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if m1,m2, . . . ,mk ∈ E(S) implies n ∈ E(S) for any semigroup S, that is, n ∈ E(S)
for any E-(m1,m2, . . . ,mk) semigroup S. Define

E(m1,m2, . . . ,mk) = {n ∈ P |m1,m2, . . . ,mk ⇒ n}.

Specifically, set

E(m) = E(m, 1) = {n ∈ P |m ⇒ n}
= {n ∈ E(S) |S : an arbitrary E-m semigroup}.

Consider two symbols a and b, and let F be the free semigroup generated by
{a, b}. Let ≡m be the congruence generated by {xmym = (xy)m |x, y ∈ F}, and let
F (m) = F/ ≡m be the quotient semigroup of F modulo ≡m. We call F (m) the free
E-m semigroup of rank 2. More generally, for m1,m2, . . . ,mk ≥ 2, ≡m1,...,mk

is the
congruence generated by

{xmiymi = (xy)mi | i = 1, 2, . . . k, x, y ∈ F},

and F (m1, . . . ,mk) = F/ ≡m1,...,mk
is the free E-(m1,m2, . . . ,mk) semigroup of

rank 2. We have

E(m) = E(F (m)) and E(m1, . . . ,mk) = E(F (m1, . . . ,mk)).

3. Modular exponent semigroups

The following results are known (Kobayashi [4], Tamura [7]).

Theorem 3.1. Let m, k ≥ 1, then we have

(i) m, k ⇒ am(m− 1) + k for any a ≥ 2.
(ii) m, k ⇒ m(m− 1) + k if k ≥ m.
(iii) m(m− 1) + 1 /∈ E(m).

Corollary 3.2 (Cherubini-Varisco [1], Kobayashi [4]). Let m ≥ 2.

(i) m ⇒ am(m− 1) +m for any a ≥ 1.
(ii) m ⇒ am(m− 1) + 1 for any a ≥ 2.

Viewing the above theorem we define the modular exponent semigroup Em(S) of
an E-m semigroup S by

Em(S) = {n ∈ Zm(m−1) |n ∈ E(S)}.

This is a subsemigroup of the multiplicative semigroup Zm(m−1). Due to Theorem

3.1, if α ∈ Em(S) then n ∈ E(S) for all sufficiently large n ∈ P such that n̄ = α.
Note that (modular) exponent semigroups are closed under intersection. In fact,

for E-m semigroups S and T we have

E(S) ∩ E(T ) = E(S × T ) and Em(S) ∩ Em(T ) = Em(S × T ).

For n > 0 and m ≥ 2, set

M(n) = {kn+ 1, kn+ n | k = 0, 1, . . . }, N(n) = {kn+ 1 | k = 0, 1, . . . },

and

Mm(n) = M(n), Nm(n) = N(n) (mod m(m− 1)).
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Theorem 3.3 (Kobayashi [4]). For any n > 0 and n1, . . . ns > 0, there is an E-m
semigroup S with

(3.1) Em(S) =

s∩
i=1

Mm(ni)
∩

Nm(n).

For many types of semigroups S, the modular exponent semigroups are expressed
as (3.1), but we do not know if any modular exponent semigroup is so expressed
(see Kobayashi [3]).

4. E-3 semigroups

Let S be an E-3 semigroup, that is, x3y3 = (xy)3 for all x, y ∈ S. In this section,
for m1,m2, . . . ,ms, n ∈ P , we write

m1,m2, . . . ,ms ⇒ n

if 3,m1,m2, . . . ,ms ⇒ n.
The following identity (4.1) is given in Kobayashi [2], and is crucial to analyze

the exponent semigroups of E-3 semigroup. We give a proof for the convenience of
the reader.

Lemma 4.1. Let S be an E-3 semigroup. Then we have

(4.1) (xy)3x2n+1 = x2n(xy)3x

for any x, y ∈ S and n ≥ 0.

