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A FIXED POINT THEOREM AND THE SOLVABILITY OF SOME
NONLINEAR EQUATIONS

YUKIO TAKEUCHI

ABSTRACT. In this note, we first present three fixed point theorems related our
argument. One of the fixed point theorems is a version of Schauder’s fixed point
theorem. Then, we give another proof for a version of Schauder’s fixed point
theorem. Furthermore, we prove a new type of fixed point theorem (Theorem
3.1) and then apply it to consider the solvability of some nonlinear equations.

1. INTRODUCTION

The Leray-Schauder theorem [5] was proved initially in a Banach Space. Then,
Nagumo [8] extended the theorem to that in a locally convex space. These were
proved by considering degree theory; for instance, see Lloyd [6]. Under advantageous
conditions, some Leray-Schauder type theorems were proved without degree theory;
see Browder [2], Schaefer [11], and Potter [9]. Later Morales [7], Hirano [3], Kart-
satos [4], and others studied the solvability of some nonlinear equations concerning
m—accretive operators. Then, some researchers used Leray-Schauder type theorems
to have their results. However, in their articles, handling of Leray-Schauder type
theorem is slightly complicated. Also, for students, it is not so easy to understand
degree theory completely.

In this note, by studying the works as above, we prove Theorem 3.1 which is
a new type of fixed point theorem. In a sense, it is a refined version of Rothe’s
theorem [10]. Then, to consider the problem, we choose another way of using
neither Leray-Schauder type theorems nor existing fixed point theorems. Instead,
we use a version of Theorem 3.1. Maybe, for students, it is easier to read this note.

2. PRELIMINARIES

Basic concepts and notations.

We prepare some concepts and notations; sometimes we use them without notice.
C always denotes a non—empty set; normally, “non—empty” is omitted. E denotes
a real Banach space; normally, “real” is omitted. || - || denotes the norm of E, and
E* denotes the topological dual space of E. For x € E and y* € E*, (x,y*) denotes
y*(x). J denotes the normalized duality mapping from F into 2"

Jr={a" € E: (x,z%) = [lz[ll|™, [|"] = [l=]}
2010 Mathematics Subject Classification. 47TH14, 47THO7, 47H11.

Key words and phrases. Fixed point theorem, Leray-Schauder type theorem, nonlinear equation,
m-accretive operator.



130 Y. TAKEUCHI

for all z € E; see [12].

Let C be a subset of E. Then, C, dC, and Int(C) denote the closure, the
boundary, and the interior of C, respectively. Also, co(C) and cc(C') denote the
convex hull and the closed convex hull of C, respectively. By a well-known theorem
of Mazur, cc(C) is compact if C' is compact. B,[z] denotes the closed ball of E
with center at x € E and radius r > 0. B,(z) denotes the corresponding open ball.
Then, B,[z] is closed and convex, and Int(B,[z]) is B,(z). For simplicity, we use
B, instead of B;[0].

Let S be a mapping from C into F and let A be an operator from C into 2%.
Sometimes we denote by D(A) and R(A) the domain and the range of A, respec-
tively. So, C' = D(S) and S(C) = {Sz : z € C} = R(S). F(S) denotes the fixed
point set of S, that is, FI(S) = {v € C : Sv =v}.

S is called bounded if it maps bounded subsets of C' onto bounded sets. S is
called compact if S is continuous and it maps bounded subsets of C' onto relatively
compact sets. A is called accretive if there is j € J(z — y) satisfying (u —v,j) >0
forz,y € C, u € Az and v € Ay. Let A be accretive and let a € (0,00). The Yosida
resolvent J, from R(I + aA) onto C' = D(A) and the Yosida approximant A, from
R(I + aA) into E are defined respectively by

Jo=T+ad)™t, A,=11-J,).
So, D(J,) = R(I + aA) and R(J,) = D(A). For J, and A,, the following hold:

o || Jax — Jayl| < ||z — y| for all z,y € D(J,) = R(I + aA).
o Agx € AJyzx for all x € R(I + aA).

A is called m—accretive if A is accretive and R(I + aA) = E for all a € (0,00); see
[12, 13] for more details.

Some basic fixed point theorems.

We present some basic fixed point theorems related to our argument.

Theorem 2.1. Let C be a compact convex subset of an Euclidean space. Let S be
a continuous self-mapping on C. Then, there is v € C satisfying Sv = v.

