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Motivated by the Lyapunov convexity theorem in infinite dimensions established
in [15], we extend the convexity of the integral of a decomposable set to separable
Banach spaces under the strengthened notion of nonatomicity of measure spaces,
called “saturation”, and provide a complete characterization of decomposability in
terms of saturation.

2. Preliminaries

2.1. Bochner Integrals in Banach Spaces. Let (Ω,Σ, µ) be a complete finite
measure space and (E, ∥ · ∥) be a Banach space with its dual E∗ furnished with the
dual system ⟨·, ·⟩ on E∗×E. A function f : Ω → E is said to be strongly measurable
if there exists a sequence of simple (or finitely valued) functions fn : Ω → E such
that ∥f(ω)−fn(ω)∥ → 0 a.e. ω ∈ Ω; f is said to be Bochner integrable if it is strongly
measurable and

∫
∥f(ω)∥dµ < ∞, where the Bochner integral of f over A ∈ Σ is

defined by
∫
A fdµ = limn

∫
A fndµ. By the Pettis measurability theorem (see [5,

Theorem II.1.2]), f is strongly measurable if and only if it is Borel measurable with
respect to the norm topology of E whenever E is separable. Denote by L1(µ,E)
the space of (µ-equivalence classes of) E-valued Bochner integrable functions on Ω
such that ∥f(·)∥ ∈ L1(µ), normed by ∥f∥1 =

∫
∥f(ω)∥dµ. A subset K of L1(µ,E)

is said to be uniformly integrable if

lim
µ(A)→0

sup
f∈K

∫
A
∥f(ω)∥dµ = 0.

A function f : Ω → E∗ is said to be weakly∗ measurable if for every x ∈ E the
scalar function ⟨f(·), x⟩ : Ω → R is measurable. Denote by L∞

w∗(µ,E∗) the space of
weakly∗ measurable functions from Ω to E∗ such that ∥f(·)∥E∗ ∈ L∞(µ), normed
by ∥f∥∞ = ess. sup∥f(ω)∥E∗ . The dual space of L1(µ,E) is given by L∞

w∗(µ,E∗)
whenever E is separable and the dual system is given by ⟨f, g⟩ =

∫
⟨f(ω), g(ω)⟩dµ

with f ∈ L∞
w∗(µ,E∗) and g ∈ L1(µ,E); see [7, Theorem 2.112]. Let F be a Banach

space and T : L1(µ,E) → F be a linear operator. Then T is norm-to-norm con-
tinuous if and only if it is weak-to-weak continuous; see [17, Theorem 2.5.11]. In
particular, the integration operator T : L1(µ,E) → E defined by Tf =

∫
fdµ is a

norm-to-norm continuous linear operator.
A set-valued mapping Γ from Ω to the family of nonempty subsets of E is called

a multifunction. A multifunction Γ : Ω ↠ E is said to be measurable if the set
{ω ∈ Ω | Γ(ω) ∩ U ̸= ∅} is in Σ for every open subset U of E; it is said to be
graph measurable if the set gphΓ := {(ω, x) ∈ Ω × E | x ∈ Γ(ω)} belongs to
Σ⊗Borel(E, ∥ · ∥), where Borel(E, ∥ · ∥) is the Borel σ-algebra of (E, ∥ · ∥) generated
by the norm topology. If E is separable, then Borel(E, ∥·∥) coincides with the Borel
σ-algebra Borel(E,w) of E generated by the weak topology; see [24, Part I, Chap. II,
Corollary 2]. It is well-known that for closed-valued multifunctions, measurability
and graph measurability coincide whenever E is separable; see [2, Theorem III.30].