Proof. We proceed by induction on n. When n = 0, the identity is trivial. Let
n > 0 and assume that

(xy)3x2(n−1)+1 = x2(n−1)(xy)3x

holds. Then, we have

(xy)3x2n+1 = x2(n−1)(xy)3x3 = x2(n−1)(xyx)3

= x2n+1(yx)3 = x2n(xy)3x.

□
Corollary 4.2. For any n, a ≥ 1,

(4.2) n, n+ 3, n+ 2a ⇒ n+ 3 + 2a.

Proof. Let x, y ∈ S, and assume n, n+3, n+2a ∈ E(S). Then, using (4.1), we have

(xy)n+3+2a = (xy)3(xy)n+2a = (xy)3xn+2ayn+2a

= x2a(xy)3xnyn+2a = x2a(xy)n+3y2a

= xn+3+2ayn+3+2a.

□
Corollary 4.3. For n ≥ 1 we have

(4.3) n, n+ 2, n+ 3 ⇒ n+ 5,

and

(4.4) n, n+ 3, n+ 4 ⇒ n+ 7.
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Proof. Letting a = 1 and 2 in (4.2), we obtain (4.3) and (4.4), respectively. □
Lemma 4.4. For n ≥ 1 we have

(4.5) 3n+ 1 ⇒ 3n+ 3.

Proof. Let S be an E-(3, 3n+ 1) semigroup. For x, y ∈ S we have

x3n+3y3n+3 = x2(xy)3n+1y2 = x3(yx)3ny3 = (x(yx)ny)3

= (xy)3n+3.

□
Lemma 4.5. For n ≥ 2 we have

(4.6) n− 1, n+ 1, 2n ⇒ 2n+ 2.

Proof. Let S be an E-3 semigroup with n − 1, n + 1, 2n ∈ E(S). For x, y ∈ S we
have

x2n+2y2n+2 = x2(xy)2ny2 = x3(yx)2n−1y3

= (xyx)3(yx)2n−4y3 = (xyx)2(xyxy)n−1y2

= (xyx)2(xyx)n−1yn−1y2 = (xyx)n+1yn+1

= (xy)2n+2.

□
By Corollary 3.2 and Theorem 3.1 we see

(4.7) 6n+ 1 (n ≥ 2), 6n+ 3 (n ≥ 0) ∈ E(S),

and

(4.8) 7 /∈ E(3).

Moreover, by Kobayashi [2, Theorem 1] we have

(4.9) 6n+ a ⇒ 6(n+ 1) + a (n ≥ 0, a ≥ 2).

Corollary 4.6. For any n ≥ 0 we have

(4.10) 6n+ 4 ⇒ 6(n+ 1),

(4.11) 6(n+ 1) ⇒ 6(n+ 1) + 4,

(4.12) 6n+ 5, 6(n+ 1) + 2 ⇒ 6(n+ 1) + 4,

(4.13) 6n+ 5, 6(n+ 1) ⇒ 6(n+ 1) + 2.

Proof. Replacing n by 2n+ 1 in (4.5) in Lemma 4.4, we obtain (4.10).
Because 6n+3, 6(n+1)+1 ∈ E(S) for n ≥ 1 by (4.7), we see 6(n+1)+4 ∈ E(S)

if 6(n + 1) ∈ E(S) for n ≥ 1 by Corollary 4.3 (replace n by 6n + 3 in (4.4)). By a
calculation using a computer (see (7.1) in Section 7), we find (4.11) also holds even
for n = 0.

Replacing n by 6n+ 5 in (4.3), we get (4.12) if n ≥ 1, because 6n+ 7 ∈ E(S) by
(4.7). It also holds for n = 0 by Lemma 4.5 (let n = 4 in (4.6)).

Lastly, we get (4.13) replacing n by 6n+ 3 in (4.3). □
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The following tells that if we have 5 consecutive exponents, then the all numbers
after them are exponents.

