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...

⟨λN−1BN−1x
∗
N−1 + x∗N − x∗N−1, x− x∗N ⟩ ≥ 0 for all x ∈ C;

⟨λNBNx∗N + x∗1 − x∗N , x− x∗1⟩ ≥ 0 for all x ∈ C.

The solution set of this problem is denoted by VI(C, λ1B1, λ2B2, . . . , λNBN ). Before
moving, we give a simple note on this problem. This solution set can be regarded
as a subset of C instead of a subset of C×C×· · ·×C as follows. By Zarantonello’s
characterization [14] of the projection ProjC onto a closed convex set C, we have the
following equivalent statements: (x∗1, x

∗
2, . . . , x

∗
N ) ∈ VI(C, λ1B1, λ2B2, . . . , λNBN ) if

and only if 

x∗2 = ProjC(I − λ1B1)x
∗
1

x∗3 = ProjC(I − λ2B2)x
∗
2

...
x∗N = ProjC(I − λN−1BN−1)x

∗
N−1

x∗1 = ProjC(I − λNBN )x∗N .

In particular, (x∗1, x
∗
2, . . . , x

∗
N ) ∈ VI(C, λ1B1, λ2B2, . . . , λNBN ) can be determined

by only one element x∗ ∈ C such that

x∗ = ProjC(I − λNBN ) · · ·ProjC(I − λ2B2) ProjC(I − λ1B1)x
∗.

From now on, we may assume that the solution set VI(C, λ1B1, λ2B2, . . . , λNBN )
is a subset of C.

Fixed Point Problem. A fixed point of a mapping S : C → C is a point x∗ ∈ C
such that x∗ = Sx∗ (see [7]). The set of all fixed points of S is denoted by Fix(S).

In each problem above, the following assumptions are assumed in [6]:

Assumption on bifunctions: For a given bifunction f : C × C → R, we
assume the following conditions:
(A1) f(x, x) ≥ 0 for all x ∈ C;
(A2) f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) lim supt→0+ f((1− t)x+ tz, y) ≤ f(x, y) for all x, y, z ∈ C;
(A4) The function y 7→ f(x, y) is convex and lower semicontinuous for all

x ∈ C;
(A5) For each r > 0 and each z ∈ C there exist a compact convex subset

K ⊂ H1 and an element x ∈ C∩K such that f(y, x)+ 1
r ⟨y−x, x−z⟩ < 0

for all y ∈ C \K.
Assumption for variational inequalities: For a given mapping B : C →

H1, we assume that B is β-inverse strongly monotone where β > 0, that is,
⟨x− y,Bx−By⟩ ≥ β∥x− y∥2 for all x, y ∈ C.

Assumption on mappings: For a mapping S : C → C, we assume that S
is nonexpansive, that is, ∥Sx− Sy∥ ≤ ∥x− y∥ for all x, y ∈ C.

It follows from [5] that if a bifunction f : C × C → R satisfies conditions (A1)–
(A4), then for each r > 0 and for each x ∈ H1 there exists a unique element z ∈ C



A QUICK LOOK ON THE HYBRID PROJECTION SCHEME OF DEEPHO ET AL. 123

such that

f(z, y) +
1

r
⟨x− z, z − y⟩ ≥ 0 for all y ∈ C.

In this situation, this element z is denoted by T f
r (x). Moreover, it is also known

that

• T f
r is firmly nonexpansive, that is, ∥T f

r (x)−T f
r (y)∥2 ≤ ⟨T f

r (x)−T f
r (y), x−y⟩

for all x, y ∈ H1;

• z ∈ Fix(T f
r ) ⇐⇒ f(z, y) ≥ 0 for all y ∈ C.

It was proved in [11, Lemma 2.3] that

∥T f
r (x)− T f

s (x)∥2 ≤
r − s

r
⟨T f

r (x)− T f
s (x), T

f
r (x)− x⟩

for all r, s > 0 and x ∈ H1.