A function f : Ω → E is called a selector of Γ if f(ω) ∈ Γ(ω) a.e. ω ∈ Ω.
If E is separable, then by the Aumann measurable selection theorem, a
multifunction Γ with measurable graph admits a measurable selector (see
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[2, Theorem III.22]) and it is also strongly measurable. A multifunction Γ : Ω ↠ E
is said to be integrably bounded if there exists φ ∈ L1(µ) such that ∥x∥ ≤ φ(ω)
for every x ∈ Γ(ω) a.e. ω ∈ Ω. If Γ is graph measurable and integrably bounded,
then it admits a Bochner integrable selector whenever E is separable. Denote by
S1
Γ the set of Bochner integrable selectors of Γ. A measurable multifunction Γ with

closed values is integrably bounded if and only if S1
Γ is bounded in L1(µ,E) when-

ever E is separable; see [10, Theorem 3.2]. The Bochner integral of Γ is defined by∫
Γdµ := {

∫
fdµ | f ∈ S1

Γ}.
The following result provides a sufficient condition for the weak compactness in

L1(µ,E) that is easy to check.

Theorem 2.1 ([4]). If K is a bounded and uniformly integrable subset of L1(µ,E)
such that there exists a multifunction Γ : Ω ↠ E with relatively weakly compact
values satisfying f(ω) ∈ Γ(ω) for every f ∈ K and ω ∈ Ω, then K is relatively
weakly compact in L1(µ,E).

Since S1
Γ is uniformly integrable in L1(µ,E) whenever Γ is integrably bounded,

it follows from Theorem 2.1 that if Γ is integrably bounded with relatively weakly
compact values, then S1

Γ and
∫
Γdµ are relatively weakly compact respectively in

L1(µ,E) and E.

2.2. Lyapunov Convexity Theorem in Banach Spaces. A finite measure space
(Ω,Σ, µ) is said to be essentially countably generated if its σ-algebra can be gener-
ated by a countable number of subsets together with the null sets; (Ω,Σ, µ) is said
to be essentially uncountably generated whenever it is not essentially countably gen-
erated. Let ΣS = {A ∩ S | A ∈ Σ} be the σ-algebra restricted to S ∈ Σ. Denote by
L1
S(µ) the space of µ-integrable functions on the measurable space (S,ΣS) whose

elements are restrictions of functions in L1(µ) to S. An equivalence relation ∼ on
Σ is given by A ∼ B ⇔ µ(A△B) = 0, where A△B is the symmetric difference of
A and B in Σ. The collection of equivalence classes is denoted by Σ(µ) = Σ/ ∼
and its generic element Â is the equivalence class of A ∈ Σ. We define the metric

ρ on Σ(µ) by ρ(Â, B̂) = µ(A△B). Then (Σ(µ), ρ) is a complete metric space (see
[1, Lemma 13.13]) and (Σ(µ), ρ) is separable if and only if L1(µ) is separable; see
[1, Lemma 13.14]. The density of (Σ(µ), ρ) is the smallest cardinal number of the
form |U|, where U is a dense subset of Σ(µ).

Definition 2.2. A finite measure space (Ω,Σ, µ) is saturated if L1
S(µ) is nonsepa-

rable for every S ∈ Σ with µ(S) > 0.

The saturation of finite measure spaces is also synonymous with the uncount-
ability of the density of ΣS(µ) for every S ∈ Σ with µ(S) > 0; see [8, 331Y(e) and
365X(p)]. Saturation implies nonatomicity; in particular, a finite measure space
(Ω,Σ, µ) is nonatomic if and only if the density of ΣS(µ) is greater than or equal
to ℵ0 for every S ∈ Σ with µ(S) > 0. Several equivalent definitions for saturation
are known; see [6, 8, 11, 14]. One of the simple characterizations of the saturation
property is as follows. A finite measure space (Ω,Σ, µ) is saturated if and only if
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(S,ΣS , µ) is essentially uncountably generated for every S ∈ Σ with µ(S) > 0. An
germinal notion of saturation already appeared in [13, 16].

For our purpose, the power of saturation is exemplified in the Lyapunov convexity
theorem in infinite dimensions.

Proposition 2.3 ([15]). Let (Ω,Σ, µ) be a finite measure space and E be a separable
Banach space. If (Ω,Σ, µ) is saturated, then for every µ-continuous vector measure
m : Σ → E, the range m(Σ) is weakly compact and convex. Conversely, if every
µ-continuous vector measure m : Σ → E has the weakly compact convex range, then
(Ω,Σ, µ) is saturated whenever E is an infinite-dimensional.