Corollary 4.7. For any n ≥ 1 and k ≥ n+ 5,

(4.14) n, n+ 1, n+ 2, n+ 3, n+ 4 ⇒ k.

Proof. Apply (4.3) repeatedly. □
Lemma 4.8. For any n ≥ 0,

(4.15) 3n+ 3, 3n+ 4, 3n+ 5 ⇒ 3n+ 7.

Proof. Let x, y ∈ and suppose 3n+ 3, 3n+ 4, 3n+ 5 ∈ E(S), then we have

x3n+7y3n+7 = x2(xy)3n+5y2 = x3(yx)3n+4y3

= (xyx)3(yx)3n+1y3 = (xyx)2(xy)3n+3y2

= (xyx)2x3n+3y3n+5 = (xyx)xyx3n+4y3n+4y

= xyx(xy)3n+5y = xyx3n+6y3n+6

= xyx2(xy)3n+4y2 = xyx3(yx)3n+3y3

= xy(x(yx)n+1y)3 = (xy)3n+7.

□
The modular exponent semigroups of E-3 semigroups are completely determined

by Kobayashi [2, Theorem 2] as follows.

Theorem 4.9. E3(S) is equal to one of the subsemigroups

(i) {1̄, 3̄}, (ii) {1̄, 3̄, 5̄}, (iii) {0̄, 1̄, 3̄, 4̄} and (iv) {̄0, 1̄, 2̄, 3̄, 4̄, 5̄}
of Z6, and they are all possible.

5. Determination of exponents of E-3 semigroups, I

We try to determine the exponent semigroups of E-3 semigroups exactly. Let S
be an E-3 semigroup.

First we treat the case where E3(S) = {1̄, 3̄}. Set
P1 = {6a+ 1, 6a+ 3 | a = 0, 1, 2, . . . },

and
P ′
1 = P1 \ {7}.

Proposition 5.1. If E3(S) = {1̄, 3̄}, then either E(S) = P1 or E(S) = P ′
1.

Proof. Suppose that E(S) = {1̄, 3̄}, then E(S) ⊂ P1. On the other hand, P ′
1 ⊂ E(S)

by (4.7). Hence, P1 and P ′
1 are the only possibilities. Because 7 /∈ E(3) by (4.8),

we see E(3) = P ′
1. P1 is realized as E(3, 7) = P1. □

Next we treat the case where E3(S) = {1̄, 3̄, 5̄}. For r ≥ 0 set

P (r) = {6a+ 1, 6a+ 3, 6(r + a) + 5 | a = 0, 1, 2, . . . },
and

P ′(r) = P (r) \ {7}.
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Proposition 5.2. If E3(S) = {1̄, 3̄, 5̄}, then E(S) = P (r) or E(S) = P ′(r) for
some r ≥ 0. Actually,

E(3, 6r + 5) = P ′(r) and E(3, 7, 6r + 5) = P (r).

Proof. Let n = 6r + 5 = min{n ∈ E(S)|n ≡ 5 (mod 6)}, then E(S) ⊂ P (r). We see
P ′(r) ⊂ E(S) by (4.7) and (4.9). So, if 7 ∈ E(S), then E(S) = P (r). By computer
we find 7 /∈ E(3, 5) (see Section 7). This implies E(3, 6r+5) = P ′(r) for any r. □

Now, we treat the case where E3(S) = {0̄, 1̄, 3̄, 4̄}. For r ≥ 0 set

Q(r) = {6a+ 1, 6a+ 3, 6(r + a) + 4, 6(r + a) + 6 | a = 0, 1, 2, . . . },
R(r) = {6a+ 1, 6a+ 3, 6(r + a) + 6, 6(r + a) + 10 | a = 0, 1, 2, . . . },
Q′(r) = Q(r) \ {7},
R′(r) = R(r) \ {7}.

