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Our plan of this paper is as follows. In section 2 we introduce the definitions
of expander graph and Ramanujan graph by usign the properties of eigenvalues
of these adjacency matrices. In section 3 we give some genelarized non-regular
Ramanujan graphs and classify them according to upper bounds of their nontrivial
eigenvalues. In section 4, using the pseudorandom number generator and the LLL
algorithm, we construct the sequences of pseudorandom small numbers and we
numerically estimate the randomness of the generated pseudorandom numbers by
the RMT test. In section 5, using the pseudorandom numbers obtained in section
4, we construct non-regular Ramanujan graphs and we investigate the eigenvalue
distributions of their adjacency matrices.

2. Ramanujan graph

Let X = (V,E) be a graph where V = {v1, v2, ..., vn} is the set of vertices and
E is the set of edges. Let aij be the number of edges joining vi to vj , then the
adjacency matrix of the graph X is given by A = (aij). We assume that (i) X is
simple; there is at most one edge joining adjacent vertices, aij ∈ {0, 1} for every
i, j, (ii) X has no loops; aii = 0 for every vi ∈ V and (iii) X is undirected; A is a
n× n symmetric matrix.

Let k ≥ 2 be an integer and the graph X be k-regular, that is, for every vi ∈ V ,∑
vj∈V

aij = k.

Since A is an n-by-n symmetric matrix, it had n real eigenvalues, counting mul-
tiplicities,

µ0 ≥ µ1 ≥ · · · ≥ µn−1.

The following proposition is easily obtained (cf. [2]).

Proposition 2.1. Let X be a finite connected k-regular graph with n vertices. Then

• µ0 = k;
• |µi| ≤ k, 1 ≤ i ≤ n− 1.

For a graph X = (V,E) and F ⊂ V , define the boundary ∂F of F by the set
of edges with one extremity in F and the other in V − F , that is, ∂F is the set of
edges connecting F to V − F .

Definition 2.2. The expanding constant h(X) of the graph X is defined by

h(X) = inf{ |∂F |
min{|F |, |V − F |}

: F ⊂ V, 0 < |F | < +∞}.

For the relation between the nontrivial eigenvalue µ ̸= k and the expanding
constant h(X) Dodziuk has shown the following estimates.

Proposition 2.3 ([3]). Let X = (V,E) be a finite, connected, k-regular simple
graph. Let µ1 be the first nontrivial eigenvalue of X. Then

k − µ1

2
≤ h(X) ≤

√
2k(k − µ1).
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Let {Xm} be a family of finite, connected, k-regular graphs with |Vm| → +∞ as
m → +∞.

{Xm} is called a family of expanders if there exists a constant ε > 0 such that

h(Xm) ≥ ε, ∀m ≥ 1.

It follows from Proposition 2.3 that we can easily obtain an equivalent condition
for the existence of a family of expanders.

Corollary 2.4. Let {Xm} be a family of finite, connected, k-regular simple graphs
with |Vm| → ∞ as m → ∞. Then, {Xm} is a family of expanders if and only if
there exists a constant ε > 0 such that

k − µ1(Xm) ≥ ε, ∀m ≥ 1.

For the asymptotic behaviors of these eigenvalues the following Alon-Boppana
theorem is well known.

Theorem 2.5 ([1]). Let {Xm} be a family of finite, connected, k-regular simple
graphs with |Vm| → +∞ as m → +∞. Then,

lim inf
m→+∞

µ1(Xm) ≥ 2
√
k − 1.

Here we give the definition of Ramanujan graph.

Definition 2.6. A finite, connected k-regular graph X is a Ramanujan graph if for
every nontrivial eigenvalue µ(̸= ±k) of X,

|µ| ≤ 2
√
k − 1.

Since an expander constant of a regular graph is greater than or equal to (k −
µ1)/2, making µ1 as small as possible gives us good expander graphs. However, by
the Alon-Boppana theorem, we cannot do better than

lim inf
m→+∞

µ1(Xm) ≥ 2
√
k − 1.

