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Abstract. The purpose of this paper is to propose and analyze an iterative
hybrid shrinking projection algorithm which exhibits strong convergence in the
sense of Mosco. The proposed algorithm is used to approximate a common ele-
ment in the set of solutions of a finite family of split equilibrium problems and
the set of common fixed points of a finite family of k-strict pseudo-contractions
in the setting of Hilbert spaces. Our results can be viewed as a generalization
and improvement of various existing results in the current literature.

1. Introduction

Throughout this paper, we work in the setting of a real Hilbert space H equipped
with the inner product ⟨· , ·⟩ and the induced norm ∥·∥ . Let C be a nonempty subset
of a real Hilbert space H and let T : C → C be a mapping. The set of fixed points
of the mapping T is defined and denoted as: F (T ) = {x ∈ C : T (x) = x}. The
self-mapping T is said to be a k-strict pseudo contraction if there exists k ∈ R with
0 ≤ k < 1, such that

(1.1) ∥Tx− Ty∥2 ≤ ∥x− y∥2 + k ∥(I − T )x− (I − T )y∥2 , ∀ x, y ∈ C.

In 1967, Browder and Petryshyn [5] introduced the concept of a strict pseudo-
contraction in Hilbert spaces which satisfies the following Lipschitz condition:

∥Tx− Ty∥ ≤ 1 + k

1− k
∥x− y∥ .

This class is prominent among various classes of nonlinear mappings and has power-
ful applications, in particular, to solve inverse problems [24]. However, the odds in
the development of iterative algorithms for strict pseudo-contractions is the second
term in its definition. Note that the class of k-strict pseudo-contractions contains
the class of:
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(i) nonexpansive mappings (i.e., ∥Tx− Ty∥ ≤ ∥x− y∥) which are 0-strict pseudo-
contraction;

(ii) firmly nonexpansive mappings

(i.e., ∥Tx− Ty∥2 ≤ ∥x− y∥2−∥(I − T )x− (I − T )y∥2) which are −1-strict pseudo-
contraction.

Moreover, the class of k-strict pseudo-contractions falls into the one between
the classes of nonexpansive mappings and pseudo-contractions (i.e., ∥Tx− Ty∥2 ≤
∥x− y∥2 + ∥(I − T )x− (I − T )y∥2). Observe that the class of strong pseudo-
contractions (i.e., if T − δI is a pseudo-contraction where δ ∈ (0, 1)) is indepen-
dent of the class of k-strict pseudo-contractions.

We remark that the iterative construction of fixed points of various nonlinear
mappings have been extensively studied in the current literature. Some iterative
algorithms for the class of k-strict pseudo-contractions have been proposed and an-
alyzed, see, for example, [18,21,22,28] and the references cited therein. It is there-
fore, natural to employ an iterative algorithm for the construction of fixed points of
k-strict pseudo-contractions which exhibits strong convergence under mild control
conditions on the parameters. It is worth mentioning that hybrid projection algo-
rithm, introduced by Haugazeau [14], have been modified in different ways to ensure
strong convergence of the algorithm. In 2008, Takahashi et al. [26] firstly proposed
the shrinking projection method to establish strong convergence results for families
of nonexpansive mappings in Hilbert spaces. We, therefore, employ the shrink-
ing projection algorithm involving a finite family of k-strict pseudo-contractions in
Hilbert spaces.

The theory of equilibrium problems is a systematic approach to study a diverse
range of problems arising in the field of physics, optimization, variational inequali-
ties, transportation, economics, network and noncooperative games, see, for exam-
ple [1,3,12] and the references cited therein. The existence result of an equilibrium
problem can be found in the seminal work of Blum and Oettli [3]. Moreover, this
theory has a computational flavor and flourishes significantly due to an excellent
paper of Combettes and Hirstoaga [11]. The classical equilibrium problem theory
has been generalized in several interesting ways to solve real world problems. In
2012, Censor et al. [9] proposed a theory regarding split variational inequality prob-
lem (SVIP) which aims to solve a pair of variational inequality problems in such a
way that the solution of a variational inequality problem, under a given bounded
linear operator, solves another variational inequality.