3. Decomposability and Convexity

3.1. Decomposability under Nonatomicity. In what follows, we always assume
that a finite measure space (Ω,Σ, µ) is complete and E is a separable Banach space.
Denote by C the norm closure of a subset C of E.

Definition 3.1. A subset K of L1(µ,E) is decomposable if χAf + (1 − χA)g ∈ K
for every f, g ∈ K and A ∈ Σ.

It is evident that decomposability is a weaker notion than convexity in L1(µ,E).
Nevertheless, whenever (Ω,Σ, µ) is nonatomic, for a weakly closed subset of L1(µ,E),
these two notions coincide; see [12, Theorem 2.3.17] for the following result.

Theorem 3.2. Let (Ω,Σ, µ) be a nonatomic finite measure space. Then a weakly
closed subset K of L1(µ,E) is decomposable if and only if K is convex.

Moreover, decomposable sets are represented by the family of Bochner inte-
grable selectors of a measurable multifunction with closed values; specifically, see
[10, Theorem 3.1] for the following result.

Lemma 3.3. Let K ⊂ L1(µ,E) be a nonempty closed subset of L1(µ,E). Then
K is decomposable if and only if there exists a unique measurable multifunction
Φ : Ω ↠ E with closed values such that K = S1

Φ.

Under nonatomicity, we have the following convexity result.

Theorem 3.4. Let (Ω,Σ, µ) be a nonatomic finite measure space. If K is a

nonempty decomposable subset of L1(µ,E), then the set {
∫
fdµ | f ∈ K} is convex.

If, furthermore, K is bounded and weakly closed such that there exists a multifunc-
tion Γ : Ω ↠ E with relatively weakly compact values satisfying f(ω) ∈ Γ(ω) for
every f ∈ K and ω ∈ Ω, then the set {

∫
fdµ | f ∈ K} is weakly compact and

convex.

Proof. The convexity of {
∫
fdµ | f ∈ K} for every nonempty decomposable set K

follows from [12, Corollary 3.16]. Suppose further that K is bounded and weakly
closed. By Lemma 3.3, there exists a unique measurable multifunction Φ : Ω ↠ E
with closed values such that K = S1

Φ. Since S1
Φ is bounded, Φ is integrably bounded,

and hence, S1
Φ is uniformly integrable as noted in Subsection 2.1. Therefore, K is
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weakly compact by Theorem 2.1. Since K is also convex by Theorem 3.2, {
∫
fdµ |

f ∈ K} is weakly compact and convex because of the weak-to-weak continuity of
the integration operator from L1(µ,E) to E given by f 7→

∫
fdµ. □

Example 3.5. The closure operation cannot be removed from Theorem 3.4. Sup-
pose that (Ω,Σ, µ) is a nonatomic finite measure space that is essentially countably
generated. (By the classical isomorphism theorem, such a measure space is iso-
morphic to the Lebesgue measure space of a real interval.) If E is an infinite-
dimensional separable Banach space, then there exists f ∈ L1(µ,E) such that the
set Rf := {

∫
A fdµ | A ∈ Σ} is not convex in E; see [23, Lemma 4] or [25, Remark

1(2)]. Let K = {χAf | A ∈ Σ}. Then K is a decomposable subset of L1(µ,E)
such that {

∫
gdµ | g ∈ K} = Rf is not convex. This observation also demonstrates

a failure of the Lyapunov convexity theorem in infinite dimensions. Define the µ-
continuous vector measure mf : Σ → E by mf (A) =

∫
A fdµ. We then have the

range mf (Σ) = Rf is not convex. These counterexamples stem from the fact that
K is not weakly closed.