Hence, Ramanujan graphs make good expanders.
It is very difficult to construct a family of Ramanujan graphs of fixed degree

with number of vertices going to infinity. Only a few examples of these explicit
constructions have been known ([6], [7]). On the other hand, for random graphs, J.
Friedman has shown in [4] that for fixed degree k and ε > 0, the probability that
nontrivial eigenvalues satisfy

|µ| ≤ 2
√
k − 1 + ε

approaches 1 as n → ∞. In Section 5, considering the above results on random
graphs, we numerically construct Ramanujan graphs by using pseudorandom se-
quences.
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3. Non-regular Ramanujan graph

In view of practical applications it is important to study non-regular type graphs
and recently, various generalized Ramanujan graphs have been proposed by many
authors (cf. [11]). While in case of k-regular graphs the maximal eigenvalue µ0 is
equal to k and the definition of the Ramanujan graph is given by

|µ| ≤ 2
√
k − 1

for every nontrivial eigenvalue µ(̸= ±k), the following genelarized Ramanujan graphs
have been defined.

We say that a non-regular graph X is a naive Ramanujan graph if

|µ| ≤ 2
√
σX − 1

for every nontrivial eigenvalue µ( ̸= σX ) where σX is the largest absolute value of
eigenvalues of the adjacency matrix A,

σX = max{|µ| : µ ∈ SpectrumA}.

The degree of a vertex vi in the graph X is the number of edges joining vi,∑
vj∈V

aij , ai,j ∈ {0, 1}.

Let dX be the average degree of the vertices of X. We say that a non-regular
graph X is a weak Ramanujan graph if

|µ| ≤ 2

√
dX − 1

for every nontrivial eigenvalue µ(̸= σX ).
In our numerical experiments, using the maximal degree DX , we say that a non-

regular graph X is a mild Ramanujan graph if the following inequality hold

|µ| ≤ 2
√
DX − 1

for every nontrivial eigenvalue µ(̸= σX ).
In the histograms showing the distributions of the eigenvalues we plot these upper

bound values colored as follows:
2
√
DX − 1: mild Ramanujan bounds (green)

> 2
√
σX − 1: naive Ramanujan bounds (red)

> 2
√
dX − 1: weak Ramanujan bounds (blue).

4. Pseudorandom number generator

Here we construct a new pseudorandom number generator by applying our per-
vious method in [8] as follows.
(1): Choose a seed, a p-adic integer number, ξ ∈ Zp.

(2): For an integer n ∼ 50 and l ∼ 100, construct a sequence {ξk}Lk=1, L = n × l,
by a p-adic logistic map lp, defined by

lp(x) =
xp − x

p
for x ∈ Zp,
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ξ1 = ξ, ξ2 = lp(ξ1), ..., ξn = lp(ξn−1), ...

In [8] we have taken their modulo p: ξk,p = ξk (mod p) and we have shown the
randomness of the sequence by RMT test.
(3): For an integerm ∼ 10, a precision order, we calculate the approximate sequence
{ξk,m} of {ξk}, given by

ξk,m =

m−1∑
j=0

ajp
j ∈ Z, k = 1, ..., L

where each ξk has a p-adic expansion

ξk =
∞∑
j=0

ajp
j ∈ Zp, aj ∈ {0, 1, ..., p− 1}

(4): Construct the following knapsack type matrices A
(i)
m , i = 0, .., l − 1 given by

A(i)
m =


pm 0 0 . . . 0

ξ1+i,m 1 0 . . . 0
ξ2+i,m 0 1 . . . 0

...
...

...
. . .

...
ξn+i,m 0 0 . . . 1

 , i = 0, 1, ..., l − 1

Each matrix A
(i)
m generates a lattice and it is known that, if the sequences {ξk,m}

are random, their lattices are randomly distributed in the set of lattices, the deter-
minants of which have the same value pm (see [5]).

(5): We apply the LLL reduction algorithm to each matrix A
(i)
m . Then we have

reduced matrices B
(i)
m , i = 0, ..., l − 1, with small integer elements.

