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ABSTRACT. We study the exponent semigroups of F-3 semigroups. When the
modular exponential semigroup is {1,3}, {1,3,5} or {0,1,3,4}, we completely
determine the exponent semigroups. When the modular exponent semigroup is

{0,1,2,3,4,5}, a partial answer is given. We require calculations aided by a
computer.

1. INTRODUCTION

Let S be a semigroup and let P denote the multiplicative semigroup of positive
integers. The subset of P defined by

E(S)={neP| (zy)" =2"y" for all z,y € S}

forms a subsemigroup of P and is called the exponent semigroup of S. This notion
was introduced by Tamura [6]. Even for a general semigroup S, the structure of
E(S) is rather restrictive. We call S an E-m semigroup if m € E(S). If S is an
E-2 semigroup, then E(S) is equal to either P or P \ {3} by Clarke, Piefer and
Tamura [5].

In this paper we study the exponential semigroups of E-3 semigroups. For an
E-3 semigroup S, if k € E(S), then n € E(S) for all sufficiently large n such
that n = k mod 6. So, it is essential to consider the modular exponent semigroup
E5(S) = {n € Zg|n € E(S)}. The modular exponent semigroups of E-3 semigroups
are determined by Kobayashi [2]; they are {1,3}, {1,3,5}, {0,1,3,4} and Zg. In
this paper we completely determine the exponent semigroups of E-3 semigroups,
when their modular exponent semigroups fall into one of the first three cases above.
In the last case we give a partial answer. In our study we need calculations aided
by a computer.

2. E-m SEMIGROUPS AND FREE E-m SEMIGROUPS

For m > 2 if m € E(S), S is called an E-m semigroup. More generally, for
my,ma,...,mg > 2, if my,ma,...,my € E(S), S is called an E-(mqy,ma,...,my)
semigroup. We write

mi1,mo,..., M = N
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if my, mo,...,my € E(S) implies n € E(S) for any semigroup S, that is, n € E(S)
for any E-(mq,ma,...,my) semigroup S. Define
E(mi,ma,...,mg) ={n € P|mi,ma,...,my = n}.
Specifically, set
E(m)=E(m,1) = {ne€P|m=n}
= {ne€ E(S)|S :an arbitrary E-m semigroup}.

Consider two symbols a and b, and let F' be the free semigroup generated by
{a,b}. Let =,, be the congruence generated by {z"y™ = (zy)™ |x,y € F'}, and let
F(m) = F/ =,, be the quotient semigroup of /' modulo =,,. We call F(m) the free

E-m semigroup of rank 2. More generally, for my,ma,...,my > 2, =, . m, is the
congruence generated by

{z™iy™ = (zy)™ |i=1,2,...k, x,y € F},
and F(my,...,mg) = F/ =p, .m, is the free E-(myi,ma,...,my) semigroup of

rank 2. We have
E(m)=E(F(m)) and E(my,...,mg) = E(F(mi,...,mg)).

3. MODULAR EXPONENT SEMIGROUPS
The following results are known (Kobayashi [4], Tamura [7]).

Theorem 3.1. Let m,k > 1, then we have
(i) my, k = am(m —1)+k for any a > 2.
(i) m,k = m(m—1)+k if k > m.
(iii) m(m —1)+1 ¢ E(m).
Corollary 3.2 (Cherubini-Varisco [1], Kobayashi [4]). Let m > 2.
(i) m = am(m—1)+m for any a > 1.
(i) m = am(m—1)+1 for any a > 2.

Viewing the above theorem we define the modular exponent semigroup E,,(S) of
an F-m semigroup S by
Em(S) = {ﬁ = Zm(m—l) |n € E(S)}
This is a subsemigroup of the multiplicative semigroup Z,,(,,—1). Due to Theorem

3.1, if « € E;,,(S) then n € E(S) for all sufficiently large n € P such that f = a.
Note that (modular) exponent semigroups are closed under intersection. In fact,
for E-m semigroups S and T" we have

E(S)NE(T)=E(SxT) and E,(S)NE,(T) = E,(S xT).
For n > 0 and m > 2, set
M(n)={kn+1,kn+nlk=0,1,...}, N(n)={kn+1|k=0,1,...},

and

Mp(n) = M(n), Np(n)=N(n) (mod m(m —1)).
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Theorem 3.3 (Kobayashi [4]). For any n >0 and nq,...ns > 0, there is an E-m
semigroup S with

(3.1) En(S) = [ Mm(ni)[ | Nm(n).

For many types of semigroups .5, the modular exponent semigroups are expressed
s (3.1), but we do not know if any modular exponent semigroup is so expressed
(see Kobayashi [3]).