Remark 3.6. The reason that the closure operation in Theorem 3.4 is inevitable
lies in the fact that Uhl’s approximate Lyapunov convexity theorem is employed for
its proof: The norm closure m(Σ) of the range of a vector measure m : Σ → E of
the form m(A) =

∫
A fdµ with f ∈ L1(µ,E) and A ∈ Σ is norm compact and convex

whenever (Ω,Σ, µ) is nonatomic; see [26]. When E = Rn, the closure operation is
unnecessary and Theorem 3.4 reduces to Theorem 1.1.

3.2. Decomposability under Saturation. We are now in a position to state the
main result of the paper.

Theorem 3.7. If (Ω,Σ, µ) is saturated, then for every nonempty decomposable
subset K of L1(µ,E), every separable Banach space F , and every continuous linear
operator T : L1(µ,E) → F , the set T (K) is convex. Conversely, if for every
nonempty decomposable subset K of L1(µ,E), every separable Banach space F , and
every continuous linear operator T : L1(µ,E) → F , the set T (K) is convex, then
(Ω,Σ, µ) is saturated whenever E is infinite dimensional.

Proof. Suppose that (Ω,Σ, µ) is saturated. Take any x, y ∈ T (K) and α ∈ [0, 1]. For
the convexity of T (K), it suffices to show that αx+ (1− α)y ∈ T (K). Toward this
end, let f, g ∈ K be such that x = Tf and y = Tg and define the vector measure
m : Σ → F by m(A) = T (χA(f − g)). To demonstrate the countable additivity of
m, let {An}∞n=1 be a pairwise disjoint sequence in Σ. If Sk =

∪∞
n=k+1An, then by

the linearity of T , we have m(
∪∞

n=1An) =
∑k

n=1 T (χAn(f − g)) + T (χSk
(f − g)).

Thus, ∥m(
∪∞

n=1An) −
∑k

n=1m(An)∥ = ∥T (χSk
(f − g))∥. Since χSk

(f − g) → 0
in L1(µ,E) as k → ∞, the continuity of T yields m(

∪∞
n=1An) =

∑∞
n=1m(An).

Hence, m is countably additive. Since m is absolutely continuous with respect
to the saturated measure µ, it follows from Proposition 2.3 that m(Σ) is weakly
compact and convex. Thus, there exists A ∈ Σ such that m(A) = αm(Ω), and
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hence, T (χA(f − g)) = αT (f − g). This means that

αx+ (1− α)y = αT (f − g) + T (g) = T (χA(f − g)) + T (g)

= T (χAf + (1− χA)g) ∈ T (K),

where the last inclusion follows from the decomposability of K.
To show the converse implication, assume that (Ω,Σ, µ) is not saturated. Since

E is an infinite-dimensional separable Banach space, there exists f ∈ L1(µ,E) such
that the set {

∫
A fdµ | A ∈ Σ} is not convex in E; see [23, Lemma 4] or [25, Remark

1(2)]. As in Example 3.5, define the decomposable set by K := {χAf | A ∈ Σ}.
Then the integration operator T : L1(µ,E) → E defined by Tf =

∫
fdµ is such

that the image T (K) = {
∫
A fdµ | A ∈ Σ} is not convex. □

Corollary 3.8. Let E be an infinite-dimensional separable Banach space. Then the
following conditions are equivalent:

(i) (Ω,Σ, µ) is saturated.
(ii) For every µ-continuous vector measure m : Σ → E, the range m(Σ) is

weakly compact and convex.
(iii) For every nonempty decomposable subset K of L1(µ,E), the set {

∫
fdµ |

f ∈ K} is convex.

In particular, the implication (i) ⇒ (ii), (iii) is true for every separable Banach
space.

Proof. (i) ⇔ (ii): Immediate from Proposition 2.3; (i) ⇒ (iii): Letting F = E
and T to be the integration operator in Theorem 3.7 yields the result; (iii) ⇒ (i):
Immediate from the proof of Theorem 3.7. The last part of the assertion is a just
repetition of Proposition 2.3 and Theorem 3.7. □

Corollary 3.8 implies that a “strengthened” version of Theorem 3.4 without the
closure operation under saturation.
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