Motivated by the work of Censor et al. [9], Moudafi [23] generalized the concept
of SVIP to that of split monotone variational inclusions (SMVIP) which includes, as
a special case, split variational inequality problem, split common fixed point prob-
lem, split zeroes problem, split equilibrium problem and split feasibility problem.
These problems have already been studied and successfully employed as a model
in intensity-modulated radiation therapy treatment planning, see [7, 8]. This for-
malism is also at the core of modeling of many inverse problems arising for phase
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retrieval and other real-world problems; for instance, in sensor networks in comput-
erized tomography and data compression; see, for example, [6, 10].

Let C be a nonempty subset of a real Hilbert space H1, Q be a nonempty subset
of a real Hilbert space H2 and let A : H1 → H2 be a bounded linear operator.
Let F : C × C → R and G : Q × Q → R be two bifunctions. Recall that a split
equilibrium problem (SEP) is to find:

(1.2) x∗ ∈ C such that F (x∗, x) ≥ 0 for all x ∈ C,

and

(1.3) y∗ = Ax∗ ∈ Q such that G (y∗, y) ≥ 0 for all y ∈ Q.

It is remarked that the inequality (1.2) represents the classical equilibrium prob-
lem and its solution set is denoted as EP (F ). Moreover, the inequalities (1.2) and
(1.3) constitute a pair of equilibrium problems which aim to find a solution x∗ of
an equilibrium problem (1.2) such that its image y∗ = Ax∗ under a given bounded
linear operator A also solves another equilibrium problem (1.3). The set of solutions
of SEP (1.2) and (1.3) is denoted as Ω = {z ∈ EP (F ) : Az ∈ EP (G)}. Some meth-
ods have been proposed and analyzed to solve SEP together with the fixed point
problem in Hilbert spaces, see, for example, [4,13,15–17,25] and the references cited
therein.

Recently, Deepho et al. [13] studied a general iterative algorithm to solve
split variational inequality problems and fixed point problems of k- strict pseudo-
contractions in Hilbert spaces. Another motivation for the current research is the
recent result of Wang et al. [?] concerning split equilibrium problems and fixed point
problems of nonexpansive mappings in Hilbert spaces. Inspired and motivated by
the above mentioned results and the ongoing research in this direction, we aim to
employ a hybrid shrinking projection algorithm to find a common element in the
set of solutions of a finite family of split equilibrium problems and the set of com-
mon fixed points of a finite family of k-strict pseudo-contractions in Hilbert spaces.
Our results can be viewed as a generalization and improvement of various existing
results in the current literature.

2. Preliminaries

Throughout this paper, we write xn → x (resp. xn ⇀ x) to indicate strong
convergence (resp. weak convergence) of a sequence {xn}∞n=1. Now, we recall some
basic notions and results required in the sequel. Let C be a nonempty closed convex
subset of a Hilbert space H1. For each x ∈ H1, there exists a unique nearest point
of C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥ for all y ∈ C.

Such a mapping PC : H1 → C is known as a metric projection or a nearest point
projection of H1 onto C. Moreover, PC satisfies nonexpansiveness in a Hilbert space
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and ⟨x− PCx, PCx− y⟩ ≥ 0 for all x, y ∈ C. It is remarked that PC is firmly
nonexpansive mapping from H1 onto C, that is,

∥PCx− PCy∥2 ≤ ⟨x− y, PCx− PCy ⟩ , for all x, y ∈ C.

Recall that a nonlinear mapping A : C → H1 is λ-inverse strongly monotone if it
satisfies

⟨x− y ,Ax−Ay⟩ ≥ λ ∥Ax−Ay∥2 .
Note that, if A := I − T is a λ-inverse strongly monotone mapping, then:

(i) A is
(
1
λ

)
-Lipschitz continuous mapping;

(ii) if T is a nonexpansive mapping, then A is
(
1
2

)
-inverse strongly monotone

mapping;
(iii) if η ∈ (0, 2λ], then I − ηA is a nonexpansive mapping.

The following lemma collects some well-known equations in the context of a real
Hilbert space.