This theorem is referred to as Brouwer’s fixed point theorem. Then, Schauder
proved the following well-known extension of the theorem.

Theorem 2.2. Let C be a compact convex subset of E. Let S be a continuous
self-mapping on C. Then, there is v € C satisfying Sv = v.

The following is a version of Schauder’s fixed point theorem.

Theorem 2.3. Let C be a closed convex subset of E. Let S be a continuous self-
mapping on C such that S(C) is relatively compact. Then, there exists v € C
satisfying Sv = v.

Proof. By assumptions, cc(S(C)) is compact and convex, and cc(S(C)) C C. So,
we can regard S as a continuous self-mapping on cc(S(C)). Then, by Theorem 2.2,
there is v € cc(S(C)) C C satistying Sv = v. O
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This theorem is important in this note. In a locally convex space, the corre-
sponding assertion also holds. Bonsall [1] says that Singbal gave a simple proof of
the assertion; the proof is in [1. Appendix]. In the proof, he used only Brouwer’s
fixed point theorem. Also, recently, some elementally proofs of Brouwer’s theorem
appeared; for example, see Takeuchi and Suzuki [14, 15]. From these, in his direc-
tion, we give another proof. In this way, Schauder’s theorem, Mazur’s theorem, and
degree theory are unnecessary.

Another proof of Theorem 2.3. Let IV be the set of positive integers. Set K =
S(C). Then, K is compact. Fix any r > 0. Then, {B,(z)}sex is an open cover of
K and has a finite subcover {B,(z;)}}_ ;. Set I = {1,2,--- ,n}. For simplicity, we
denote {x;}? ; by {x;}. We can regard co({x;}) as a compact convex subset of an
Euclidean space. Also, co({z;}) C C.

Following Nagumo [8], for ¢ € I, define a continuous mapping d; from F into [0, r]|
by di(x) = max{0,r — ||z — x;||} for z € E. For x € K, there is i € I satisfying
|z — ;|| < r, that is, d;(z) > 0. Also, the following hold:

(1) For x € K and i € I, d;(xz) > 0 if and only if ||z — z;|| < r.

(2) Forz e K, = e(0,1] fori e I, and Y} (=% )

Then, we consider a continuous mapping 7, from K into co({z;}) such that
— di(z) ..
(3) Trx =31, TR for x € K.

By (1)—(3), we see ||z — Trz|| < m Yordi(x)]|x — x| <rforxe K.

Furthermore, we consider the continuous self-mapping 7,.S on co({z;}). By
Brouwer’s fixed point theorem, there is u € co({z;}) satisfying 7,Su = u. By
Su € K, we already know ||Su — T,.Su|| < r, that is, ||[Su —u| < r.

By the argument so far, we see that there is a sequence {u,,} C C satisfying
| Stm — um|| < 1/m for m € N. Since K is compact and {Su,} C K, there is
a subsequence {Su,; } of {Su,} which converges to some v € K C C. Then, by
limyy, || Stm — um|| = 0, {um;} also converges to v. We know

v — Sv|| < [Jv— Sum, || + [[Sum, — Sv|| for je€ N.

= 1.

From these, since S is continuous, we see ||v — Sv|| = 0, that is, v = Sv.

Remark. Consider the finite dimensional linear space L spanned by {x;}!" ;. Then,
only one topology of L makes it a linear topological space. We may consider the
topology as familiar Euclidean topology. Then, Euclidean topology of L and the
relative topology of L as a subspace of E¥ have to be coincide. O

3. A THEOREM

Theorem 3.1. Let C be a subset of E with 0 € Int(C'). Let r > 0 satisfy B, C C.
Let S be a continuous mapping from C into E such that S(B,) is relatively compact.
Define mappings f, from E into (0, 1] and M, from E into B, respectively by f.(y) =
and M,y = f.(y)y fory € E. Define a self-mapping V; on B, by

Viy = M, Sy = f.(Sy)Sy € B, for y € B;.

o
max{r,[[y[[}
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Then, there is y, € B, C C satisfying Vyy, = y,.. Also, the following hold:

(1) Syr = yr if Syr € By.

In particular, Sy, =y, if y» € OB, and Sy, € B,.

