak form with respect to the supremum
increment ∆µ.

Other than the continuity from below and above, there are several conditions
for the consequent of the weak form of the Egorov theorem [6]. By rewriting with
µ the conditions described with the supremum increment ∆µ, we expect to obtain
conditions for the consequent of the strong form other than that in Theorem 3.11.
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Appendix

Proof of Proposition 3.8. Assume An ↑A. We prove that ∆µ(An)↑ ∆µ(A). Let α
be an arbitrary real number for which α < ∆µ(A). By the definition of supremum
increment ∆µ, there exists a measurable set B such that α < µ(A ∪ B) − µ(B).
Then, since (An ∪B) ↑ (A ∪B), and since µ is continuous from below, there exists
n0 such that for every n ≥ n0

α < µ(An ∪B)− µ(B) ≤ ∆µ(An).

Therefore it follows that ∆µ(An) ↑ ∆µ(A).

Proof of Proposition 3.9. Assume An ↓A. We prove that ∆µ(An) ↓ ∆µ(A). Let
ε > 0. Since µ is uniformly subadditively continuous, there exists δ > 0 such that,
if a measurable set E satisfies µ(E) ≤ δ, then, for an arbitrary measurable set F ,
it holds that

µ(E ∪ F ) ≤ µ(F ) + ε.

Since (An \ A) ↓ ∅, and since µ is order continuous, there exists n0 such that
µ(An \A) ≤ δ for every n ≥ n0. Hence, for every n ≥ n0, we have

∆µ(An) = sup
B∈Fµ<∞

[µ(An ∪B)− µ(B)]

= sup
B∈Fµ<∞

[µ((An \A) ∪A ∪B)− µ(B)]

≤ sup
B∈Fµ<∞

[µ(A ∪B) + ε− µ(B)]

= sup
B∈Fµ<∞

[µ(A ∪B)− µ(B)] + ε

= ∆µ(A) + ε.

Therefore it follows that ∆µ(An) ↓ ∆µ(A).

Proof of Remark 3.10: a counterexample. Consider a measurable space (X,F)
where there exists a sequence {Nn} of nonempty measurable sets such that Nn ↓ ∅;
for example, the space where X is an infinite set and F is the power set of X. Define
a non-additive measure µ on (X,F) by

µ(A) :=

{
1 if A = X,

0 if A ̸= X.
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Then obviously µ is continuous from above. The supremum increment ∆µ of µ is
given by

∆µ(A) =

{
1 if A ̸= ∅,
0 if A = ∅.

Consider a sequence {Nn} of nonempty measurable sets such that Nn ↓ ∅. Since
∆µ(Nn) = 1 for all n, and since ∆µ(

∩∞
n=1Nn) =

∆µ(∅) = 0, it follows that ∆µ is
not continuous from above.

Direct proof of Theorem 3.11. Let the non-additive measure µ be continuous
from below, uniformly subadditively continuous, and order continuous. Assume that
a sequence {fn} of measurable functions converges strongly almost everywhere to a
measurable function f . Then, from Proposition 2.9 (1) it follows that {fn} converges
weakly almost everywhere to f . Since µ is uniformly subadditively continuous and
order continuous, it is continuous from above [2]. Hence, Theorem 2.11 implies that
{fn} converges weakly almost uniformly to f . Proposition 2.10 (2) says that, under
the uniform subadditive continuity, weak almost uniform convergence is equivalent
to strong almost uniform convergence. Therefore, {fn} converges strongly almost
uniformly to f .
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