Lemma 2.1. Let H1 be a real Hilbert space, then:

(i) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2 ⟨x− y, y⟩ , for all x, y ∈ H1;

(ii) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩ , for all x, y ∈ H1;

(iii) 2 ⟨x− y, u− v⟩ = ∥x− v∥2+∥y − u∥2−∥x− u∥2−∥y − v∥2 , for all x, y, u, v ∈
H1;

(iv) ∥αx+ (1− α)y∥2 = α ∥x∥2+(1−α) ∥y∥2−α(1−α) ∥x− y∥2 for all x, y ∈ H1

and α ∈ R.

It is well-known that H1 satisfies Opial’s condition, that is, for any sequence {xn}
in H1 with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥ ,

holds for all y ∈ H1 with x ̸= y.
Recall that a mapping T : H1 → H1 is said to be demiclosed at origin if for any

sequence {xn} in H1 with xn ⇀ x and ∥xn − Txn∥ → 0, we have x = Tx.
The following results collect some of the characterizations of a k-strict pseudo-

contraction T and the set of fixed points F (T ) in Hilbert spaces.

Lemma 2.2 ( [21, Proposition 2.1 (iii)]). Let C be a nonempty closed convex subset
of a real Hilbert space H. If T : C → H is a k-strict pseudo-contraction, then the
�xed point set F (T ) is closed and convex so that the projection PF (T ) is well de�ned.

Lemma 2.3 ( [21, Proposition 2.1 (ii)]). Let C be a nonempty closed convex subset
of a real Hilbert space H and T : C → C a k-strict pseudo-contraction. Then (I−T )
is demiclosed, that is, if {xn} is a sequence in C with xn ⇀ x and xn − Txn → 0,
then x ∈ F (T ).

We now introduce the notion of Mosco convergence.

Let {Cn} be a sequence of nonempty closed convex subsets of Hilbert space H1.
We denote the set of all strong limit points of {Cn} by s-LinCn, that is, x ∈ s-LinCn

if and only if there exists {xn} ⊂ H1 such that {xn} converges strongly to x and
that xn ∈ Cn for all n. Similarly, we define the set of all weak subsequential limit
points by w-LsnCn, that is, y ∈ w-LsnCn if and only if there exist a subsequence
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{Cni} of {Cn} and a sequence {yi} ⊂ H1 such that {yi} converges weakly to y and
yi ∈ Cni for all i. If C0 satisfies

C0 = s-LinCn = w-LsnCn,

then we say that {Cn} converges to C0 in the sense of Mosco and we write C0 =
M -limnCn. By definition, it always holds that s-LinCn ⊂ w-LsnCn. Therefore, to
prove C0 = M -limnCn, it suffices to show that w-LsnCn ⊂ C0 ⊂ s-LinCn. One
of the simplest examples of Mosco convergence is a decreasing sequence {Cn} with
respect to inclusion. The Mosco limit of such a sequence is

∩∞
n=1Cn. For more

details, we refer to [2, 19,20].

For a relation between a sequence of closed and convex sets and the corresponding
metric projections, we state the following lemma which can be deduced from the
theorem for a strictly convex reflexive Banach space satisfying Kadec-Klee property.

Lemma 2.4 ([27])). Let {Cn} be a sequence of nonempty closed convex subset of
H1. If C0 =

∩∞
n=1Cn is nonempty, then {PCnx} converges strongly to PC0x for each

x ∈ C.

In order to solve an equilibrium problem, we consider a bifunction F : C×C → R
satisfying the following conditions(c.f. [3] and [11]):

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each y ∈ C, the function x 7→ F (x, y) is upper hemicontinuous, that is,

for each x, z ∈ C,

lim
t→0

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, the function y 7→ F (x, y) is convex and lower semi-continuous.

Lemma 2.5 ([11])). Let C be a closed convex subset of a real Hilbert space H1 and
let F : C × C → R be a bifunction satisfying conditions (A1)-(A4). For r > 0 and
x ∈ H1, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, for all y ∈ C.