4. E-3 SEMIGROUPS

Let S be an E-3 semigroup, that is, 23y> = (2y)?3 for all z,y € S. In this section,
for my,mo,...,ms,n € P, we write

mi,ma,...,Msg =>"N

if 3,my,mo,...,mg = n.

The following identity (4.1) is given in Kobayashi [2], and is crucial to analyze
the exponent semigroups of E-3 semigroup. We give a proof for the convenience of
the reader.

Lemma 4.1. Let S be an E-3 semigroup. Then we have
(4'1) (:L,y)3$2n+1 — x?n(xy)Sw
for any x,y € S and n > 0.

Proof. We proceed by induction on n. When n = 0, the identity is trivial. Let
n > 0 and assume that

(xy)3x2("_1)+1 — l,?(n—l) (ZL‘y)3ZL‘

holds. Then, we have

(a:y)3x2"+1 — 272("71)(33?;)3%3 — $2(n71)(xym)3
— x2n+1 (yx)?) — xZ”(xy)?’a:.

O
Corollary 4.2. For any n,a > 1,
(4.2) n,n+3,n+2a = n+3+2a.
Proof. Let z,y € S, and assume n,n+3,n+2a € E(S). Then, using (4.1), we have
(xy)n+3+2a — (wy)S(xy)n+2a — (xy)an+2ayn+2a
— x2a(xy)3xnyn+2a — x?a(xy)nJrSyZa
— xn+3+2ayn+3+2a.
O
Corollary 4.3. For n > 1 we have
(4.3) nn+2,n+3 = n+b,
and

(4.4) n,n+3,n+4 = n+7.
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Proof. Letting a =1 and 2 in (4.2), we obtain (4.3) and (4.4), respectively. O
Lemma 4.4. Forn > 1 we have
(4.5) 3n+1 = 3n+3.
Proof. Let S be an E-(3,3n + 1) semigroup. For z,y € S we have
SIS = (ay) > Hy? = 23 (ya) My = (a(ya)"y)?
= (ay)’ .

Lemma 4.5. For n > 2 we have
(4.6) n—1,n+1,2n = 2n+ 2.

Proof. Let S be an E-3 semigroup with n — 1,n + 1,2n € E(S). For z,y € S we
have

$2n+2y2n+2 _ ZCQ ($y)2ny2 — $3(yx)2n—1y3
= (zya)’(y2)*"Yy® = (ayz)(zyay)"ty?
— (:ny Q(xyx)nflynflyQ — (xyx)n+1yn+1
_ (xy)2n+2'
O
By Corollary 3.2 and Theorem 3.1 we see

(4.7) 6n+1(n>2), 6n+3(n>0)ec E(S5),

and

(4.8) 7¢ E(3).

Moreover, by Kobayashi [2, Theorem 1] we have

(4.9) 6n+a = 6(n+1)+a (n>0,a>2).

Corollary 4.6. For any n > 0 we have

(4.10) 6n+4 = 6(n+1),

(4.11) 6(n+1) = 6(n+1)+4,

(4.12) 6n+5, 6(n+1)+2 = 6(n+1)+4,

(4.13) 6n+5, 6(n+1) = 6(n+1)+2.

Proof. Replacing n by 2n + 1 in (4.5) in Lemma 4.4, we obtain (4.10).

Because 6n+3,6(n+1)+1 € E(S) for n > 1 by (4.7), we see 6(n+1)+4 € E(S)
if 6(n+ 1) € E(S) for n > 1 by Corollary 4.3 (replace n by 6n + 3 in (4.4)). By a
calculation using a computer (see (7.1) in Section 7), we find (4.11) also holds even
for n = 0.

Replacing n by 6n + 5 in (4.3), we get (4.12) if n > 1, because 6n + 7 € E(S) by
(4.7). Tt also holds for n = 0 by Lemma 4.5 (let n = 4 in (4.6)).

Lastly, we get (4.13) replacing n by 6n + 3 in (4.3). O
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The following tells that if we have 5 consecutive exponents, then the all numbers
after them are exponents.
Corollary 4.7. For anyn >1 and k > n+ 5,
(4.14) n,n+1ln+2,n+3,n+4 = k.
Proof. Apply (4.3) repeatedly. O
Lemma 4.8. For any n > 0,
(4.15) n+3,3n+4,3n+5 = 3In+7.

