s,
Y Livear and Wonliear \)@aﬁeﬁ& S’ aeN2ieaaler CoPyriat 2019

Volume 5, Number 1, 2019, 105-111
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This paper is dedicated to Professor Jong Soo Jung on occasion of his 65-th birthday.

ABSTRACT. In this paper, following the approaches of Jeyakumar, Li and Sutha-
haran [6], we study a support vector machine (SVM) classifier with a uncertain
knowledge set defined by polyhedral uncertain sets. We prove the robust Farkas
lemma for our SVM, and then we get a deterministic quadratic optimization
problem from the SVM. We formulate the Wolfe dual problem for our SVM,
and then by using the dual problem, we obtain the convergence theorem and the
algorithm for finding the solution of the quadratic optimization problem.

1. INTRODUCTION

Support vector machines (SVMs) [2,7,11, 14] can be presented by linear opti-
mization problems or convex quadratic optimization problems. Incorporating prior
knowledge into SVMs in the form of knowledge sets often improves corrections of the
classifier or reduce the amount of training data needeed [5,6,8,9,12]. Very recently,
Jeyakumar, Li and Suthaharan [6] studied SVM classifies in the face of uncertain
knowledge sets, defined by interval uncertain sets, by using the robust approach
(the worst approach). In this paper, following the approaches of Jeyakumar, Li and
Suthaharan [6], we will study SVM classifiers in face of uncertain knowledge sets
defined by polyhedral uncertain sets .

This paper is concerned with a SVM classifiers with uncertain knowledge sets,
defined by polyhedral uncertainty sets, by using the approaches of Jeyakumar, Li
and Suthaharan [6]. We will explain our SVM classifier with uncertain knowledge
sets and show that the classifiers will be a convex quadratic optimization problem,
and then we formulate its Wolfe dual problem, By using the dual problem, we get
the convergence theorem and the algorithm for finding the solution of the quadratic
optimization problem.

2. SUPPORT VECTOR MACHINE CLASSIFIERS WITH UNCERTAIN KNOWLEDGE SETS

Following the approaches of Jeyakumar, Li and Suthaharan [6], we will explain
our SVM classifier with uncertain knowledge sets, and related optimization prob-
lems. The classical SVM problem is formulated as discriminating between m data
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points in R™. The points are presented by an m x n matrix A, with the i-th data
point a; is at the i-th row vector of A. Each point is considered to be either class
A or B, which is recorded along the diagonal of the diagonal matrix D € R™*™,
The diagonal elements D;; = +1, if the point a; belongs to A and D;; = —1, if the
point belongs to B. We discriminate between the two data sets with the hyperplane
{a € R" | a”w = r} defined by a discriminant function f(w) = a’w — r. To allow
some slight error which is represented by slack variables, we consider the following
classical SVM [7,13]:

(SVM)  mingry  Uw)+ pepy
s.t. D(Aw —rep)+y2e, y=0,
where 4 is a weighting parameter and w € R?, r € R, y € R™ and e, € R™ is a

vector of ones. Sometimes, I(w) := 1|w[3. When I(w) := %HwH% + Aaf|w||1, the
model (SVM) becomes the doubly regularized SVM [6, 15]:

. A1
(KBP)  miny g\lwllg + Xallwllt + peny
s.t. D(Aw —rep)+y=e, y=0.
Here we assume that there are uncertain knowledge sets co{uﬁ, . ,uf}, uﬁ, . ,uf €

R™ ¢ =1,...,k, where coA is the convexhull of the set A, and that the uncertain
knowledge set {z € R" | hlz < d;, i = 1,...,k} lies on class A’s side of the
bounding hyperplane w” z = r + 1.

(KBP) becomes the following knowledge-based support vector machine problem
under data uncertainty:

A
(UKBP)  ming,,., ?1\

w3 + Azflwlly + pely
s.t. D(Aw —rep)+y=e, y =0,
{zeR" | hlz <di, hy €co{ul, ... ul},i=1,...,k}
cl{zeR"|wlz2r+1}.

