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EVERY GENERALIZED METRIC SPACE HAS A

SEQUENTIALLY COMPATIBLE TOPOLOGY

TOMONARI SUZUKI

Dedicated to Professor Makoto Tsukada on the occasion of his 65th birthday

Abstract. We prove that every 2-generalized metric space (X, d) has a sequen-
tially compatible topology with d. We also discuss separation axioms for the
topology.

1. Introduction

Throughout this paper we denote by N the set of all positive integers and by R
the set of all real numbers.

In 2000, Branciari in [3] introduced a very interesting concept whose name is
‘ν-generalized metric space’.

Definition 1.1 (Branciari [3]). Let X be a set, let d be a function from X × X
into [0,∞) and let ν ∈ N. Then (X, d) is said to be a ν-generalized metric space if
the following hold:

(N1) d(x, y) = 0 iff x = y for any x, y ∈ X.
(N2) d(x, y) = d(y, x) for any x, y ∈ X.
(N3)ν d(x, y) ≤ d(x, u1) + d(u1, u2) + · · ·+ d(uν , y) for any x, u1, u2, . . . , uν , y ∈ X

such that x, u1, u2, . . . , uν , y are all different.

In the case where ν = 2, X is simply called a generalized metric space.

Definition 1.2 (Branciari [3]). Let X and d be as in Definition 1.1. Then (X, d)
is said to be a generalized metric space if (N1), (N2) and the following hold:

(N3)2 d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for any x, u, v, y ∈ X such that x, u, v, y
are all different.

The concept of ‘generalized metric space’ is very similar to that of ‘metric space’.
However, it is very difficult to treat this concept becauseX does not necessarily have
the topology which is compatible with d. It is obvious that (X, d) is a metric space
iff (X, d) is a 1-generalized metric space. So every 1-generalized metric space has
the compatible topology with d. In [12], we proved that every 3-generalized metric
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space has the compatible topology. On the other hand, for ν ∈ {2, 4, 5, . . . }, there
is an example of ν-generalized metric space which does not have the compatible
topology; see Example 7 in [8] and Example 4.2 in [12]. See [1, 2, 5–7, 9–11,13] and
references therein for more information on this concept.

Motivated by the above, in this paper, we prove that every 2-generalized met-
ric space (X, d) has a sequentially compatible topology with d. We also discuss
separation axioms for the topology.

2. Compatibility

In order to argue precisely, we give definitions of two concepts on compatibility.

Definition 2.1. Let X be a topological space with topology τ . Let d be a function
from X ×X into [0,∞).

• τ is said to be compatible with d iff the following are equivalent for any net
{xα} in X and x ∈ X:

∗ limα d(x, xα) = 0.
∗ {xα} converges to x in τ .

• τ is said to be sequentially compatible with d iff the following are equivalent
for any sequence {xn} in X and x ∈ X:

∗ limn d(x, xn) = 0.
∗ {xn} converges to x in τ .

Remark 2.2. It is obvious that there exists at most one topology which is com-
patible with d. On the other hand, in general, there can be plural topologies which
is sequentially compatible with d. We sometimes say that the topology τ is a com-
patible symmetric topology; see [4] and others.

3. Main result

In this section, we prove that every 2-generalized metric space has a sequentially
compatible topology.

Throughout this section we let (X, d) be a 2-generalized metric space. Define
S(x, δ) and T (x, δ) by

S(x, δ) = {y ∈ X : d(x, y) < δ} and T (x, δ) = S(x, δ) \ {x}

for x ∈ X and δ > 0. Define a set F (x, δ) as follows: f ∈ F (x, δ) iff f is a function
from T (x, δ) into (0,∞) satisfying

d(x, y) + f(y) < δ for any y ∈ T (x, δ).

For x ∈ X, δ > 0 and f ∈ F (x, δ), we define U(x, δ, f) by

U(x, δ, f) = {x} ∪
∪[

S
(
y, f(y)

)
: y ∈ T (x, δ)

]
.

Let τ be a topology on X induced by a subbase

{U(x, δ, f) : x ∈ X, δ > 0, f ∈ F (x, δ)}.