Proposition 5.3. If E3(S) = {0̄, 1̄, 3̄, 4̄}, then E(S) is equal to Q(r), Q′(r), R(r)
or R′(r) for some r ≥ 0. Actually,

E(3, 6r + 4) = Q′(r), E(3, 6r + 6) = R′(r),

E(3, 7, 6r + 4) = Q(r), E(3, 7, 6r + 6) = R(r).

Proof. If 6r + 4 ∈ E(S), then 6r + 6 ∈ E(S) for r ≥ 0 by (4.10). So, if 6r + 4
is the smallest n ∈ E(S) such that n ≡ 4 (mod 6), then Q′(r) ⊂ E(S) by (4.9).
By computer, 7 /∈ E(3, 4). So, because E(S) ⊂ Q(r), we have two possibilities
E(3, 6r + 4) = Q′(r) and E(3, 7, 6r + 4) = Q(r).

On the other hand, if 6r + 6 ∈ E(S), then 6r + 10 ∈ E(S) for r ≥ 1 by (4.11).
Hence, if 6r + 6 is the smallest n ∈ E(S) such that n ≡ 0 (mod 6), then R′(r) ⊂
E(S) ⊂ R(r), and we have E(7, 6r + 6) = R′(r) and E(3, 7, 6r + 6) = R(r). □

In the next section we treat the case where E3(S) = Z6.

6. Determination of exponents of E-3 semigroups, II

Let S be an E-3 semigroup such that E3(S) = Z6. Due to Theorem 4.9, E3(S) =
Z6 if and only if 2̄ ∈ E3(S). For k ≥ 1 set

P≥k = {n ∈ P |n ≥ k} and P≤k = {n ∈ P |n ≤ k}.
(a) First of all, as we stated in Introduction, if 2 ∈ E(S), then

E(S) = E(2, 3) = P.

(b) Now suppose that 2 /∈ E(S) and 8 ∈ E(S). Let E = E(3, 8). We see
2, 4, 5, 6, 7 /∈ E, 9 = 3 · 3 ∈ E, and by computer 10 /∈ E and 11, 12 ∈ E. Moreover,
13 = 2 · 6 + 1, 14 = 6 + 8 ∈ E and 15 = 2 · 6 + 3 ∈ E by (4.7) and (4.9). Hence,
m ∈ E for all m ≥ 11 by (4.14). Moreover, 10 /∈ E(3, 7, 8) by computer. Thus,

(6.1) E(3, 8) = {1, 3, 8, 9} ∪ P≥11,

(6.2) E(3, 7, 8) = E(3, 8) ∪ {7},

(6.3) E(3, 8, 10) = E(3, 8) ∪ {10}
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and

(6.4) E(3, 7, 8, 10) = E(3, 8) ∪ {7, 10}.
(b1) Let E = E(3, 4, 8). Then E(3, 8) ⊂ E. We see 6 ∈ E by (4.10) and 10 ∈ E by

(4.11), and 5, 7 /∈ E(S) because 5, 7 /∈ E(3, 4) as we saw in the proof of Proposition
5.3. Hence,

(6.5) E(3, 4, 8) = {1, 3, 4, 6} ∪ P≥8

and

(6.6) E(3, 4, 7, 8) = E(3, 4, 8) ∪ {7}.
(b2) Let E = E(3, 5, 8). Then, 6 /∈ E because 6 < 8 and 6 ̸≡ 5 (mod 6). Moreover,

10 ∈ E by (4.12) and 7 /∈ E by computer. Hence,

(6.7) E(3, 5, 8) = {1, 3, 5} ∪ P≥8

and

(6.8) E(3, 5, 7, 8) = E(3, 5, 8) ∪ {7}.
(b3) Let E = E(3, 6, 8). We see 7 /∈ E by computer and 10 ∈ E by (4.11). Thus,

