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AN APPROXIMATION METHOD WITH NONSUMMABLE
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Abstract. In this work, we propose an iterative scheme generated by a shrinking
projection method to approximate a solution to the convex minimization prob-
lem on a Hilbert space by using the notion of resolvent. The proposed method
contains nonsummable error terms. We also obtain an upper bound of the error
of the approximate value.

1. Introduction

Let H be a real Hilbert space and f : H → ]−∞,+∞] a proper lower semicon-
tinuous convex function, where ]−∞,+∞] = R ∪ {+∞}. We consider the convex
minimization problem for f , that is, the problem finding x0 ∈ H such that

f(x0) = inf
x∈H

f(x).

The notion of resolvent for a function f is known as one of the most powerful tools
for this problem. For ρ > 0, the resolvent Jρy of y ∈ H is defined as a unique
minimizer of the function

g(x) = ρf(x) +
1

2
∥x− y∥2

on H and we know that the set of fixed points of Jρ coincides with that of solutions
to the convex minimization problem for f . From this fact, we may apply various
kinds of techniques used in fixed point theory to solve this problem.

One of the most popular methods to approximate a solution to this problem using
resolvent of the function is the proximal point algorithm, introduced by Martinet [8]
and Rockafellar [10]. The iterative sequence generated by this scheme is guaranteed
to be convergent weakly to a solution. Since this algorithm was introduced, a large
number of variations of this result has been investigated and proposed.

On the other hand, strong convergence algorithms have been also studied. The
following result proposed by Takahashi, Takeuchi, and Kubota [13] is known as the
shrinking projection method. Notice that the original result of this theorem deals
with a family of nonexpansive mappings.
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Theorem 1.1 (Takahashi-Takeuchi-Kubota [13]). Let H be a real Hilbert space and
C a nonempty closed convex subset of H. Let T be a nonexpansive mapping of C
into itself such that FixT = {z ∈ C : z = Tz} is nonempty. Let {αn} be a sequence
in [0, a], where 0 < a < 1. For a point x ∈ H chosen arbitrarily, generate a sequence
{xn} by the following iterative scheme: x1 ∈ C, C0 = C, and

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ∥z − yn∥ ≤ ∥z − xn∥} ∩ Cn−1,

xn+1 = PCnx

for n ∈ N. Then, {xn} converges strongly to PFixTx ∈ C, where PK is the metric
projection of H onto a nonempty closed convex subset K of H.

Applying the resolvent operator to the mapping T , we obtain a strongly con-
vergent approximation result to the solution of the convex minimization problem.
Related results are also given in [5, 11].

Recently, the author [6,7] proposed iterative sequences generated by a shrinking
projection method containing nonsummable error terms. This technique is applied
to the convex minimization problem by Ibaraki [4].

In this work, we deal with a shrinking projection method to approximate a solu-
tion to the convex minimization problem on a Hilbert space. The proposed method
also contains nonsummable error terms, however, the structure of the sequence of
convex sets in the method is different from that obtained by Ibaraki.

2. Preliminaries

In what follows, the symbol H is always a real Hilbert space with inner product
⟨·, ·⟩ and norm ∥·∥. The set of positive integers is denoted by N and the set of real
numbers by R. We know the following basic equality: For x, y ∈ H and τ ∈ R,

∥τx+ (1− τy)∥2 = τ ∥x∥2 + (1− τ) ∥y∥2 − τ(1− τ) ∥x− y∥2 .

In particular, when τ = 1/2, it is known as the parallelogram law.
Let C be a nonempty closed convex subset of H. We say a mapping T : C → H

is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥
for every x, y ∈ C. A point z ∈ C satisfying that z = Tz is called a fixed point of
T and we denote by FixT the set of all fixed points of T . We know that, if T is
nonexpansive, then FixT is a closed convex subset of C.

Let f : H → ]−∞,+∞]. We say f is proper if there exists x ∈ H such that
f(x) < ∞. We say f is convex if

f(τx+ (1− τ)y) ≤ τf(x) + (1− τ)f(y)

for x, y ∈ H and τ ∈ ]0, 1[. f is said to be lower semicontinuous if

f(x) ≤ lim inf
n→∞

f(xn),

whenever a sequence {xn} ⊂ H converges strongly to x ∈ H. The set of minimizers
of f on H is denoted by argminH f .
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Let f : H → ]−∞,+∞] be a proper lower semicontinuous convex function. It
is not necessarily true that f has a minimizer, however, if we define gy : H →
]−∞,+∞] for fixed y ∈ H by

gy(x) = f(x) +
1

2
∥x− y∥2

for any x ∈ H, then it is guaranteed that gy always has a unique minimizer uy ∈ H.
Since this minimizer uy depends on y ∈ H, we may consider the operator J : H → H
defined by Jy = uy and we call this J the resolvent of f . Further, for ρ > 0, the
resolvent of ρf is denoted by Jρ.