Moreover, de�ne a mapping TF
r : H1 → C by

TF
r (x) =

{
z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, for all y ∈ C

}
,

for all x ∈ H1. Then, the following hold:

(i) TF
r is single-valued;

(ii) TF1
r is �rmly nonexpansive, i.e., for every x, y ∈ H,∥∥TF

r x− TF
r y

∥∥2 ≤ ⟨
TF
r x− TF

r y, x− y
⟩

(iii) F (TF
r ) = EP (F );

(iv) EP (F ) is closed and convex.
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It is remarked that if G : Q×Q → R is a bifunction satisfying conditions (A1)-
(A4), then for s > 0 and w ∈ H2 we can define a mapping:

TG
s (w) =

{
d ∈ C : G(d, e) +

1

s
⟨e− d, d− w⟩ ≥ 0, for all e ∈ Q

}
,

which is, nonempty, single-valued and firmly nonexpansive. Moreover, EP (G) is
closed and convex, and F (TG

s ) = EP (G).

3. Main results

In this section, we establish results concerning shrinking projection algorithm
which exhibits strong convergence in the sense of Mosco. As a consequence, we
approximate a common element in the set of solutions of a finite family of split
equilibrium problems and the set of common fixed points of a finite family of k-
strict pseudo-contractions in the setting of Hilbert spaces.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and
Q ⊆ H2 be nonempty closed convex subsets of Hilbert spaces H1 and H2, respec-
tively. Let Fi : C × C → R and Gi : Q × Q → R be two �nite families of bi-
functions satisfying conditions (A1)-(A4) such that Gi is upper hemicontinuous for
each i ∈ {1, 2, 3, · · · , N}. Let Si : C → C be a �nite family of k-strict pseudo
contractions and let Ai : H1 → H2 be a �nite family of bounded linear operators

for each i ∈ {1, 2, 3, · · · , N}. Suppose that F :=
[∩N

i=1 F (Si)
]
∩ Θ ̸= ∅, where

Θ =
{
z ∈ C : z ∈

∩N
i=1EP (Fi) and Aiz ∈ EP (Gi) for 1 ≤ i ≤ N

}
. Let {xn} be a

sequence generated by:

(3.1)

x1 ∈ C1 = C,

un = TFn
rn

(
I − γA∗

n(modN)

(
I − TGn

sn

)
An(modN)

)
xn,

yn = αnun + (1− αn)Sn(modN)un,

Cn+1 =
{
z ∈ H1: ∥yn − z∥ 2 ≤ ∥xn − z∥2

}
∩ Cn,

xn+1 = PCn+1x1, n ≥ 1,

where {rn}, {sn} are two positive real sequences and {αn} is a sequence in (0, 1).
Let γ ∈

(
0, 1

L

)
, where L = max {L1, L2, · · · , LN} and Li is the spectral radius of

the operator A∗
iAi and A∗

i is the adjoint of Ai for each i ∈ {1, 2, 3, · · · , N}. Assume
that {αn}, {rn} and {sn} satisfy the following restrictions:

(C1) 0 ≤ k < a ≤ αn ≤ b < 1;
(C2) lim inf

n→∞
rn > 0 and lim inf

n→∞
sn > 0;

then the sequence {xn} generated by (3.1) converges strongly to x = PFx1.

Proof. For the sake of simplicity, we define An = An(modN) and Sn = Sn(modN)

for all n ≥ 1.We now start our proof to show that the sequence {xn} defined
in (3.1) is well-defined. For this, we first show by mathematical induction that
F ⊂ Cn+1 for all n ≥ 1. Obviously, F ⊂ C1 as if p ∈ F implies that TFn

rn p = p and

(I − γA∗
n(I − TGn

sn )An)p = p, then p ∈ C = C1. Now, assume that F ⊂ Ci for some
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i ≥ 1. Then, we estimate

∥ui − p∥2 =
∥∥TFi

ri

(
I − γA∗

i

(
I − TGi

si

)
Ai

)
xi − TFi

i
p
∥∥2

≤
∥∥xi − γA∗

i

(
I − TGi

si

)
Aixi − p

∥∥2
≤ ∥xi − p∥2 + γ2

∥∥A∗
i

(
I − TGi

si

)
Aixi

∥∥2 + 2γ
⟨
p− xi, A

∗
i

(
I − TGi

si

)
Aixi

⟩
.