Lemma 3.1. Let x ∈ X, δ > 0 and f ∈ F (x, δ). Then the following hold:

(i) For any z ∈ U(x, δ, f), there exists ε > 0 satisfying S(z, ε) ⊂ U(x, δ, f).
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(ii) For any z ∈ U(x, δ, f), there exist ε > 0 and g ∈ F (z, ε) satisfying U(z, ε, g)
⊂ U(x, δ, f).

Proof. We first show (i). We fix z ∈ U(x, δ, f) and consider the following three
cases:

• z = x
• z ∈ T (x, δ)
• z ∈ U(x, δ, f) \ S(x, δ)

In the first case, putting ε = δ, we have

S(z, ε) = S(x, δ) ⊂ U(x, δ, f).

In the second case, putting ε = f(z), we have

S(z, ε) = S
(
z, f(z)

)
⊂ U(x, δ, f).

In the third case, there exists y ∈ T (x, δ) satisfying d(y, z) < f(y). Put

ε := δ − d(x, y)− f(y) > 0.

Let w ∈ S(z, ε). In the case where w ∈ {x, y, z}, it is obvious that w ∈ U(x, δ, f).
In the other case, where w ̸∈ {x, y, z}, we note that x, y, z, w are all different. So
we have by (N3)2

d(x,w) ≤ d(x, y) + d(y, z) + d(z, w) < d(x, y) + f(y) + ε = δ.

Thus w ∈ S(x, δ) ⊂ U(x, δ, f). We have shown (i).
Let us prove (ii). By (i), there exists a function h from U(x, δ, f) into (0,∞)

satisfying S
(
y, h(y)

)
⊂ U(x, δ, f) for any y ∈ U(x, δ, f). Fix z ∈ U(x, δ, f) and put

ε = h(z). Define a function g from T (z, ε) into (0,∞) by

g(y) = min
{(

ε− d(z, y)
)
/2, h(y)

}
.

Then we have g ∈ F (z, ε) and

S
(
y, g(y)

)
⊂ S

(
y, h(y)

)
⊂ U(x, δ, f)

and hence U(z, ε, g) ⊂ U(x, δ, f). �

Lemma 3.2. Let U be an open subset of (X, τ). Then the following hold:

(i) For any x ∈ U , there exists δ > 0 satisfying S(x, δ) ⊂ U .
(ii) For any x ∈ U , there exist δ > 0 and f ∈ F (x, δ) satisfying U(x, δ, f) ⊂ U .

Remark 3.3. From (ii), {U(x, δ, f) : δ > 0, f ∈ F (x, δ)} is a neighborhood basis
at x.

Proof of Lemma 3.2. There exist k ∈ N, yj ∈ X, εj > 0 and gj ∈ F (yj , εj) (j =
1, . . . , k) satisfying

x ∈
k∩

j=1

U(yj , εj , gj) ⊂ U.

By Lemma 3.1 (ii), there exist δj > 0 and fj ∈ F (x, δj) satisfying U(x, δj , fj) ⊂
U(yj , εj , gj). Put

δ := min{δj : j = 1, . . . , k} > 0
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and define a function from T (x, δ) into (0,∞) by

f(y) = min{fj(y) : j = 1, . . . , k}.

Then f ∈ F (x, δ) obviously holds. We have

U(x, δ, f) ⊂
k∩

j=1

U(x, δj , fj) ⊂
k∩

j=1

U(yj , εj , gj) ⊂ U.

We have shown (ii). It is obvious that (i) follows from (ii). �

Lemma 3.4. Let U be a subset of X. Then U is open in τ iff the following holds:

(A) For any x ∈ U , there exists δ > 0 satisfying S(x, δ) ⊂ U .

Proof. We assume that U is open in τ . Then by Lemma 3.2 (i), (A) holds. Let us
prove the converse implication. We assume that (A) holds, that is, for any x ∈ U ,
there exists δx > 0 satisfying S(x, δx) ⊂ U . Define fx ∈ F (x, δx) by

fx(y) = min
{(

δx − d(x, y)
)
/2, δy}

for y ∈ T (x, δx). Then we have∪[
U(x, δx, fx) : x ∈ U

]
= U.