(6): By connecting each rows of B
(i)
m from i = 0 to i = l − 1, we have the sequence

Pl of pseudorandom numbers with its length (n + 1)2 × l ∼ 250000, sufficient for
the RMT test ([10]).
(7): (RMTtest) We cut Pl into N pieces of equal length L, then shape them in an
N ×L matrix C = (cij) by placing the first L elements in the first row and the next
elements in the 2nd rows · · · .

C =

c11 · · · c1L
...

. . .
...

cN1 · · · cNL


Then we normalize each row with zero mean and unit variance to have the normal-
ized matrix D and we calculate the correlation matrix

G =
1

L
D tD.

Compare the eigenvalue distribution of G to the corresponding theoretical distribu-
tion, called Marchenko-Pastur curve.

MP (λ) =
Q

2πλ

√
(λ+ − λ)(λ− λ−), λ± =

(
1±

√
1

Q

)2
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where Q = L/N . According to Random Matrix Theory, Marchenko-Pastur distri-
bution describes the asymptotic behavior of eigenvalue distributions of large rect-
angular random matrices. If the two distributions match, our data passes the RMT
test, and if they do not match, our data fails the RMT test.

Here we show some results of numerical experiments given by the seed: p =

17, l = 100, n = 49, m = 7, ξ = 13
1

103 .

A
(10)
m =



410338673 0 0 0 0 · · · 0 0 0 0 0
180361593 1 0 0 0 · · · 0 0 0 0 0
402872406 0 1 0 0 · · · 0 0 0 0 0

.

.

.
. . .

.

.

.
180685084 0 0 0 0 · · · 0 0 0 1 0
310632419 0 0 0 0 · · · 0 0 0 0 1


(50 × 50)

−→ LLL reduction algorithm −→

B
(10)
m =



0 0 1 0 0 0 0 0 0 1 −1 · · ·
0 0 0 0 0 0 −1 0 0 0 0 · · ·
0 0 0 1 0 0 −1 0 0 0 0 · · ·
.
.
.

.

.

.
.
.
.

0 −1 0 0 0 −1 1 −1 −1 0 0 · · ·
1 −1 0 0 −1 0 0 0 0 0 1 · · ·
0 0 0 0 1 0 1 0 1 1 0 · · ·


(50 × 50)

The length of the pseudorandom numbers is 250000. Using the sequence of these
pseudorandom numbers, we operate the following RMT tests.

The 1st RMT test is given by the parameters, m = 7, l = 100, L = 625, N =
400, Q = L/N = 1.5625 and the 2nd RMT test is given by the parameters,
m = 30, l = 144, L = 900, N = 400, Q = L/N = 2.778.

The following graphs (Fig.1, Fig.2) show that these two tests are passed.

Figure 1. 1st RMT test

Next we show the result of the 3rd RMT where we directly use the sequence of
pseudorandom numbers {ξk,p}750000k=1 given by the p-adic logistic map without LLL
algorithms. The following graph (Fig.3) shows that this test is also passed where

p = 17, ξ = 13
1

103 , L = 1500, N = 500, Q = L/N = 3
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Figure 2. 2nd RMT test

Figure 3. 3rd RMT test

5. Construction of non-regular Ramanujan graph

Using the pseudorandom sequence Pl generated in the previous section, we give
the two construction methods to draw the mild, naive or weak Ramanujan graphs.
These two methods have the following common part:

For an integer q : q2 ≤ l× (n+ 1)2 (= the length of Pl), we take the string with
its length q2 from Pl and we cut this into q pieces of equal length q, then we shape
them into a q × q square matrix S.

Following the common proccess, we apply the first method (I) as follows:
(I)-(1) Construct an upper triangle matrix Su, which has the upper triangle part of
S with 0 diagonal elements.
(I)-(2) Calculate T = Su +tSu, which is the adjacency matrix of our Ramanujan
graph.
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The second method is also given as follows:
(II)-(1) Calculate T = S +tS.
(II)-(2) (by sage command)

Cg = Graph(T ): Cg is the graph given by the adjacency matrix T .
Cg.remove loops: the loops of Cg are deleted.
Cg.remove multiple edges: only one edge is remained.
Then we have the simple graph Cg without loops and mutiple edges.
If the number of vertices is large over 500, the shape of its graph is condensed

and not clear (see Fig.6, Fig.8). First we show a graph of 50 vertices which is
obtained by the method (II) for a 50 × 50 matrix generated in the proccess of the
pseudorandom number generator (Fig. 4).