The resolvent operator Jρ of ρf has the following properties:

• It is firmly nonexpansive in the sense of Browder [3];

∥Jρx− Jρy∥2 ≤ ⟨Jρx− Jρy, x− y⟩
for every x, y ∈ H;

• the set of its fixed points coincides with the set of minimizers of f ;

Fix Jρ = argmin
H

f.

Let C be a nonempty closed convex subset of H. For fixed y ∈ H, define dy :

H → R by dy(x) = ∥x− y∥2. Then we know that dy has a unique minimizer xy ∈ C.
We define the metric projection PC by PCx = xy for every x ∈ H. Since we may see
that the metric projection PC coincides with the resolvent of the indicator function
iC : H → ]−∞,+∞], which is defined by

iC(x) =

{
0 (x ∈ C),

+∞ (x /∈ C),

PC is also firmly nonexpansive and FixPC = argminH iC = C. In what follows, the
metric projection onto a nonempty closed convex subset C is denoted by PC .

We may also define the resolvents and metric projections by using the subdiffer-
ential of convex functions. For their details, see [1, 12] and others.

The following theorem given by Tsukada [14] plays an important role in our main
result. It is obvious that this result is available when the space E is a real Hilbert
space.

Theorem 2.1 (Tsukada [14]). Let E be a smooth, reflexive, and strictly convex real
Banach space having the Kadec-Klee property. Let {Cn} be a sequence of nonempty
closed convex subsets of E and suppose that C0 = M-limn→∞Cn exists and is
nonempty, then {PCnx} converges strongly to PC0x for each x ∈ E.

Remark 2.2. For a sequence of nonempty closed convex subsets {Cn} of H, the
Mosco limit M-limn→∞Cn of {Cn} is defined as follows: We first define a subset
s-LinCn of H as the set of all limit points of {Cn}. Namely, x ∈ s-LinCn if and only
if there exists {xn} ⊂ H such that {xn} converges strongly to x and that xn ∈ Cn

for all n ∈ N. Similarly, w-LsnCn of H is the set of all subsequential weak limit
points of {Cn}; y ∈ w-LsnCn if and only if there exist a subsequence {Cni} of {Cn}
and a sequence {yi} ⊂ H such that {yi} converges weakly to y and that yi ∈ Cni

for all i ∈ N. If C0 ⊂ H satisfies that C0 = s-LinCn = w-LsnCn, we say that {Cn}
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converges to C0 in the sense of Mosco [9] and we write C0 = M-limn→∞Cn. For
more details, see [2].

In particular, if {Cn} is a sequence of closed convex subsets of E which is de-
creasing with respect to inclusion, then

M-lim
n→∞

Cn =
∩
n∈N

Cn.

3. Approximating a minimizer of convex functions

In this section, we propose an iterative scheme for approximating a minimizer of
the proper lower semicontinuous convex functions defined on a Hilbert space. The
scheme contains error terms when we generate a sequence and we show that the
sequence has sufficiently nice properties even if the sequence of error terms does not
converges to zero.

Theorem 3.1. Let H be a Hilbert space and f : H → ]−∞,+∞] a proper lower
semicontinuous convex function satisfying argminH f ̸= ∅. Let {δn} and {ρn} be
real sequences such that δn ≥ 0 and infn∈N ρn > 0. Let δ0 = lim supn→∞ δn and
ρ0 = lim infn→∞ ρn. For given u, x1 ∈ H with ∥u− x1∥ ≤ δ1, generate an iterative
sequence {xn} as follows: C1 = H,

Cn+1 = {z ∈ H : ∥Jρnxn − z∥ ≤ ∥xn − z∥} ∩ Cn, and

xn+1 ∈ Cn+1 such that ∥u− xn+1∥2 ≤ d(u,Cn+1)
2 + δ2n+1

for each n ∈ N, where Jρn is the resolvent for ρnf . Then,

lim sup
n→∞

∥Jρnxn − xn∥ ≤ δ0

and

lim sup
n→∞

f(Jρnxn)−min
y∈H

f(y) ≤ 4δ0(2d (u, argminH f) + δ0)

ρ0
.

Moreover, if δ0 = 0, then {xn} converges strongly to PargminH fu.

Proof. We first show that the sequence {xn} is well defined and argminH f ⊂∩
n∈NCn by induction. Fix n ∈ N arbitrarily and suppose that xn ∈ H is defined

and argminH f ⊂ Cn. Then, since resolvents are nonexpansive, we have that

Cn+1 ⊃ Fix Jρn = argmin
H

ρnf = argmin
H

f ̸= ∅.