Proof. Let x,y € and suppose 3n + 3,3n +4,3n + 5 € E(S), then we have
x3n+7 3n—+7 3n+5, 2 3(yx)3n+4 3

y = 2(ay)" Oy = y
= (zy2)®(y2)*" TP = (zya)®(zy)*" Py
— (xyx)2x3n+3y3n+5 — (xy:n)xy:v3"+4y3”+4y
_ xyx(xy)Sn-&-By — xyx3n+6y3n+6

xyx2 (my)3n+4y2 — mny(y$)3n+3y3

= ay(a(yz)"y)? = (zy)* 7.

g

The modular exponent semigroups of F-3 semigroups are completely determined
by Kobayashi [2, Theorem 2] as follows.

Theorem 4.9. E3(S) is equal to one of the subsemigroups

of Zg, and they are all possible.

5. DETERMINATION OF EXPONENTS OF F-3 SEMIGROUPS, |

We try to determine the exponent semigroups of E-3 semigroups exactly. Let S
be an F-3 semigroup. B
First we treat the case where E3(S) = {1,3}. Set

P, ={6a+1,6a+3|a=0,1,2,...},
and
Pl =P\ {7}.
Proposition 5.1. If E3(S) = {1, 3}, then either E(S) = Py or E(S) = P].
Proof. Suppose that E(S) = {1, 3}, then E(S) C P;. On the other hand, P| C E(S)

by (4.7). Hence, P, and Pj are the only possibilities. Because 7 ¢ E(3) by (4.8),
we see F(3) = P|. P is realized as E(3,7) = P;. O

Next we treat the case where E3(S) = {1,3,5}. For r > 0 set
P(r) = {6a+1,6a+3,6(r +a) +5|a=0,1,2,...},

and

P'(r) = P(r)\ {T}.
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Proposition 5.2. If E3(S) = {1,3,5}, then E(S) = P(r) or E(S) = P'(r) for
some r > 0. Actually,
E(3,6r +5) = P'(r) and E(3,7,6r +5) = P(r).
Proof. Let n = 6r +5 = min{n € E(S)|n =5 (mod6)}, then E(S) C P(r). We see
P'(r) C E(S) by (4.7) and (4.9). So, if 7 € E(S), then E(S) = P(r). By computer
we find 7 ¢ E(3,5) (see Section 7). This implies E(3,6r +5) = P'(r) for any r. O
Now, we treat the case where E3(S) = {0,1,3,4}. For r > 0 set
Q(r) = {6a+1,6a+3,6(r+a)+4,6(r+a)+6la=0,1,2,...},
Rr) = {6a+1,6a+3,6(r+a)+6,6(r+a)+10[a=0,1,2,...},
Q(r) = Q(\{7}
R(r) = R(r)\{7}

Proposition 5.3. If E3(S) = {0,1,3,4}, then E(S) is equal to Q(r), Q'(r), R(r)
or R'(r) for some r > 0. Actually,

E(3,6r +4)=Q'(r), E(3,6r+6)= R/(r),
E3,7,6r+4) =Q(r), E(3,7,6r +6) = R(r).

Proof. If 6r + 4 € E(S), then 6r + 6 € E(S) for r > 0 by (4.10). So, if 6r + 4
is the smallest n € E(S) such that n = 4 (mod 6), then Q'(r) C E(S) by (4.9).
By computer, 7 ¢ FE(3,4). So, because E(S) C Q(r), we have two possibilities
E(3,6r +4) =Q'(r) and E(3,7,6r +4) = Q(r).

On the other hand, if 6r + 6 € E(S), then 6r 4+ 10 € E(S) for » > 1 by (4.11).
Hence, if 6r + 6 is the smallest n € E(S) such that n = 0 (mod 6), then R'(r) C
E(S) € R(r), and we have E(7,6r +6) = R/(r) and E(3,7,6r + 6) = R(r). O

In the next section we treat the case where E3(S) = Zg.

6. DETERMINATION OF EXPONENTS OF FE-3 SEMIGROUPS, II

Let S be an E-3 semigroup such that E3(S) = Ze. Due to Theorem 4.9, E3(S) =
Zg if and only if 2 € E3(S). For k > 1 set

Pspy={neP|in>k} and P<y={ne€ P|n <k}
(a) First of all, as we stated in Introduction, if 2 € E(5), then
E(S)=FE(2,3)=P.

(b) Now suppose that 2 ¢ E(S) and 8 € E(S). Let F = FE(3,8). We see
2,4,5,6,7¢ E,9=23-3 € E, and by computer 10 ¢ E and 11,12 € E. Moreover,
13=2-64+1,14=6+8€ Fand 15 =2-6+3 € E by (4.7) and (4.9). Hence,
m € E for all m > 11 by (4.14). Moreover, 10 ¢ E(3,7,8) by computer. Thus,

(6.1) E(3,8) = {1,3,8,9}UP211,
(6.2) E(3,7,8) = E(3,8) U {7},

(6.3) E(3,8,10) = E(3,8) U {10}
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and
(6.4) E(3,7,8,10) = E(3,8) U {7,10}.