Fact 1. If {rn}∞n=1 is a sequence in (0,∞) such that lim infn rn > 0 and {zn}∞n=1 is

a bounded sequence in H1 such that limn ∥zn − T f
rnzn∥ = 0, then

lim
n

∥zn − T f
1 (zn)∥ = 0.

To see this, we note that

∥T f
rn(zn)− T f

1 (zn)∥
2 ≤ rn − 1

rn
⟨T f

rn(zn)− T f
1 (zn), T

f
rn(zn)− zn⟩

≤
∣∣∣∣1− 1

rn

∣∣∣∣ ∥T f
rn(zn)− T f

1 (zn)∥∥T
f
rn(zn)− zn∥.

Hence

∥T f
rn(zn)− T f

1 (zn)∥ ≤
∣∣∣∣1− 1

rn

∣∣∣∣ ∥T f
rn(zn)− zn∥.

It follows from lim infn→∞ rn > 0 and limn ∥zn − T f
rn(zn)∥ = 0 that limn ∥T f

rn(zn)−
T f
1 (zn)∥ = 0 and hence limn ∥zn − T f

1 (zn)∥ = 0.

Convergence result of Deepho et al. The following is (the corrected version
of) the main result of [6].

Theorem DMSK. Let C and Q be nonempty closed convex subsets of H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator with its adjoint operator
A∗. Let us assume the following conditions:

• F1 : C × C → R and F2 : Q×Q → R is bifunctions satisfying (A1)–(A4).
• Bi : C → H1 is a βi-inverse strongly monotone mapping for all i = 1, 2, . . . , N
and let λi ∈ (0, 2βi) for all i = 1, 2, . . . , N .

• S : C → C is a nonexpansive mapping.

Suppose that

S := SEP(F1, F2;A) ∩VI(C, λ1B1, λ2B2, . . . , λNBN ) ∩ Fix(S) ̸= ∅.

We also assume the following conditions:

• {rn}∞n=1 is a sequence in (0,∞) such that lim infn rn > 0.
• γ is a real number such that γ ∈ (0, 2/L) where L := ∥A∥2.
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• {αn}∞n=1 is a sequence in [0, 1] such that αn ≤ α for some α ∈ (0, 1).

Let x0 ∈ H1 be arbitrarily chosen and C1 := C. Let {xn}∞n=1 be a sequence in H1

and {Cn}∞n=1 be a sequence of closed convex subsets of C defined by x1 := ProjC1
x0

and 

un := TF1
rn (I + γA∗(TF2

rn − I)A)(xn);
yn := ProjC(I − λNBN ) · · ·ProjC(I − λ2B2) ProjC(I − λ1B1)un

zn := αnyn + (1− αn)
(

1
n+1

(
yn + Syn + S2yn + · · ·+ Snyn

))
Cn+1 := {z ∈ Cn : ∥zn − z∥ ≤ ∥xn − z∥}
xn+1 := ProjCn+1

x0 for all n ≥ 1.

Then the sequence {xn}∞n=1 converges strongly to x∗ ∈ S which is nearest to x0, that
is, x∗ = ProjS x0.

Remark 1. Let us comment on the original statements of Theorem DMSK.

(1) The original paper assumes that {Si}ni=1 is a sequence of nonexpansive map-
pings. But in the last line of Step 4, they make use of Lemma 2.4 which is
for a single nonexpansive mapping.

(2) Lemma 2.2 is not complete. It contains only assumptions.
(3) The assumption (A5) of Lemma 2.3 in [6] is superfluous.

The corrected version of their result is therefore stated as above. Moreover, the
result above is stated for γ ∈ (0, 2/L) and αn ∈ [0, α] while the original work
assumes that γ ∈ (0, 1/L) and αn ∈ (0, α]. As noted in [4], permitting γ to take on
larger values accelerates the convergence of the iterative sequence.

2. A short and simple proof of Theorem DMSK

We note that the scheme of Deepho et al. [6] is a combination of the following
known methods:

• Baillon’s nonlinear ergodic theorem (see [2]).
• Shrinking projection method of Takahashi et al. (see [12]).

