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points in Rn. The points are presented by an m × n matrix A, with the i-th data
point ai is at the i-th row vector of A. Each point is considered to be either class
A or B, which is recorded along the diagonal of the diagonal matrix D ∈ Rm×m.
The diagonal elements Dii = +1, if the point ai belongs to A and Dii = −1, if the
point belongs to B. We discriminate between the two data sets with the hyperplane
{a ∈ Rn | aTw = r} defined by a discriminant function f(w) = aTw − r. To allow
some slight error which is represented by slack variables, we consider the following
classical SVM [7,13]:

(SVM) minw.r.y l(w) + µeTmy

s.t. D(Aw − rem) + y ≧ e, y ≧ 0,

where µ is a weighting parameter and w ∈ Rn, r ∈ R, y ∈ Rm and em ∈ Rm is a
vector of ones. Sometimes, l(w) := 1

2∥w∥
2
2. When l(w) := λ1

2 ∥w∥22 + λ2∥w∥1, the
model (SVM) becomes the doubly regularized SVM [6,15]:

(KBP) minw.r.y
λ1

2
∥w∥22 + λ2∥w∥1 + µeTmy

s.t. D(Aw − rem) + y ≧ e, y ≧ 0.

Here we assume that there are uncertain knowledge sets co{ui1, . . . , uil}, ui1, . . . , u
i
l ∈

Rn, i = 1, . . . , k, where coA is the convexhull of the set A, and that the uncertain
knowledge set {z ∈ Rn | hTi z ≦ di, i = 1, . . . , k} lies on class A’s side of the
bounding hyperplane wT z = r + 1.

(KBP) becomes the following knowledge-based support vector machine problem
under data uncertainty:

(UKBP) minw.r.y
λ1

2
∥w∥22 + λ2∥w∥1 + µeT y

s.t. D(Aw − rem) + y ≧ e, y ≧ 0,

{z ∈ Rn | hTi zi ≦ di, hi ∈ co{ui1, . . . , uil}, i = 1, . . . , k}
⊂ {z ∈ Rn | wT z ≧ r + 1}.

Jeyakumar, Li and Suthaharan [6] used the interval sets [h
¯i
, h̄i]× [d

¯i
, d̄i] (h

¯i
, h̄i ∈

Rn with h
¯i

< h̄i and d
¯i
, d̄i ∈ R with d

¯i
≦ d̄i for i = 1, . . . , k), which was called

interval uncertain knowlege sets, as uncertain sets for (hi, di, i = 1, . . . , k).
Following robust optimization approaches in [1, 6], we formulate the following

robust counterpart of (UKBP), which is a deterministic optimization problem, given
by

(RKBP) minw.r.y
λ1

2
∥w∥22 + λ2∥w∥1 + µeTmy

s.t. D(Aw − rem) + y ≧ em, y ≧ 0,

{z ∈ Rn | hTi zi ≦ di, ∀hi ∈ co{ui1, . . . , uil}, i = 1, . . . , k}
⊆ {z ∈ Rn | wT z ≧ r + 1}.
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3. Robust Farkas lemma

Jeyakumar, Li and Suthaharan [6] proved the robust Farkas lemma for their SVM
classifier with the knowledge sets defined by interval uncertain sets, and then get a
convex optimization problem from the counter part of their SVM. Here we derive
the robust Farkas lemma for our SVM classifier, and then following the approaches
of Jeyakumar, Li and Suthaharan [6], we will convert the above robust counterpart
(RKBP) into a convex quadratic optimization problem.

Lemma 3.1 (Robust Farkas Lemma). Let di ∈ R, i = 1, . . . , k, uij ∈ Rn, i =
1, . . . , k, j = 1, . . . , l, w ∈ Rn and r ∈ R. Then the following are equivalent:

(i) hTi x ≦ di ∀hi ∈ Vi := co{ui1, . . . , uil} ⇒ wTx ≧ r + 1;
(ii) there exist λi

j ≧ 0, i = 1, . . . , k, j = 1, . . . , l such that

−(r + 1)−
k∑

i=1

l∑
j=1

λi
jdi ≧ 0 and w +

k∑
i=1

l∑
j=1

λi
jµ

i
j = 0.