(bl) Let £ = E(3,4,8). Then E(3,8) C E. Wesee 6 € E by (4.10) and 10 € E by
(4.11), and 5,7 ¢ E(S) because 5,7 ¢ F(3,4) as we saw in the proof of Proposition
5.3. Hence,

(6.5) E(3,4,8) ={1,3,4,6} U P>g
and
(6.6) E(3,4,7,8) = E(3,4,8) U{7}.

(b2) Let E = E(3,5,8). Then, 6 ¢ E because 6 < 8 and 6 # 5 (mod 6). Moreover,
10 € E by (4.12) and 7 ¢ E by computer. Hence,

(6.7) E(3,5,8) = {1,3,5} U Pss
and
(6.8) E(3,5,7,8) = E(3,5,8) U {T}.
(b3) Let E = E(3,6,8). We see 7 ¢ E by computer and 10 € E by (4.11). Thus,
(6.9) E(3,6,8) = {1,3,6} U Pss
and
(6.10) E(3,6,7,8) = E(3,6,8) U {T}.

(b4) Let E = E(3,4,5,8). Wesee 7 € E by (4.15) in Lemma 4.8, 4 = 6 by (4.10)
and 5,6 = 8 by (4.13). Hence, by (bl) and (b2) above we have

(6.11) E(3,4,5,8) = E(3,4,5) = P\ {2}.

(b5) Let E = E(3,5,6,8). We find 7 ¢ E(3,5,6) by computer and 5,6 = 8 by
(4.13). By (b2) and (b3) we have

(6.12) E(3,5,6,8) = E(3,5,6) = {1,3,5,6} U P>g
and
(6.13) E(3,5,6,7,8) = E(3,5,6,7) = E(3,5,6,8) U{T}.

(c) Next we suppose that 8 ¢ E(S) and 14 € E(S). Let E = E(3,14). By
computer we find 16 ¢ E and 17,18 € E (see Section 7). We see 19,21 € E by (4.7)
and 20 € E by (4.9). Hence, k € E(S) for all £ > 17 by (4.14). Let

E'(S)=E(S)NP<s and E (S)={k € Zg |k € E'(S)}.

(c1) Suppose E’(S) = {1,3}. By computer 16 ¢ E(3,7,14). So, by Proposition
5.1, with
Py=1{1,3,9,13,14,15} U Po11,
we have 4 possibilities
E(3,14) = Py, E(3,7,14) = Py U {7}, E(3,14,16) = Py U {16} and

6.14
(6.14) E(3,7,14,16) = Py U {7,16}.
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(c2) Suppose E'(S) = {1,3,5}. By (4.12) we see 16 € E(3,11,14). By Proposi-
tion 5.2, we have 4 possibilities
E(3,5,14) = {1,3,5,9,11} U P>13, E(3,5,7,14) = E(3,5,14) U {7},
(6.15)  F(3,11,14) = {1,3,9,11} U P13, E(3,7,11,14) = E(3,11,14) U {7}.
(¢3) Suppose E'(S) c {0,1,3,4} and E'(S) # {1,3}. By (4.10) and (4.11), we have
4=6=10= 12. We see 16 € F(3,12,14) by (4.15) and 7 ¢ E(3,4) as we stated
in the proof of Proposition 5.3. So we have 8 possibilities
B(3,4,14) = {1,3,4,6,9,10} U Ps15, E(3,6,14) = {1,3,6,9,10} U P15,
B(3,10,14) = {1,3,9,10} U Po1a,  E(3,12,14) = {1,3,9} U Po1s,
(6.16)  B(3,4,7.14) = E(3,4,14) U {7},  E(3,6,7,14) = E(3,6,14) U {7},
E(3,7,10,14) = E(3,10,14) U {7}, E(3,7,12,14) = £(3,12,14) U {7}.