Jeyakumar, Li and Suthaharan [6] used the interval sets [h;, h;] % [d;, d;] (h;, h; €
R™ with h; < h; and d;,d; € R with d; < d; for i = 1,...,k), which was called
interval uncertain knowlege sets, as uncertain sets for (h;,d;,i = 1,..., k).

Following robust optimization approaches in [1, 6], we formulate the following
robust counterpart of (UKBP), which is a deterministic optimization problem, given
by

) A
(RKBP)  miny,. .y %Hw”% + Xof|wll1 4 pely
s.t. D(Aw —rep) +y = em, y=0,

{z € R" | hlz; < d;, Yhy € co{ul, ... ul}, i=1,... k}
C{zeR"|wlz2>2r+1}.
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3. RoBUST FARKAS LEMMA

Jeyakumar, Li and Suthaharan [6] proved the robust Farkas lemma for their SVM
classifier with the knowledge sets defined by interval uncertain sets, and then get a
convex optimization problem from the counter part of their SVM. Here we derive
the robust Farkas lemma for our SVM classifier, and then following the approaches
of Jeyakumar, Li and Suthaharan [6], we will convert the above robust counterpart
(RKBP) into a convex quadratic optimization problem.

Lemma 3.1 (Robust Farkas Lemma). Let d; € R, i = 1,...,k, “3 e R =

Lk g=1,...,l, weR"™ and r € R. Then the following are equivalent:
(i) hl'z < d; Vh; € Vi i= co{ud, ... ul} = wle 2 r 4+ 1;
(ii) there exist )\} >20,i=1,...,k, j=1,...,1 such that

k l
—ZZ Ned; >0 and w+ZZx L=

=1 j=1

Proof. hiTx —d; £0 Vh; 1%
l l
= VA 20 with Y N=1, Y Nulz—d]<0
j=1 j=1
= uwr—d; <0, j=1,...,L
Thus we have
(i) <= fz—di<0,i=1,... kji=1,...,01 =waZr+l]
<= (by classical Farkas Lemma in [10])
there exist )\i- >0,i=1,...,k,j=1,...,1 such that

wm— (r+1) +ZZ)\ZU x—d;) 20 VreR"
i=1 j=1

— thereexist)\i-ZO t=1,...,k,j=1,...,1 such that

—(r+1) —1—22)\’(1 =0 and w $+ZZ)\’UZT:E>O Vr ¢ R"

=1 j=1 i=1 j=1
— thereexist)\i-ZO t=1,...,k,j=1,...,1 such that

—(r+1) ZZX‘d >0andw—|—zzx\zuz—0

=1 j=1 i=1 j=1
O

By the Robust Farkas Lemma (Lemma 3.1), we can rewrite (RKBP) as follows;
. A
(RKBP)  minimize,,.,, ;HwH% + Xof|wlly + pele

s.t. D(Aw —rep) + € 2 e,
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Here we insert slack variables £;,& € R and § 2 0 in (RKBP) and let (w;)4 =

max{0,w;} = p;, (w;)— :=—min{0,w;} =¢qi, p= (p1,...,pn) and ¢ = (q1,.-.,qn),
and then noticing that [|w||3 = ||pll3 + [l¢/|3 and ||w|; = el(p + ¢), we get the
following optimization problem (Pg) from (RKBP):

. A1
(Po)  minimizeg, o o vy S (Ipl3 + [lal3) + deeq (p+q) + peq€ + en (61 + &2) + 8
s.t. D(A(p—q) —rem) +£ 2 em

k l
—(r+1) =) ) Ndi+820

i=1 j=1

koo
—pHg= Y > Nl +& 20

i=1 j=1
k l
P—q+ > ) Nult+& 20
i=1 j=1
p,q20,£20, 6,620, 320
XN>0i=1,....k j=1,...,1L