Thus, we have

∥ui − p∥2 ≤ ∥xi − p∥2 + γ2
⟨
Aixi − TGi

si Aixi, AiA
∗
i

(
I − TGi

si

)
Aixi

⟩
+ 2γ

⟨
p− xi, A

∗
i

(
I − TGi

si

)
Aixi

⟩
≤ ∥xi − p∥2 + Lγ2

⟨
Aixi − TGi

si Aixi, Aixi − TGi
si Aixi

⟩
+ 2γ

⟨
p− xi, A

∗
i

(
I − TGi

si

)
Aixi

⟩
(3.2)

= ∥xi − p∥2 + Lγ2
∥∥Aixi − TGi

si Aixi
∥∥2 + 2γ

⟨
p− xi, A

∗
i

(
I − TGi

si

)
Aixi

⟩
.

On the other hand

(3.3)

2γ
⟨
p− xi, A

∗
i

(
I − TGi

si

)
Aixi

⟩
= 2γ

⟨
Ai (p− xi) , Aixi − TGi

si Aixi
⟩

= 2γ
⟨
Ai (p−xi)+

(
Aixi−TGi

si Aixi
)
−
(
Aixi−TGi

si Aixi
)
, Aixi−TGi

si Aixi
⟩

= 2γ
{⟨

Aip− TGi
si Aixi, Aixi − TGi

si Aixi
⟩
−

∥∥Aixi − TGi
si Aixi

∥∥2}
≤ 2γ

{
1

2

∥∥Aixi − TGi
si Aixi

∥∥2 − ∥∥Aixi − TGi
si Aixi

∥∥2}
= −γ

∥∥Aixi − TGi
si Aixi

∥∥2 .
Substituting (3.2) in (3.3) and simplifying, we have

(3.4) ∥ui − p∥2 ≤ ∥xi − p∥2 + γ (Lγ − 1)
∥∥Aixi − TGi

si Aixi
∥∥2 .

It now follows from the definition of γ, we have

(3.5) ∥ui − p∥2 ≤ ∥xi − p∥2 .

Now, utilizing (3.1) and condition (C1), we have

∥yi − p∥2 = ∥αiui + (1− αi)Siui − p∥2

≤ αi ∥ui − p∥2 + (1− αi) ∥Siui − p∥2 − αi (1− αi) ∥ui − Siui∥2

≤ αi ∥ui − p∥2 + (1− αi)
{
∥ui − p∥2 + k ∥ui − Siui∥2

}
− αi (1− αi) ∥ui − Siui∥2

= ∥ui − p∥2 − (1− αi) (αi − k) ∥ui − Siui∥2

≤ ∥ui − p∥2 .(3.6)

As a consequence of (3.5) and (3.6), we get

∥yi − p∥2 ≤ ∥xi − p∥2 .
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Hence p ∈ Ci+1 this implies F ⊂ Cn for all n ≥ 1.
Moreover, since{

z ∈ H1 : ∥yn − z∥ 2 ≤ ∥xn − z∥2
}
=

{
z ∈ H1 : ∥yn∥ 2 − ∥xn∥ 2 ≤ 2 ⟨yn − xn, z⟩

}
,

it is closed and convex. Summing up these facts, we conclude that Cn is nonempty,
closed and convex for all n ≥ 1, and hence the sequence {xn} is well-defined. Note
that {Cn} is a nonincreasing sequence of nonempty, closed and convex subsets of
H1 with respect to inclusion, it follows that

∩∞
n=1Cn is nonempty. That is,

∅ ̸= F ⊂M - lim
n→∞

Cn =
∩∞

n=1
Cn.

Let C0 =
∩∞

n=1Cn. Then by Lemma 2.4, {xn} = {PCnx1} converges strongly to
x = PC0x1. This implies that

(3.7) lim
n→∞

∥xn+1 − xn∥ = 0.