Proof. hTi x− di ≦ 0 ∀hi ∈ V⟩

⇐⇒ ∀λj ≧ 0 with
l∑

j=1

λj = 1,
l∑

j=1

λj [u
iT
j x− di] ≦ 0

⇐⇒ uTj x− di ≦ 0, j = 1, . . . , l.

Thus we have

(i) ⇐⇒ [uiTj x− di ≦ 0, i = 1, . . . , k, j = 1, . . . , l ⇒ wTx ≧ r + 1]

⇐⇒ (by classical Farkas Lemma in [10])

there exist λi
j ≧ 0, i = 1, . . . , k, j = 1, . . . , l such that

wTx− (r + 1) +

k∑
i=1

l∑
j=1

λi
j(u

iT
j x− di) ≧ 0 ∀x ∈ Rn

⇐⇒ there exist λi
j ≧ 0, i = 1, . . . , k, j = 1, . . . , l such that

−(r + 1) +
k∑

i=1

l∑
j=1

λi
jdi ≧ 0 and wTx+

k∑
i=1

l∑
j=1

λi
ju

iT
i x ≧ 0 ∀x ∈ Rn

⇐⇒ there exist λi
j ≧ 0, i = 1, . . . , k, j = 1, . . . , l such that

−(r + 1)−
k∑

i=1

l∑
j=1

λi
jdi ≧ 0 and w +

k∑
i=1

l∑
j=1

λi
ju

i
i = 0.

□

By the Robust Farkas Lemma (Lemma 3.1), we can rewrite (RKBP) as follows;

(RKBP) minimizew.r.y
λ1

2
∥w∥22 + λ2∥w∥1 + µeTmξ

s.t. D(Aw − rem) + ξ ≧ em



108 GUE MYUNG LEE

−w −
k∑

i=1

l∑
j=1

λi
ju

i
j ≧ 0

w +

k∑
i=1

l∑
j=1

λi
ju

i
j ≧ 0

−(r + 1)−
k∑

i=1

l∑
j=1

λi
jdi ≧ 0

ξ ≧ 0, λi
j ≧ 0, i = 1, . . . , k, j = 1, . . . , l.

Here we insert slack variables ξ1, ξ2 ∈ Rm
+ and β ≧ 0 in (RKBP) and let (wi)+ :=

max{0, wi} = pi, (wi)− := −min{0, wi} = qi, p = (p1, . . . , pn) and q = (q1, . . . , qn),
and then noticing that ∥w∥22 = ∥p∥22 + ∥q∥22 and ∥w∥1 = eTn (p + q), we get the
following optimization problem (P0) from (RKBP):

(P0) minimize
(p,q,ξ1,ξ2,r,λ

j
i )

λ1

2
(∥p∥22 + ∥q∥22) + λ2e

T
n (p+ q) + µeTmξ + eTn (ξ1 + ξ2) + β

s.t. D(A(p− q)− rem) + ξ ≧ em

−(r + 1)−
k∑

i=1

l∑
j=1

λi
jdi + β ≧ 0

−p+ q −
k∑

i=1

l∑
j=1

λi
ju

i
j + ξ1 ≧ 0

p− q +
k∑

i=1

l∑
j=1

λi
ju

i
j + ξ2 ≧ 0

p, q ≧ 0, ξ ≧ 0, ξ1, ξ2 ≧ 0, β ≧ 0

λj
i ≧ 0, i = 1, . . . , k, j = 1, . . . , l.

Now we try to change (P0 ) into a quadratic optimization problem in matrix form.
Let

y =


p
q
λ1

...
λk

 ∈ R2n+kl, b̃ = λ2

en
en
0kl

 ∈ R2n+k, v =


ξ
ξ1
ξ2
β

 ∈ Rm+2n+1,

ẽ =


em
0n
0n
1

 ∈ Rm+2n+1, C̃ = λ1

In×n 0n×n 0n×kl

0n×n In×n 0n×kl

0kl×n 0kl×n 0kl×kl

 ∈ R(2n+kl)×(2n+kl),

U i = (ui1 . . . uil) ∈ Rn×l, i = 1, . . . , k,
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Ã =


A −A 0m×kl

−In×n In×n −U1 − U2 − · · · − Uk

In×n −In×n U1 U2 . . . Uk

0 . . . 0 0 . . . 0 −d1 · · · − d1 · · · − dk · · · − dk

 ∈ R(m+2n+1)×(2n+kl)

D̃ =

(
D 0m×(2n+1)

0(2n+1)×m I(2n+1)×(2n+1)

)
∈ R(m+2n+1)×(m+2n+1).

