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see [4, 13, 14, 16, 24] also. Condition (1.4) ensures that the left-hand endpoint is
embedded while the right-hand endpoint is free.

Meanwhile, fractional differential equations have been of interest recently; see
[3, 5–8, 11, 12, 17–19, 23]. In particular, for 3 < α ≤ 4, solutions of (1.1) with
boundary conditions (1.2) have been considered in [23]. Moreover solutions of (1.1)
with boundary conditions (1.3) have been considered in [17,19]. However, to the best
of our knowledge, there are no results for the boundary value problem represented
by (1.1) and (1.4) for 3 < α ≤ 4, which we consider in the present paper. We use
the Banach fixed point theorem to prove the existence and uniqueness of solutions.

2. Lemmas

For a continuous mapping h of [0, 1] into R, we consider the differential equation

(2.1) Dα
0+u(t) = h(t), 0 < t < 1.

In this section, we show the unique solution to the boundary value problem repre-
sented by (2.1) and (1.4). A mapping u of [0, 1] into R is a solution of that boundary
value problem if u is continuous on [0, 1] and u satisfies (2.1) and (1.4).

The following lemma can be found in [6]; see [11] also. We denote by C(0, 1) the
set of all continuous mappings of (0, 1) into R. Moreover we denote by L(0, 1) the
set of all Lebesgue integrable mappings of (0, 1) into R.

Lemma 2.1. Let α > 0. Let u ∈ C(0, 1)∩L(0, 1) satisfying Dα
0+u ∈ C(0, 1)∩L(0, 1).

Then there exist C1, C2, . . . , Cn ∈ R such that

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + Cnt

α−n,

where n = [α] + 1 and Iα0+u is the Riemann-Liouville fractional integral of order α
of a function u defined by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds.

Using Lemma 2.1, we obtain the following.

Lemma 2.2. Let h be a continuous mapping of [0, 1] into R. Let 3 < α ≤ 4. Then
the unique solution of the boundary value problem represented by (2.1) and (1.4) is

u(t) =

∫ 1

0
G(t, s)h(s)ds,

where

G(t, s)

=



1

Γ(α)

(
(t− s)α−1 + tα−1(1 − s)α−4(4s− αs− 1) + (α− 1)tα−2(1 − s)α−4s

)
(0 ≤ s ≤ t < 1),

1

Γ(α)

(
tα−1(1 − s)α−4(4s− αs− 1) + (α− 1)tα−2(1 − s)α−4s

)
(0 ≤ t ≤ s < 1).
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Proof. It is noted that the integral
∫ 1
0 G(t, s)h(s)ds is well-defined on [0, 1]. Par-

ticularly, we can define the integral
∫ 1
0 G(1.s)h(s)ds. In fact, since there exists

M = supt∈[0,1] |h(t)|, we have∫ 1

0
|(1 − s)α−4h(s)|ds

= lim
ϵ→0

∫ 1−ϵ

0
|(1 − s)α−4h(s)|ds ≤ M lim

ϵ→0

∫ 1−ϵ

0
(1 − t)α−4dt =

M

α− 3
.

By Lemma 2.1, there exist C1, C2, C3, C4 ∈ R such that

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + C1t

α−1 + C2t
α−2 + C3t

α−3 + C4t
α−4

for 0 < t < 1. Since u(0) = 0, we have C4 = 0. Hence we have

u′(t) =
α− 1

Γ(α)

∫ t

0
(t− s)α−2h(s)ds+ (α− 1)C1t

α−2 + (α− 2)C2t
α−3 + (α− 3)C3t

α−4

for 0 < t < 1. Since u′(0) = 0, we have C3 = 0. Hence we have

u′(t) =
α− 1

Γ(α)

∫ t

0
(t− s)α−2h(s)ds + (α− 1)C1t

α−2 + (α− 2)C2t
α−3

for 0 < t < 1. Moreover we have

u′′(t) =
(α− 1)(α− 2)

Γ(α)

∫ t

0
(t− s)α−3h(s)ds + (α− 1)(α− 2)C1t

α−3

+ (α− 2)(α− 3)C2t
α−4

for 0 < t < 1. Since u′′(1) = 0, we have

(α− 1)(α− 2)

Γ(α)

∫ 1

0
(1 − s)α−3h(s)ds + (α− 1)(α− 2)C1 + (α− 2)(α− 3)C2 = 0.