Therefore U is open in τ . �

Now we can prove the following:

Theorem 3.5. τ is sequentially compatible with d.

Proof. Let {xn} be a sequence in X and let x ∈ X. Let us prove that the following
are equivalent:

(i) limn d(xn, x) = 0.
(ii) {xn} converges to x in τ .

We first prove (i) ⇒ (ii). We assume limn d(xn, x) = 0. Let U be an open subset of
(X, τ) containing x. Then by Lemma 3.2 (i), there exists δ > 0 satisfying S(x, δ) ⊂
U . From (i), there exists µ ∈ N such that n ≥ µ implies d(xn, x) < δ. So

xn ∈ S(x, δ) ⊂ U

holds for n ∈ N with n ≥ µ. Therefore {xn} converges to x in τ . Next, in order to
prove (ii) ⇒ (i), we assume that lim supn d(xn, x) > 0. We will show the following
(B):

(B) There exist a subsequence {yn} of {xn}, δ > 0 and f ∈ F (x, δ) satisfying
U(x, δ, f) ∩ {yn : n ∈ N} = ∅.

In order to show (B), we choose β > 0 and a subsequence {yn} of {xn} such that
d(yn, x) > β for any n ∈ N. We consider the following three cases:

• There exists z ∈ X such that #{n ∈ N : yn = z} = ∞.
• There exists z ∈ X such that #{n ∈ N : yn = z} < ∞ and lim infn d(yn, z) =
0.

• lim infn d(yn, z) > 0 holds for any z ∈ X.
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In the first case, without loss of generality, we may assume that yn = z for any
n ∈ N. Since d(z, x) > β, x ̸= z holds. Put δ = β and let y ∈ T (x, δ). Since

0 < d(x, y) < δ < d(x, z),

y ̸= z holds. We can choose f(y) satisfying

0 < f(y) < min
{
δ − d(x, y), d(y, z)

}
.

Then it is obvious that f ∈ F (x, δ) and S
(
y, f(y)

)
∩ {yn : n ∈ N} = ∅ hold. Thus

we obtain (B). In the second case, without loss of generality, we may assume that
{yn} itself satisfies limn d(yn, z) = 0, yn are all different and yn ̸= z for any n ∈ N.
Since d(yn, x) > β, x ̸∈ {yn : n ∈ N} and z ̸= x hold, thus, d(x, z) > 0 holds. Put
δ := min

{
β, d(x, z)

}
> 0 and let y ∈ T (x, δ). We have y ̸∈ {yn : n ∈ N} because

d(x, y) < δ ≤ β holds. We also have y ̸= z. Noting that the four elements x, z, y, yn
are all different for any n ∈ N, we have by (N3)2

d(x, z) ≤ d(x, y) + d(y, yn) + d(yn, z)

and hence
lim inf
n→∞

d(y, yn) ≥ d(x, z)− d(x, y) ≥ δ − d(x, y) > 0.

So, we can choose f(y) satisfying

0 < f(y) < δ − d(x, y) and S
(
y, f(y)

)
∩ {yn : n ∈ N} = ∅.

Therefore we obtain (B). In the third case, we put δ = β and let y ∈ T (x, δ). Then
we note y ̸∈ {yn : n ∈ N}. Since lim infn d(yn, y) > 0, we can prove (B) as in the
second case. Therefore we have shown (B) in all cases. Since U(x, δ, f) is an open
neighborhood of x, {xn} does not converge to x in τ . Therefore we have shown (ii)
⇒ (i). We have shown that τ is sequentially compatible with d. �
Remark 3.6. Theorem 3.5 is independent of Lemma 9.3 in [4] because in Page 426
of [4] we assume that the whole space is regular and T1.

Theorem 3.7. Every 2-generalized metric space (X, d) has a sequentially compat-
ible topology with d.