Then we can rewrite (P0) as the following quadratic optimization problem:

(P0) minimize(y,v,r)∈R(2n+kl)×R(m+2n+1)×R
1

2
yT C̃y + b̃T y + eTm+2n+1v

s.t. D̃(Ãy − rẽ) + v ≧ ẽ

y ≧ 0, v ≧ 0.

Following the approaches of Jeyakumar, Li and Suthaharan [6], and Mangasarian

and Musicant [13], we replace b̃T y by yT y and eTm+2n+1v by 1
2v

T v and we append an

additional r2

2 to the objective function, we get the following quadratic optimization
problem (P) which we will treat with:

(P) minimize(y,v,r)∈R(2n+k)×R(m+2n+1)×R
1

2
yT (C̃ + µI)y +

1

2
r2 +

1

2
∥v∥22

s.t D̃(Ãy − rẽ) + v ≧ ẽ

where µ ∈ R is an additional tuning parameter and µ > 0.

4. Dual problem and algorithm

Following the approaches of Jeyakumar, Li and Suthaharan [6], we get the fol-
lowing Wolfe dual problem [10,16] for (P):

(D) maximizez∈Rm+2n+1 −1

2
zT Q̃z + ẽT z

s.t. z ≧ 0,

where Q̃ = I+D̃Ã(C̃+µI)−1(D̃Ã)T+D̃ẽ(D̃ẽ)T . Since for any x ∈ Rm+2n+1, xT Q̃x ≧
∥x∥2, then Q̃ is a positive definite (m+2n+1)× (m+2n+1) matrix, and so (D) is
a strictly concave quadratic maximization problem with non-negative constraints.

Moreover, we have the following existence theorem for the dual problem (D):

Theorem 4.1. The dual problem (D) has a unique solution.

Proof. Since ∥ẽ∥ = m+ 1, we have, for any z ∈ Rm+2n+1, 1
2z

T Q̃z − ẽT z ≥ 1
2∥z∥

2 −
(m + 1)∥z∥ ≥ −1

2(m+ 1)2. Thus inf{1
2z

T Q̃z − ẽT z | z ≥ 0} is finite and so it
follows from Frank-Wolfe theorem in [3] that the dual problem (D) has a solution.
Moreover, since (D) is a strictly concave quadratic optimization problem, (D) has
a unique solution. □

Following the proof of Theorem 5.1 of Jeyakumar, Li and Suthaharan [6] , or
using the Wolfe’s duality theorem and the strict converse duality theorem in page
115 and page 116 in [10], we can prove the following theorem:
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Theorem 4.2. Let z ∈ Rm+2n+1. Then z is a solution of (D) if and only if

((C̃ + µI)−1(D̃Ã)T z, z, −(D̃ẽ)T )z)

is a solution of (P).

Following the proof of Theorem 5.2 of Jeyakumar, Li and Suthaharan [6], we can
prove the following theorem:

Theorem 4.3. Let α ∈ (0, 2). Let {zn} be a sequence generated by the iteration
defined below:

z0 = Q̃−1ẽ and zn = Q̃−1(ẽ+ (Q̃zn−1 − ẽ− αzn−1)+),

where a+(= (a1, . . . , am+2n+1)+) = (max{a1, 0}, . . . ,max{am+2n+1, 0}). Then {zn}
converges to the unique solution z of (D).

From Theorem 4.2 and Theorem 4.3, we obtain the following algorithm for finding
a solution of (P):

Algorithm for finding a solution of (P):

1. z0 = Q̃−1ẽ.
2. zold = z0 + ẽ.
3. While ∥zold − zn∥ > tol.

zn+1 = Q̃−1(ẽ+ (Q̃zn − ẽ− αzn)+).

Calculate ((C̃ + µI)−1(D̃Ã)T zn, zn, −(D̃ẽT zn), µ = 1
2 ,

n = n+ 1.
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