(c4) Suppose that E'(S) is not in {1, 3,5} nor in {0, 1, 3,4}, that is, E/(S) contains
two elements a, b with a = 4 (mod 6) and b = 5 (mod 6). Because 4 = 6 = 10 = 12
and 5 = 11, we see n € E(S) for all n > 11. Because 4,5 = 8 and 5,6 = 8 by
(4.10) and (4.13), we can exclude the cases where {a,b} = {4,5} and {a,b} = {6,5}.
We already see above that 7 ¢ F(3,4) U E(3,5). Moreover, 11,12 = 14 by (4.13).
Hence, E(3,4,11,14) = E(3,4,11), E(3,5,10,14) = E(3,5,10) etc. Taking account
of these facts, we have 12 possibilities

E(3,4,11) = {1,3,4,6} U Psg, F(3,4,7,11) = E(3,4,11) U {7},
E(3,6,11) = {1,3,6} U P>y, E(3,6,7,11) = E(3,6,11) U {7},
E(3,5,10) = {1,3,5} U Psy, E(3,5,7,10) = E(3,5,10) U {7},
(6.17) E(3,10,11) = {1,3} U Psg, E(3,7,10,11) = E(3,10,11) U {7},
E(3,5,12) = {1,3,5,9} U Ps11, E(3,5,7,12) = E(3,5,12) U {7},
B(3,11,12) = {1,3,9} U Po11, E(3,7,11,12) = E(3,11,12) U {7}.

Proposition 6.1. Suppose that E3(S) = Zg, and let a be the minimal number in
E(S) such that a =2 (mod6).

(a) If a =2, then E(S) = P.

(b) If a = 8, then we have 13 possibilities (6.1) — (6.13).

(¢) If a = 14, then we have 28 possibilities (6.14) — (6.17).

7. DISCUSSIONS

In this paper we studied the exponent semigroups of E-3 semigroups. When
the modular exponential semigroup is {1,3}, {1,3,5} or {0,1,3,4}, we completely
determine them. When the modular exponent semigroup is {0, 1,2, 3, 4,5}, a partial
answer is given.

In our calculations we used a computer. For two words f,g over {a,b}, f = g
in the free E-m semigroup F'(m) generated by {a,b}, if there is a sequence f =

anfla"'afn =g SUCh tha,t

fi1 = u(zy)™v, fi = ux™y™v or fi_1 =ux™y"v, fi = u(zy)"v
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for some z,y,u,v € F = {a,b}*. This is a kind of word problems, which are in

general undecidable. However, because the lengths of the words in the left and the

right sides of (xy)™ = x™y"™ are equal, for a given word f there are only a finite

number of words g such that f = g in F/(m). So, the derivation sequences starting

from f can be calculated by a computer utilizing the depth first search. Here, to

avoid infinite loops, the computer needs to remember all words already visited.
For example, a computer calculation gives the following derivation sequence

a'%pt® — a(ab)%p?
— a(a?b)?(ab)?v?
— a(a?b)®a®b” = a3(ba?)3ab’
— (aba?)?ab” = a(ba®)3b7
— a(ba®b?)3b = ab(a®b?)?

— (ab)™©.

(7.1)

This shows 6 = 10 for F-3 semigroups. On the other hand, by searching all possible
derivation sequences from (ab)” to a”b” in F(3,5) by computer, we find that 7 ¢
E(3,5).

As stated in (c) in the previous section, we find that 18 € E(3,14) by a computer
calculation. Our search program gives a derivation sequence from a'8b'® to (ab)!®
of length 12037856. It seems very hard to get this result by hand calculation.

Suggested by these computer calculations we conjecture that for any n > 1

(7.2) 6n+4¢ E(3,6n+2) and 6n+5,6n+6c E(3,6n+2).

If (7.2) is true, we would be able to completely describe the exponent semigroups
of E-3 semigroups.

REFERENCES

[1] A. S. Cherubini and A. Varisco, Some properties of E-m semigroups, Semigroup Forum 17
(1979), 153-161.

[2] Y. Kobayashi, The exponent semigroup of a semigroup satisfying (zy)® = 23y®, Semigroup
Forum 19 (1980), 323-330.

[3] Y. Kobayashi, A fundamental conjecture on exponent semigroups, Proc. Japan Acad, 57, Ser
A, 1981.

[4] Y. Kobayashi, On the structure of exponent semigroups, J. Algebra 78 (1982), 1-19.

[5] J. Clarke, R. Pfiefer and T. Tamura, Identities E-2 and exponentiality, Proc. Japan Akad. A
55 (1979), 250-251.

[6] T. Tamura, Complementary semigroups and exponent semigroups of order bounded groups,
Math. Nachrichten 49 (1974), 17-34.

[7] T. Tamura, Free E-m groups and free E-m semigroups, Proc. Amer. Math. Soc. 84 (1982),
318-324.

Manuscript received 30 December 2016
revised 11 December 2017



484 YUJI KOBAYASHI

Y. KOBAYASHI
Laboratory of Mathematics and Games, Katsushika 2-372-309, Funabashi 273-0032, Japan
E-mail address: kobayasi@is.sci.toho-u.ac.jp