4. Separation Axioms

In this section, we discuss separation axioms.
We recall that a topological space X is said to be a T1 space iff for any two

distinct points x and y in X, there exist open subsets U and V of X satisfying
x ∈ U , y ∈ V , y ̸∈ U and x ̸∈ V . A T1 space is also called an accessible space or
a Fréchet space. It is well known that X is T1 iff for any x ∈ X, the singleton set
{x} is closed.

We recall that X is said to be a T2 space iff for any two distinct points x and y in
X, there exist open subsets U and V of X satisfying x ∈ U , y ∈ V and U ∩ V = ∅.
A T2 space is also called a separated space or a Hausdorff space.

The following theorem tells that for a generalized metric space X, (X, τ) is T1,
where τ is given in Section 3.

Theorem 4.1. Let (X, d) be a 2-generalized metric space and let τ be a topology
on X as in Section 3. Then (X, τ) is T1.
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Proof. For any x ∈ X, since

X \ {x} =
∪{

S
(
y, d(x, y)

)
: y ∈ X \ {x}

}
,

by Lemma 3.4, X \ {x} is open. Hence {x} is closed. �

We give a sufficient and necessary condition for that (X, τ) is T2.

Theorem 4.2. Let X, d and τ be as in Theorem 4.1. Then the following are
equivalent:

(i) (X, τ) is T2.
(ii) If a sequence {xn} in X converges to x in (X, d), then lim infn d(xn, y) > 0

holds for any y ∈ X \ {x}.
(iii) If a sequence {xn} in X converges to x and y in (X, d), then x = y holds.

Proof. We first show (i) ⇒ (ii). We assume that (i) holds, a sequence {xn} in X
converges to x in (X, d) and y is an element of X \ {x}. Then there exist open
subsets U and V of X satisfying x ∈ U , y ∈ V and U ∩ V = ∅. We can choose
δ > 0 such that S(y, δ) ⊂ V . Since xn ∈ U for sufficiently large n ∈ N, we have
xn ̸∈ S(y, δ) for sufficiently large n ∈ N. Thus

lim inf
n→∞

d(xn, y) ≥ δ > 0.

We have shown (i) ⇒ (ii). We can easily show (ii) ⇒ (iii). We shall show (iii) ⇒
(i). We assume that (iii) holds and x and y are two distinct points of X. We put

δ = inf{d(x, z) + d(y, z) : z ∈ X}/4.

It follows from (iii) that δ > 0 holds. We note S(x, δ) ∩ S(y, δ) = ∅. Let f ∈
F (x, δ) and g ∈ F (y, δ) and put U = U(x, δ, f) and V = U(y, δ, g). Arguing by
contradiction, we assume w ∈ U ∩ V . Without loss of generality, we may assume
d(x,w) ≤ d(y, w). We consider the following three cases:

• 0 = d(x,w) < δ ≤ d(y, w)
• 0 < d(x,w) < δ ≤ d(y, w)
• δ ≤ d(x,w) ≤ d(y, w)

We note that there exists z ∈ T (y, δ) such that w ∈ T
(
z, g(z)

)
. It follows from

S(x, δ) ∩ S(y, δ) = ∅ that d(x, z) ≥ δ holds. In the first case, we have

4 δ ≤ d(x, z) + d(y, z) = d(w, z) + d(y, z) < g(z) + d(y, z) < δ,

which implies a contradiction. In the second case, noting that x, y, z, w are all
different, we have by (N3)2

4 δ ≤ d(x, x) + d(x, y) = d(x, y) ≤ d(x,w) + d(w, z) + d(z, y) < 2 δ,

which implies a contradiction. In the third case, we note that there exists v ∈ T (x, δ)
such that w ∈ T

(
v, f(v)

)
. Noting that x, y, z, v, w are all different, we have by (N3)2

4 δ ≤ d(x, v) + d(y, v) ≤ d(x, v) + d(v, w) + d(w, z) + d(z, y)

≤ d(x, v) + f(v) + g(z) + d(z, y) < 2 δ,

which implies a contradiction. We have shown (iii) ⇒ (i). �
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