(6.9) E(3, 6, 8) = {1, 3, 6} ∪ P≥8

and

(6.10) E(3, 6, 7, 8) = E(3, 6, 8) ∪ {7}.
(b4) Let E = E(3, 4, 5, 8). We see 7 ∈ E by (4.15) in Lemma 4.8, 4 ⇒ 6 by (4.10)

and 5, 6 ⇒ 8 by (4.13). Hence, by (b1) and (b2) above we have

(6.11) E(3, 4, 5, 8) = E(3, 4, 5) = P \ {2}.
(b5) Let E = E(3, 5, 6, 8). We find 7 /∈ E(3, 5, 6) by computer and 5, 6 ⇒ 8 by

(4.13). By (b2) and (b3) we have

(6.12) E(3, 5, 6, 8) = E(3, 5, 6) = {1, 3, 5, 6} ∪ P≥8

and

(6.13) E(3, 5, 6, 7, 8) = E(3, 5, 6, 7) = E(3, 5, 6, 8) ∪ {7}.

(c) Next we suppose that 8 /∈ E(S) and 14 ∈ E(S). Let E = E(3, 14). By
computer we find 16 /∈ E and 17, 18 ∈ E (see Section 7). We see 19, 21 ∈ E by (4.7)
and 20 ∈ E by (4.9). Hence, k ∈ E(S) for all k ≥ 17 by (4.14). Let

E′(S) = E(S) ∩ P≤13 and E
′
(S) = {k ∈ Z6 | k ∈ E′(S)}.

(c1) Suppose E
′
(S) = {1̄, 3̄}. By computer 16 /∈ E(3, 7, 14). So, by Proposition

5.1, with

P0 = {1, 3, 9, 13, 14, 15} ∪ P≥17,

we have 4 possibilities

E(3, 14) = P0, E(3, 7, 14) = P0 ∪ {7}, E(3, 14, 16) = P0 ∪ {16} and

E(3, 7, 14, 16) = P0 ∪ {7, 16}.
(6.14)
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(c2) Suppose E
′
(S) = {1̄, 3̄, 5̄}. By (4.12) we see 16 ∈ E(3, 11, 14). By Proposi-

tion 5.2, we have 4 possibilities

E(3, 5, 14) = {1, 3, 5, 9, 11} ∪ P≥13, E(3, 5, 7, 14) = E(3, 5, 14) ∪ {7},
E(3, 11, 14) = {1, 3, 9, 11} ∪ P≥13, E(3, 7, 11, 14) = E(3, 11, 14) ∪ {7}.(6.15)

(c3) Suppose E
′
(S) ⊂ {0̄, 1̄, 3̄, 4̄} and E

′
(S) ̸= {1̄, 3̄}. By (4.10) and (4.11), we have

4 ⇒ 6 ⇒ 10 ⇒ 12. We see 16 ∈ E(3, 12, 14) by (4.15) and 7 /∈ E(3, 4) as we stated
in the proof of Proposition 5.3. So we have 8 possibilities

E(3, 4, 14) = {1, 3, 4, 6, 9, 10} ∪ P≥12, E(3, 6, 14) = {1, 3, 6, 9, 10} ∪ P≥12,

E(3, 10, 14) = {1, 3, 9, 10} ∪ P≥12, E(3, 12, 14) = {1, 3, 9} ∪ P≥12,

E(3, 4, 7, 14) = E(3, 4, 14) ∪ {7}, E(3, 6, 7, 14) = E(3, 6, 14) ∪ {7},(6.16)

E(3, 7, 10, 14) = E(3, 10, 14) ∪ {7}, E(3, 7, 12, 14) = E(3, 12, 14) ∪ {7}.