Thus we may find xn+1 ∈ Cn+1 such that ∥u− xn+1∥2 ≤ d(u,Cn+1)
2 + δ2n+1, and

hence {xn} is well defined and argminH f ⊂
∩

n∈NCn.
Let Dn = {z ∈ H : ∥Jρnxn − z∥ ≤ ∥xn − z∥} for n ∈ N. Then, since

Dn = {z ∈ H : ∥Jρnxn − z∥2 ≤ ∥xn − z∥2}

= {z ∈ H : ⟨z, 2(Jρnxn − xn)⟩ ≥ ∥Jρnxn∥
2 − ∥xn∥2},

we have that Dn is a closed convex subset of H, and so is Cn.
Let C0 =

∩
n∈NCn. By definition, {Cn} is a decreasing sequence of sets with

respect to inclusion. By Theorem 2.1 with Remark 2.2, we have that the sequence
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{pn} converges strongly to p0 ∈ H, where pn = PCnu for n ∈ N and p0 = PC0u. We
also have that

∥u− xn∥2 ≤ d(u,Cn)
2 + δ2n = ∥u− pn∥2 + δ2n

and, for τ ∈ ]0, 1[,

∥u− pn∥2 ≤ ∥u− (τpn + (1− τ)xn)∥2

= τ ∥u− pn∥2 + (1− τ) ∥u− xn∥2 − τ(1− τ) ∥xn − pn∥2 ,

which implies that

τ ∥xn − pn∥2 ≤ ∥u− xn∥2 − ∥u− pn∥2 .

Tending τ ↑ 1, we have that

∥xn − pn∥2 ≤ ∥u− xn∥2 − ∥u− pn∥2 ≤ δ2n.

Since pn+1 ∈ Cn+1, it follows that

∥Jρnxn − xn∥ ≤ ∥Jρnxn − pn+1∥+ ∥pn+1 − xn∥
≤ 2 ∥pn+1 − xn∥
≤ 2(∥pn+1 − pn∥+ ∥pn − xn∥)
≤ 2(∥pn+1 − pn∥+ δn)

for all n ∈ N. Therefore, we obtain that

lim sup
n→∞

∥Jρnxn − xn∥ ≤ 2δ0.

We also have that, for p = PargminH fu and τ ∈ ]0, 1[,

ρnf(Jρnxn) + ∥Jρnxn − xn∥2

≤ ρnf(τJρnxn + (1− τ)p) + ∥τJρnxn + (1− τ)p− xn∥2

≤ τρnf(Jρnxn) + (1− τ)ρnf(p)

+ τ ∥Jρnxn − xn∥2 + (1− τ) ∥p− xn∥2 − τ(1− τ) ∥Jρnxn − p∥2 .

Dividing by 1− τ and tending τ ↑ 1, we have that

ρnf(Jρnxn)− ρnf(p) ≤ ∥p− xn∥2 − ∥Jρnxn − xn∥2 − ∥p− Jρnxn∥
2

≤ ∥Jρnxn − xn∥ (∥p− xn∥+ ∥p− Jρnxn∥)− ∥Jρnxn − xn∥2

= ∥Jρnxn − xn∥ (∥p− xn∥+ ∥p− Jρnxn∥ − ∥Jρnxn − xn∥)
≤ 2 ∥Jρnxn − xn∥ ∥p− xn∥
≤ 4(∥pn+1 − pn∥+ δn)(∥p− u∥+ ∥u− pn∥+ ∥pn − xn∥)
≤ 4(∥pn+1 − pn∥+ δn)(2 ∥u− p∥+ δn).
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Since {pn} converges strongly to p0, we have that

lim sup
n→∞

f(Jρnxn)−min
y∈H

f(y) = lim sup
n→∞

f(Jρnxn)− f(p)

≤ lim sup
n→∞

4(∥pn+1 − pn∥+ δn)(2 ∥u− p∥+ δn)

ρn

=
4δ0(2 ∥u− p∥+ δ0)

ρ0
,

which is the desired result.
For the latter part of the theorem, suppose that δ0 = 0. Then we have that

limn→∞ ∥Jρnxn − xn∥ = 0. We also have that

lim
n→∞

∥xn − pn∥ ≤ lim
n→∞

δn = δ0 = 0,

and that {pn} converges strongly to p0. Therefore, both {xn} and {Jρnxn} converges
strongly to p0. Using lower semicontinuity of f , we get that

f(p0)−min
y∈H

f(y) ≤ lim inf
n→∞

f(Jρnxn)−min
y∈H

f(y)

≤ lim sup
n→∞

f(Jρnxn)−min
y∈H

f(y)

=
4δ0(2 ∥u− p∥+ δ0)

ρ0
= 0.

That is, p0 ∈ argminH f . Since p0 = PC0u and argminH f ⊂ C0, we have that
p0 = PargminH fu. �

This result shows that the generated iterative sequence approximates a fixed
point of the resolvent operators for f in the sense that {∥Jρnxn − xn∥} becomes
sufficiently small by repeating the iteration. Since the set of fixed points of the
resolvent coincides with the set of minimizers of f , we may say that the iterative
sequence approximates a minimizer of f . Moreover, the inequality

lim sup
n→∞

f(Jρnxn)−min
y∈H

f(y) ≤ 4δ0(2d (u, argminH f) + δ0)

ρ0

proposes that, if we know the approximate distance between the point u and the set
of minimizers of f , then we may control the upper bound of the value f(Jρnxn) −
miny∈H f(y) by choosing appropriate sequences {δn} and {ρn}.
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