It remains to show that x ∈ F. For this, we divide the remaining part of the proof
into the following steps:
Step 1. Show that:

(i) limn→∞ ∥yn − xn+1∥ = limn→∞ ∥yn − xn∥ = 0,
(ii) limn→∞ ∥un − xn∥ = 0,
(iii) limn→∞ ∥yn − un∥ = 0,
(iv) limn→∞ ∥Snun − un∥ = 0.

Since xn+1 ∈ Cn+1 ⊂ Cn, we have ∥yn − xn+1∥ ≤ ∥xn − xn+1∥ . Therefore, using
(3.7), we get that

(3.8) lim
n→∞

∥yn − xn+1∥ = 0.

Also, from (3.7), (3.8) and the following triangular inequality:

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ ,

we have

(3.9) lim
n→∞

∥yn − xn∥ = 0.

Note that, the estimates (3.4) and (3.6) imply that

γ (1− γL)
∥∥Anxn − TGn

sn Anxn
∥∥2 ≤ ∥xn − p∥2 − ∥yn − p∥2

≤ (∥xn − p∥+ ∥yn − p∥) ∥xn − yn∥ .

Since γ (1− γL) > 0, therefore letting n → ∞ in the above estimate and utilizing
(3.9), we have

(3.10) lim
n→∞

∥∥Anxn − TGn
sn Anxn

∥∥2 = 0.
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Since TFn
rn is firmly nonexpansive, then

∥un − p∥2 =
∥∥TFn

rn

(
I − γA∗

n

(
I − TGn

sn

)
An

)
xn − TFn

rn p
∥∥

≤
⟨
un − p, xn − γA∗

n

(
I − TGn

sn

)
Anxn − p

⟩
=

1

2
{∥un − p∥2 +

∥∥xn − γA∗
n

(
I − TGn

sn

)
Anxn − p

∥∥2
−
∥∥un − xn + γA∗

n

(
I − TGn

sn

)
Anxn

∥∥2}
≤ 1

2

{
∥un − p∥2 + ∥xn − p∥2 −

∥∥un − xn + γA∗
n

(
I − TGn

sn

)
Anxn

∥∥2}
=

1

2
{∥un − p∥2 + ∥xn − p∥2 − (∥un − xn∥2 + γ2

∥∥A∗
n

(
I − TGn

sn

)
Anxn

∥∥2
−2γ

⟨
un − xn, A

∗
n

(
I − TGn

sn

)
Anxn

⟩
)}.

So, we obtain

∥un − p∥2 ≤ ∥xn − p∥2 − ∥un − xn∥2 + 2γ
⟨
un − xn, A

∗
n

(
I − TGn

sn

)
Anxn

⟩
≤ ∥xn − p∥2 − ∥un − xn∥2

+2γ ∥un − xn∥
∥∥A∗

n

(
I − TGn

sn

)
Anxn

∥∥ .
Utilizing the above estimate and (3.6), we have

∥un − xn∥2 ≤ (∥xn − p∥+ ∥yn − p∥) ∥xn − yn∥
+2γ ∥un − xn∥

∥∥A∗
n

(
I − TGn

sn

)
Anxn

∥∥ .
Taking lim sup on both sides of the above estimate, it then follows by using (3.9)
and (3.10) that

(3.11) lim
n→∞

∥un − xn∥ = 0.

From (3.9), (3.11) and the following triangular inequality:

∥yn − un∥ ≤ ∥yn − xn∥+ ∥xn − un∥ ,

we get

(3.12) lim
n→∞

∥yn − un∥ = 0.

Further ∥yn − un∥ = (1−αn) ∥Snun − un∥ . It follows from (3.12) and the fact that
0 ≤ k < a ≤ αn ≤ b < 1 (by C1), we get

(3.13) lim
n→∞

∥Snun − un∥ = 0.

Step 2. Show that x ∈
∩N

i=1 F (Si).

We show that x ∈
∩N

i=1 F (Si), that is, x ∈ F (Si) for 1 ≤ i ≤ N. Since xNn+i →
x as n → ∞, it follows from (3.11) that uNn+i → x and consequently we have
uNn+i ⇀ x. Since SNn+i = Si for all n ≥ 1, therefore from (3.13) and Lemma 2.3,
we have that x ∈ F (Si) for each 1 ≤ i ≤ N.