Figure 4. Graph of
50x50 Adj. Matrix

Figure 5. eigenvalue dis-
tribution: 50x50

Next we calculate the eigenvalues and plot the histograms of their distributions
(Fig.5). Their 20 eigenvalues from the largest absolute value are

14.30, -6.13, 5.25,-5.51,-5.37, -5.25, -5.04, 4.86,-4.56, 4.54

-4.27, -3.96, -3.75, 4.05, 3.85 -3.50, -3.10, -2.97, -2.64, -2.58, ...

and the upper bound values of the almost Ramanujan graphs are
2
√
DX − 1: mild Ramanujan bound = 9.38,

2
√
σX − 1: naive Ramanujan bound = 7.29,

2
√

dX − 1: weak Ramanujan bound = 7.03.
We can see that all absolute values of nontrivial eigenvalues are smaller than the

upper bound of each almost Ramanujan bound.

Now we use the same parameters and the pseudorandom numbers as in the RMT
test 1st case (resp. 2nd case),

p = 17, l = 100, (resp. l = 144), n = 49,m = 7, (resp. m = 30), ξ = 13
1

103 ,
we construct the adjacency matrices: 500×500 (resp. 600×600) by the (I) method,
drawing its graph, and we calculate the eigenvalues and plot the histograms of their
distributions.

For the 1st case the 10 eigenvalues from the largest absolute value are
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114.09, -21.59, 20.12, 18.21, 18.05, 17.78, 17.12, 17.09, 16.93, 16.80, ...

and the upper bound values of the almost Ramanujan graphs are
mild Rmj bd: 25.46, naive Rmj bd: 21.27, weak Rmj bd: 20.68.
We can see that all absolute values of nontrivial eigenvalues are smaller than the

upper bound of the mild Ramanujan bound and almost all nontrivial eigenvalues,
exactly, with the probability of 498/499, are also under the upper bounds of the
naive and weak Ramanujan bounds.

Figure 6. Graph of 1st case

Figure 7. Eigenvalues distribution of 1st case
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For the 2nd case, the parameters are

p = 17, l = 144, n = 49, m = 30, ξ = 13
1

103 .
The 10 eigenvalues of the 600×600 adjacency matrix from the largest absolute value
are

134.80, -25.52, 22.09, 20.11, 19.61, 19.32, 19.02, 18.973, 18.82, 18.64, ...

and the upper bound values of the almost Ramanujan graphs are
mild Rmj bd: 28.57 , naive Rmj bd: 23.13, weak Rmj bd: 22.45

Figure 8. Graph of 2nd case

Figure 9. Eigenvalues distribution of 2nd case

We can see that all absolute values of nontrivial eigenvalues are smaller than the
upper bound of the mild Ramanujan bound and almost all nontrivial eigenvalues,
exactly, with the probability of 598/599, are also under the upper bounds of the
naive and weak Ramanujan bounds.

Concluding remarks

• Pseudorandom number generators have great potential for applications to
cryptography. Since we can generate pseudorandom numbers with seeds of
small sizes, we can prepare small size keys in cryptography.

• We can see that the RMT tests provide convenient and easy methods for
randomness tests.
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• Future Problems
– Applications to cryptography.
– Further numerical tests on randomness; the moment method in RMT

test, NIST, ... etc.
– Theoretical proof on randomness of our p-adic random lattices, using

the results in [5].
– Investigation on the relations between the almost Ramanujan graph

and the weak (graph theory) Riemann Hypothesis in [11].
– Another most important property of expander graphs is “sparse”. The

boundedness of degrees or the small order growth rate of degrees O(nε)
as n → ∞ should be considered in our improved construction methods
of almost Ramanujan random graphs.
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