(c4) Suppose that E
′
(S) is not in {1̄, 3̄, 5̄} nor in {0̄, 1̄, 3̄, 4̄}, that is, E′(S) contains

two elements a, b with a ≡ 4 (mod 6) and b ≡ 5 (mod 6). Because 4 ⇒ 6 ⇒ 10 ⇒ 12
and 5 ⇒ 11, we see n ∈ E(S) for all n ≥ 11. Because 4, 5 ⇒ 8 and 5, 6 ⇒ 8 by
(4.10) and (4.13), we can exclude the cases where {a, b} = {4, 5} and {a, b} = {6, 5}.
We already see above that 7 /∈ E(3, 4) ∪ E(3, 5). Moreover, 11, 12 ⇒ 14 by (4.13).
Hence, E(3, 4, 11, 14) = E(3, 4, 11), E(3, 5, 10, 14) = E(3, 5, 10) etc. Taking account
of these facts, we have 12 possibilities

E(3, 4, 11) = {1, 3, 4, 6} ∪ P≥9, E(3, 4, 7, 11) = E(3, 4, 11) ∪ {7},
E(3, 6, 11) = {1, 3, 6} ∪ P≥9, E(3, 6, 7, 11) = E(3, 6, 11) ∪ {7},
E(3, 5, 10) = {1, 3, 5} ∪ P≥9, E(3, 5, 7, 10) = E(3, 5, 10) ∪ {7},

E(3, 10, 11) = {1, 3} ∪ P≥9, E(3, 7, 10, 11) = E(3, 10, 11) ∪ {7},(6.17)

E(3, 5, 12) = {1, 3, 5, 9} ∪ P≥11, E(3, 5, 7, 12) = E(3, 5, 12) ∪ {7},
E(3, 11, 12) = {1, 3, 9} ∪ P≥11, E(3, 7, 11, 12) = E(3, 11, 12) ∪ {7}.

Proposition 6.1. Suppose that E3(S) = Z6, and let a be the minimal number in
E(S) such that a ≡ 2 (mod 6).

(a) If a = 2, then E(S) = P .
(b) If a = 8, then we have 13 possibilities (6.1) – (6.13).
(c) If a = 14, then we have 28 possibilities (6.14) – (6.17).

7. Discussions

In this paper we studied the exponent semigroups of E-3 semigroups. When
the modular exponential semigroup is {1̄, 3̄}, {1̄, 3̄, 5̄} or {0̄, 1̄, 3̄, 4̄}, we completely
determine them. When the modular exponent semigroup is {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}, a partial
answer is given.

In our calculations we used a computer. For two words f, g over {a, b}, f = g
in the free E-m semigroup F (m) generated by {a, b}, if there is a sequence f =
f0, f1, . . . , fn = g such that

fi−1 = u(xy)mv, fi = uxmymv or fi−1 = uxmymv, fi = u(xy)mv
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for some x, y, u, v ∈ F = {a, b}+. This is a kind of word problems, which are in
general undecidable. However, because the lengths of the words in the left and the
right sides of (xy)m = xmym are equal, for a given word f there are only a finite
number of words g such that f = g in F (m). So, the derivation sequences starting
from f can be calculated by a computer utilizing the depth first search. Here, to
avoid infinite loops, the computer needs to remember all words already visited.

For example, a computer calculation gives the following derivation sequence

(7.1)

a10b10 → a4(ab)6b4

→ a(a2b)3(ab)3b4

→ a(a2b)3a3b7 = a3(ba2)3ab7

→ (aba2)3ab7 = a(ba3)3b7

→ a(ba3b2)3b = ab(a3b3)3

→ (ab)10.

This shows 6 ⇒ 10 for E-3 semigroups. On the other hand, by searching all possible
derivation sequences from (ab)7 to a7b7 in F (3, 5) by computer, we find that 7 /∈
E(3, 5).

As stated in (c) in the previous section, we find that 18 ∈ E(3, 14) by a computer
calculation. Our search program gives a derivation sequence from a18b18 to (ab)18

of length 12037856. It seems very hard to get this result by hand calculation.
Suggested by these computer calculations we conjecture that for any n ≥ 1

(7.2) 6n+ 4 /∈ E(3, 6n+ 2) and 6n+ 5, 6n+ 6 ∈ E(3, 6n+ 2).

If (7.2) is true, we would be able to completely describe the exponent semigroups
of E-3 semigroups.
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