Step 3. Show that x ∈ Θ, i.e., x ∈
∩N

i=1EP (Fi) and Aix ∈ EP (Gi) for each
1 ≤ i ≤ N.
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In order to show that x ∈
∩N

i=1EP (Fi), that is, x ∈ EP (Fi) for each 1 ≤
i ≤ N, we define subsequence {nj} of index {n} such that nj = Nj + i for all
n ≥ 1. As a consequence, we can write Fnj = Fi for 1 ≤ i ≤ N. From unj =

TFi
rnj

(
I − γA∗

nj

(
I − T

Gnj
snj

)
Anj

)
xnj for all n ≥ 1, we have

Fi(unj , y)+
1

rnj

⟨
y − unj , unj − xnj − γA∗

nj

(
I − T

Gnj
snj

)
Anjxnj

⟩
≥ 0, for all y ∈ C.

This implies that

Fi(unj , y) +
1

rnj

⟨
y − unj , unj − xnj

⟩
− 1

rnj

⟨
y − unj , γA

∗
nj

(
I − T

Gnj
snj

)
Anjxnj

⟩
≥ 0

From (A2), we have

1

rnj

⟨
y − unj , unj − xnj

⟩
− 1

rnj

⟨
y − unj , γA

∗
nj

(
I − T

Gnj
snj

)
Anjxnj

⟩
≥ Fi(y, unj ),

for all y ∈ C. Since lim infj→∞ rni > 0 (by (C2)), therefore it follows from (3.10)
and (3.11) that

Fi(y, x) ≤ 0, for all y ∈ C and for 1 ≤ i ≤ N.

Let yt = ty + (1− t)x for some 0 < t < 1 and y ∈ C. Since x ∈ C, this implies that
yt ∈ C. Using (A1) and (A4), the following estimate:

0 = Fi(yt, yt) ≤ tFi(yt, y) + (1− t)Fi(yt, x) ≤ tFi(yt, y),

implies that

Fi(yt, y) ≥ 0, for 1 ≤ i ≤ N.

Letting t → 0, we have Fi(x, y) ≥ 0 for all y ∈ C. Thus, x ∈ EP (Fi) for 1 ≤ i ≤ N.

That is, x ∈
∩N

i=1EP (Fi). Reasoning as above, we show that Aix ∈ EP (Gi) for
each 1 ≤ i ≤ N. Since xnl

−→ x and Anl
is a bounded linear operator, therefore

Anl
xnl

−→ Anl
x. Hence, it follows from (3.10) that

T
Gnl
snl

Anl
xnl

−→ Anl
x as l → ∞.

Now, from Lemma 2.5 we have

Gi

(
T
Gnl
snl

Anl
xnl

, z
)
+

1

snl

⟨
z − T

Gnl
snl

Anl
xnl

, T
Gnl
snl

Anl
xnl

−Anl
xnl

⟩
≥ 0, for all z ∈ Q.

Since Gi is upper hemicontinuous in the first argument for each 1 ≤ i ≤ N , therefore
taking lim sup on both sides of the above estimate as l → ∞ and utilizing (C2) and
(3.10), we get

Gi (Anl
x, z) ≥ 0, for all z ∈ Q and for each 1 ≤ i ≤ N.

Hence Aix ∈ EP (Gi) for each 1 ≤ i ≤ N. This together with the conclusion of Step
2, we have that x ∈ F. This completes the proof. �

In particular, if Si - - in algorithm (3.1) - - is a finite family of nonexpansive
mappings, then we have the the following useful result:



SHRINKING PROJECTION ALGORITHM IN HILBERT SPACES 433

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and
Q ⊆ H2 be nonempty closed convex subsets of Hilbert spaces H1 and H2, respec-
tively. Let Fi : C × C → R and Gi : Q × Q → R be two �nite families of bi-
functions satisfying conditions (A1)-(A4) such that Gi is upper hemicontinuous for
each i ∈ {1, 2, 3, · · · , N}. Let Si : C → C be a �nite family of nonexpansive
mappings and let Ai : H1 → H2 be a �nite family of bounded linear operators

for each i ∈ {1, 2, 3, · · · , N}. Suppose that F :=
[∩N

i=1 F (Si)
]
∩ Θ ̸= ∅, where

Θ =
{
z ∈ C : z ∈

∩N
i=1EP (Fi) and Aiz ∈ EP (Gi) for 1 ≤ i ≤ N

}
. Let {xn} be a

sequence generated by:

(3.14)

x1 ∈ C1 = C,

un = TFn
rn

(
I − γA∗

n(modN)

(
I − TGn

sn

)
An(modN)

)
xn,

yn = αnun + (1− αn)Sn(modN)un,

Cn+1 =
{
z ∈ H1 : ∥yn − z∥ 2 ≤ ∥xn − z∥2

}
∩ Cn,

xn+1 = PCn+1x1, n ≥ 1,

where {rn}, {sn} are two positive real sequences and {αn} is a sequence in (0, 1).
Let γ ∈

(
0, 1

L

)
, where L = max {L1, L2, · · · , LN} and Li is the spectral radius of

the operator A∗
iAi and A∗

i is the adjoint of Ai for each i ∈ {1, 2, 3, · · · , N}. Assume
that {αn}, {rn} and {sn} satisfy the following restrictions:
(C1) : 0 ≤ k < a ≤ αn ≤ b < 1;
(C2) : lim inf

n→∞
rn > 0 and lim inf

n→∞
sn > 0;

then the sequence {xn} generated by (3.14) converges strongly to x = PFx1.

In order to solve the classical equilibrium problem together with the fixed point
problem, we prove the following result:

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and
Q ⊆ H2 be nonempty closed convex subsets of Hilbert spaces H1 and H2, respec-
tively. Let Fi : C × C → R and Gi : Q × Q → R be two �nite families of bi-
functions satisfying conditions (A1)-(A4) such that Gi is upper hemicontinuous for
each i ∈ {1, 2, 3, · · · , N}. Let Si : C → C be a �nite family of k-strict pseudo
contractions and let Ai : H1 → H2 be a �nite family of bounded linear operators

for each i ∈ {1, 2, 3, · · · , N}. Suppose that F :=
[∩N

i=1 F (Si)
]
∩ Θ ̸= ∅, where

Θ =
{
z ∈ C : z ∈

∩N
i=1EP (Fi) and Aiz ∈ EP (Gi) for 1 ≤ i ≤ N

}
. Let {xn} be a

sequence generated by:

(3.15)

x1 ∈ C1 = C,

un = TFn
rn

(
I − γA∗

n(modN)

(
I − TGn

sn

)
An(modN)

)
xn,

yn = αnun + (1− αn)Sn(modN)un,

Cn+1 =
{
z ∈ H1 : ∥yn − z∥ 2 ≤ ∥xn − z∥2

}
∩ Cn,

xn+1 = PCn+1x1, n ≥ 1,

where {rn}, {sn} are two positive real sequences and {αn} is a sequence in (0, 1).
Let γ ∈

(
0, 1

L

)
, where L = max {L1, L2, · · · , LN} and Li is the spectral radius of
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the operator A∗
iAi and A∗

i is the adjoint of Ai for each i ∈ {1, 2, 3, · · · , N}. Assume
that {αn}, {rn} and {sn} satisfy the following restrictions:

(C1) 0 ≤ k < a ≤ αn ≤ b < 1;
(C2) lim inf

n→∞
rn > 0 and lim inf

n→∞
sn > 0;

then the sequence {xn} generated by (3.15) converges strongly to x = PFx1.

Proof. Set H1 = H2, C = Q and A = I(the identity mapping) then the desired
result then follows from Theorem 3.1 immediately. �

Remark 3.4. It is instructive to compare the results of Theorems 3.1 & 3.3 in the
current literature, in particular to those as mentioned above, that our results can
be viewed as a generalization and improvement of various existing results in the
current literature.
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