Now we try to change (P¢ ) into a quadratic optimization problem in matrix form.
Let

p
q en 3
y= AN eR™HL h= x| e, | eREFE 4= ? € Rt
: Okt 5
)\k
e
Om _ Inxn Onxn O xkl
€= On € ]Rm—l—?n—l-l’ C= A1 | Onxn Inxn Onxki € R(2n+kl)x(2n+kl)’
1“ Okixn  Orixn  Okrixkl

U= (ud ... u))eR™ i=1,...k,
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A —A O ki

A’: *InXTL Inxn 7U1 - Uv2 — Uk E R(m+2n+1)><(2n+kl)

Inxn _Inxn Ul U2 Uk

0...0 0...0 —dy---—dy--—d---—dg
15 _ < D Omx(2n+1) ) c R(m+2n+1)><(m+2n+1)‘

Ontyxm  L@2nt1)x(@n+1)

Then we can rewrite (Pg) as the following quadratic optimization problem:
c e . 1 ~ ~
(Po) MINIMIZE () )R (2nt+hl) ) R(m+2n+1) xR §yTCy + bTy + 6%;+2n+1v
s.t. DAy —ré)+v=¢€
y=0, v=0.

Following the approaches of Jeyakumar, Li and Suthaharan [6], and Mangasarian
and Musicant [13], we replace b’y by yTy and el 4ont1V by %UTU and we append an
additional % to the objective function, we get the following quadratic optimization
problem (P) which we will treat with:

o 1 ~ 1 1
(P) IINIMIZE () o 1) cR(2n+k)  R(m+20+1) xR in(C + MI)Z/ + 57”2 + 2 HUH%
s.t DAy —ré)+v=e

where i € R is an additional tuning parameter and p > 0.

4. DUAL PROBLEM AND ALGORITHM

Following the approaches of Jeyakumar, Li and Suthaharan [6], we get the fol-
lowing Wolfe dual problem [10,16] for (P):

- L rxs |~
(D)  maximize,cgm+2nt1 —izTQz +elz
s.t. 220,

where Q = I+DA(C+ul)"Y(DA)T+Dé(De)T. Since for any € R™ 2041 ;TQp >

|#||2, then Q is a positive definite (m 4 2n+ 1) X (m + 2n+ 1) matrix, and so (D) is

a strictly concave quadratic maximization problem with non-negative constraints.
Moreover, we have the following existence theorem for the dual problem (D):

Theorem 4.1. The dual problem (D) has a unique solution.

Proof. Since ||é|| = m + 1, we have, for any z € R"™+2n+1 %zT@z —elz> %||z||2 -
(m+ 1)z > —i(m+ 1)% Thus inf{%zT@z —¢el2 | z > 0} is finite and so it
follows from Frank-Wolfe theorem in [3] that the dual problem (D) has a solution.
Moreover, since (D) is a strictly concave quadratic optimization problem, (D) has

a unique solution. O

Following the proof of Theorem 5.1 of Jeyakumar, Li and Suthaharan [6] , or
using the Wolfe’s duality theorem and the strict converse duality theorem in page
115 and page 116 in [10], we can prove the following theorem:
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Theorem 4.2. Let z € R™ 2"+ Then 2 is a solution of (D) if and only if
(C+pl) (DA 'z, 2, —(De)")z)
is a solution of (P).

Following the proof of Theorem 5.2 of Jeyakumar, Li and Suthaharan [6], we can
prove the following theorem:

Theorem 4.3. Let o € (0,2). Let {z,} be a sequence generated by the iteration
defined below:

20 = @_15 and z, = @_1(5—1— (@zn_l —e—azp-1)4),

where ay(= (a1, ..., ami2n+1)+) = (max{a1,0}, ..., mar{amiani1,0}). Then {z,}
converges to the unique solution z of (D).

From Theorem 4.2 and Theorem 4.3, we obtain the following algorithm for finding
a solution of (P):

Algorithm for finding a solution of (P):
1. 2= @_1g.
2. Zold = 20 + €.
3. While [|zo1q — zn| > tol.

Zni1 = Q7 HE+ (Qzy — € — aZn)4).

Calculate ((C + pI) Y (DA 2, z,, —(DeT2,), p = %,
n=mn-+1.
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