Many pieces of the proof given there are taken from the corresponding previous
known results. First we note that the shrinking projection method given below
(Theorem TKK) is the stem of Theorem DMSK. We then prove that Theorem
DMSK is a direct consequence of Theorem TTK.

Theorem TTK ([12, Theorem 3.3 with αn ≡ 0]). Let C be a nonempty closed con-
vex subset of a Hilbert space H. Let {Tn : C → C}∞n=1 be a sequence of nonexpansive
mappings and T : C → C be a nonexpansive mapping such that

∞∩
n=1

Fix(Tn) = Fix(T ) ̸= ∅.

Suppose that {Tn} satisfies the NST-condition with T . Let u0 ∈ H be arbitrarily
chosen and C1 := C, and u1 := ProjC1

u0, define a sequence {un}∞n=1 of C as
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follows: {
Cn+1 := {z ∈ Cn : ∥Tnun − z∥ ≤ ∥un − z∥};
un+1 := ProjCn+1

u0 for all n ≥ 1.

Then, {un}∞n=1 converges strongly to x∗ = ProjF u0.

Recall that {Tn}∞n=1 satisfies the NST-condition with T if for each bounded se-
quence {zn}∞n=1 in C, the following implication holds:

lim
n

∥zn − Tnzn∥ = 0 =⇒ lim
n

∥zn − Tzn∥ = 0.

The following concept was introduced by Aoyama et al. [1].

Definition. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let {Tn}∞n=1 be a sequence of nonexpansive mappings of C into itself. We
say that {Tn}∞n=1 is a strongly nonexpansive sequence if

lim
n

∥(xn − yn)− (Tnxn − Tnyn)∥ = 0

whenever {xn}∞n=1 and {yn}∞n=1 are sequences in C such that {xn − yn}∞n=1 is
bounded and limn(∥xn − yn∥ − ∥Tnxn − Tnyn∥) = 0.

In particular, if Tn ≡ T , then the concept above is deduced to the one introduced
by Bruck and Reich [3]. More precisely, T : C → C is a strongly nonexpansive
mapping if T is nonexpansive and

lim
n

∥(xn − yn)− (Txn − Tyn)∥ = 0

whenever {xn}∞n=1 and {yn}∞n=1 are sequences in C such that {xn − yn}∞n=1 is
bounded and limn(∥xn − yn∥ − ∥Txn − Tyn∥) = 0.

Fact 2 ([1]). Suppose that {Sn : C → C}∞n=1 and {Tn : C → C}∞n=1 are two
sequences of nonexpansive mappings. The following statements are true.

(1) Suppose that
∩∞

n=1 Fix(Sn) ∩
∩∞

n=1 Fix(Tn) ̸= ∅ and that either {Sn}∞n=1

or {Tn}∞n=1 is a strongly nonexpansive sequence. Let {zn}∞n=1 be a bounded
sequence in C. Then

lim
n

∥zn − (Sn ◦ Tn)zn∥ = 0 ⇐⇒ lim
n

∥zn − Snzn∥ = lim
n

∥zn − Tnzn∥ = 0.

(2) Suppose that both {Sn}∞n=1 and {Tn}∞n=1 are strongly nonexpansive sequences.
Then {Sn ◦ Tn}∞n=1 is a strongly nonexpansive sequence.

Fact 3 ([1]). If a bifunction f : C × C → R satisfies conditions (A1)–(A4) and

{rn}∞n=1 is a sequence in (0,∞), then {T f
rn}∞n=1 is a strongly nonexpansive sequence.

Fact 4 ([8]). Let H1 and H2 be Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator with its adjoint operator A∗. Assume that γ ∈ (0, 2/L) where L := ∥A∥2.
The following results are true.

(1) If T : H2 → H2 is a firmly nonexpansive operator, then the mapping W :
H1 → H1 defined by

W := I + γA∗(T − I)A

is a strongly nonexpansive mapping.
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(2) Suppose that F2 : Q × Q → R satisfies conditions (A1)–(A4) and {rn}∞n=1

is a sequence in (0,∞). For each n, we define

Wn := I + γA∗(TF2
rn − I)A.