Furthermore, we have

u′′′(t) =
(α− 1)(α− 2)(α− 3)

Γ(α)

∫ t

0
(t− s)α−4h(s)ds + (α− 1)(α− 2)(α− 3)C1t

α−4

+ (α− 2)(α− 3)(α− 4)C2t
α−5

for 0 < t < 1. Since u′′′(1) = 0, we have

(α− 1)(α− 2)(α− 3)

Γ(α)

∫ 1

0
(1 − s)α−4h(s)ds

+ (α− 1)(α− 2)(α− 3)C1 + (α− 2)(α− 3)(α− 4)C2 = 0.

Then we have

C1 =
1

Γ(α)

∫ 1

0

(
(α− 4)(1 − s)α−3 − (α− 3)(1 − s)α−4

)
h(s)ds

=
1

Γ(α)

∫ 1

0
(1 − s)α−4(4s− αs− 1)h(s)ds
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and

C2 =
α− 1

Γ(α)

∫ 1

0

(
(1 − s)α−4 − (1 − s)α−3

)
h(s)ds

=
α− 1

Γ(α)

∫ 1

0
(1 − s)α−4sh(s)ds.

Therefore we obtain

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds + C1t

α−1 + C2t
α−2 =

∫ 1

0
G(t, s)h(s)ds.

The proof is complete. �

Remark 2.3. The function
∫ 1
0 G(·, s)ds is continuous on [0, 1]. In fact, we have

∫ 1

0
G(t, s)ds =

1

αΓ(α)

(
tα − 2α

α− 2
tα−1 +

α(α− 1)

(α− 2)(α− 3)
tα−2

)
for all 0 ≤ t < 1.

3. Main result

In this section, we consider the existence and uniqueness of solutions of the bound-
ary value problem represented by (1.1) and (1.4).

Theorem 3.1. Let 3 < α ≤ 4. Let f be a continuous mapping of [0, 1] ×R into R.
Assume that there exists λ ∈

[
0, 1

Λ

)
such that for any u, v ∈ [0,∞) and t ∈ [0, 1],

|f(t, u) − f(t, v)| ≤ λ|u− v|,

where

Λ = sup
0≤t≤1

∫ 1

0
|G(t, s)|ds

and G is the function in Lemma 2.2. Then the boundary value problem represented
by (1.1) and (1.4) has a unique solution.

Proof. If X = C[0, 1], where C[0, 1] is the set of all continuous mappings of [0, 1]
into R, then (X, d) is a complete metric space, where d is defined by d(u, v) =
sup0≤t≤1 |u(t) − v(t)| for u, v ∈ X. We define a mapping T of X by

(Tu)(t) =

∫ 1

0
G(t, s)f(s, u(s))ds
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for u ∈ X and 0 ≤ t ≤ 1. Then T is a mapping of X into itself. If u, v ∈ X, then
we have

d(Tu, Tv) = sup
0≤t≤1

|Tu(t) − Tv(t)|

≤ sup
0≤t≤1

∫ 1

0
|G(t, s)||f(s, u(s)) − f(s, v(s))|ds

≤ λ sup
0≤t≤1

∫ 1

0
|G(t, s)||u(s) − v(s)|ds

≤ λd(u, v) sup
0≤t≤1

∫ 1

0
|G(t, s)|ds.

Therefore we obtain
d(Tu, Tv) ≤ λΛd(u, v),

where 0 ≤ λΛ < 1. Using the Banach fixed point theorem, we deduce the existence
and uniqueness of fixed points of T . �
Remark 3.2. Let f be a continuous function of [0, 1] × R into R, with a bounded
partial derivative with respect to the second variable. Assume that D

8 < 1, where

D = sup
{∣∣∣∂f∂u(t, u)

∣∣∣ | (t, u) ∈ [0, 1] × R
}

. Then the boundary value problem rep-

resented by (1.1) and (1.4) with α = 4 has a unique solution. In fact, if α = 4,
then

G(t, s) =

{
1
6s

2(3t− s) (0 ≤ s ≤ t < 1),
1
6 t

2(3s− t) (0 ≤ t ≤ s < 1)

and Λ ≤ 1
8 in Theorem 3.1; see [16]. For t ∈ [0, 1], u, v ∈ R, by the mean value

theorem, we obtain
|f(t, u) − f(t, v)| ≤ D|u− v|.

By Theorem 3.1, the boundary value problem represented by (1.1) and (1.4) with
α = 4 has a unique solution; see Theorem 1 in [16].
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