Then {Wn}∞n=1 is a strongly nonexpansive sequence.

Fact 5 ([1]). If B : C → H1 is β-inverse strongly monotone and λ ∈ (0, 2β),
then Proj(I − λB) : C → C is a strongly nonexpansive mapping. In particular, let
Bi : C → H1 be a βi-inverse strongly monotone mapping for all i = 1, 2, . . . , N and
let λi ∈ (0, 2βi) for all i = 1, 2, . . . , N . It follows then that

ProjC(I − λNBN ) · · ·ProjC(I − λ2B2) ProjC(I − λ1B1)

is a strongly nonexpansive mapping.

Fact 6. [10, Lemma 3.10] Let C be a closed convex subset of H1 and S : C → C be

a nonexpansive mapping with Fix(S) ̸= ∅. If Sn := 1
n

∑n−1
i=0 Si for all n ≥ 1, then

Fix(Sn) = Fix(S) for all n ≥ 2 and {Sn}∞n=1 satisfies the NST-condition with S.

We use the preceding known facts to give the following proof of Theorem DMSK.

A short and simple proof of Theorem DMSK via Theorem TTK. For convenience, we
set

Tn := Sn ◦ V ◦ Un,

where

Un := TF1
rn (I + γA∗(TF2

rn − I)A);

V := ProjC(I − λNBN ) · · ·ProjC(I − λ2B2) ProjC(I − λ1B1);

Sn := αnI + (1− αn)

(
1

n+ 1
(I + S + S2 + · · ·+ Sn)

)
.

We also set

T := S ◦ V ◦ U,
where

U := TF1
1 (I +A∗γ(TF2

1 − I)A).

First, we observe that each Tn and T are nonexpansive mappings. Moreover,

S =

∞∩
n=1

Fix(Tn) = Fix(T ) ̸= ∅.

Secondly, the iterative sequence generated by the scheme in Theorem DMSK is
exactly the same as the one in Theorem TTK.

Finally, we prove that {Tn}∞n=1 satisfies the NST-condition with T . To see this,
let {zn} be a bounded sequence in C such that limn ∥zn−Tnzn∥ = 0. It follows from
Facts 2(2), 4 and 5 that {V ◦ Un}∞n=1 is a strongly nonexpansive sequence. Hence,
by Fact 2(1), we have

lim
n

∥zn − Snzn∥ = lim
n

∥zn − (V ◦ Un)zn∥ = 0.
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Note that

lim
n

∥∥∥∥zn − 1

n+ 1
(I + S + · · ·+ Sn)zn

∥∥∥∥ = lim
n

1

1− αn
∥zn − Snzn∥ = 0.

Using Fact 6 gives

(♠) lim
n

∥zn − Szn∥ = 0.

Moreover, using Fact 2(1) for limn ∥zn − (V ◦ Un)zn∥ = 0 again gives

(♡) lim
n

∥zn − V zn∥ = lim
n

∥zn − Unzn∥ = 0.

It follows from the last expression above and Fact 4 that

lim
n

∥zn − TF1
rn zn∥ = lim ∥zn − (I + γA∗(TF2

rn − I)A)zn∥ = 0.

In particular, we have limn ∥zn − TF1
rn zn∥ = limn ∥(TF2

rn − I)Azn∥ = 0. Since A is a
bounded linear operator, {Azn} is a bounded sequence. It follows then from Fact 1

that limn ∥zn − TF1
1 zn∥ = limn ∥(TF2

1 − I)Azn∥ = 0. In particular, limn ∥zn − (I +

γA∗(TF2
1 − I)A)zn∥ = 0. Hence

(♢) lim
n

∥zn − Uzn∥ = 0.

Using Fact 2(1) for the expressions (♠), (♡), and (♢) gives

lim
n

∥zn − Tzn∥ = 0.

This completes the proof. □
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