(2) Syr = yr (fr(Syr) = 1) if yr € Int(Br) = BT‘(O)'
Remark. By considering a suitable translation, we can have the corresponding
results if @ # Int(C'). In the definition of V;., we consider S as a mapping from B,
into E. By (2), there is y, € B.(0) satisfying Sy, = y, if V, is fixed point free on
0B,. We do not know the relation between y, and F(S) if Sy, & B;.

Proof. By 0 € Int(C), we can choose such r > 0. We can easily see the following:
(i) fr(y)=1and M,y =y € B, for y € B,.
(i1) fr(y) € (0,1) and M,y = H;—”y € B, for y € B,.
(iii) f, and M, are continuous.
For y ¢ By, Myy = fr(y)y = 7y and [yl = rollyl = . So, Myy € B,. We
confirmed only the latter of (ii). By (i) and (ii), we see

M'I‘(E) C By, ‘/;"(BT) = M’I”S(BT) C MT‘(S<BT’)) C B;.

By assumptions, S(B,) is compact. Then, by (iii), V,.(B,) C By, V; is continuous,
and V.(B,) is relatively compact. Thus, by Theorem 2.3, there is y, € B, satisfying
Viyr = M, Sy, = yr-. We show (1). Suppose Sy, € B,. Then, by (i), we see
Sy, = M, Sy, = y,. To prove (2), by (1), it suffices to show Sy, € B,.

Arguing by contradiction, assume Sy, € B,. By y, € Int(B,) = B,(0), Sy, € B,
and (ii), we immediately have a contradiction:

r> HyrH = ”MrsyrH - Hmsyr" - HSTT”HS%H =T.

Of course, Sy, € B, implies f,(Sy,) = 1. O

In a sense, Theorem 3.1 is a refined version of Rohte’s fixed point theorem.

Theorem 3.2. Letr > 0 and let S be a compact mapping from B, into E satisfying
S(0By) C By. Then there is v € B, satisfying Sv = v.

Proof. In Theorem 3.1, set C' = B,.. Then, the result is immediate. U

4. APPLICATIONS

Let E be a Banach space. Let A be an m-accretive operator from a subset
D(A) of E into 2%, and let S be a mapping from a subset D(S) of E into E with
D(A) C D(S). Let p € E. Consider the nonlinear equations of the form

(P) p € Ax + Sx.

Obviously, (P) has a solution if and only if p € R(A + S).
Recall properties of J; and Ai. Then, for y € E, the following are equivalent:
() Awy+Shy—p=U~J)y+Shy—p=0.
(b) y=p+ Jiy— Shy.
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Define a mapping U from F into E by
Uy=p+ Jiy—SSy for ye FE.

Suppose there is uw € F(U). Then, since (a) and (b) are equivalent, we see p =
Aru+ SJiu. By Aju € AJyu, set © = Jiu € D(A). So, we see p € Ax + Sx. Thus,
we confirmed that (P) has a solution if U has a fixed point.

This problem has been studied by Morales [7], Hirano [3], Kartsatos [4], and
others. Maybe, for students, their arguments and handling of Leray—Shauder type
theorems are slightly complicated. By the reason and theoretical interest, we try
to clarify a structure of the problem; for simplicity, we consider the case that A
has a compact resolvent. Then, to do this, we show Theorem 4.2. Also, we present
Theorems 4.3 whose expression is similar to their results.

In advance, we prepare the following version of Theorem 3.1, in which M, is
omitted because maybe readers are accustomed to the situation.

Theorem 4.1. Let A be an m-accretive operator from D(A) C E into 2F. Let S

be a continuous mapping from D(A) into E such that J; = (I + A)~! is compact.
Let p € E. Define a mapping U from E into E by

Uy=p+ Jiy— SJy for yeE.

Let r > 0. Define a mapping fr from E into (0,1] by f.(y) = m fory e E,
and define a self-mapping V. on B, by

Viy = fr(Uy)Uy € B, for y € B,.

Then, there is y, € B, satisfying V,y, = y,. Also, the following hold:
(1) Uy, =y, if yr € OB, and Uy, € B,.
(2) Uy, =y, (fr(Uy,) =1) if yr €Int(B,) = B,(0).

Proof. Since J; is compact and S is continuous, Ji(B,) is relatively compact and
U is continuous. Since Ji(B,) is compact and Ji(B,) C D(A), S(J1(B;)) is also
compact. By S(J1(B;)) € S(J1(B;)), SJ1(B;) and U(B,) are relatively compact.
From these, U is a continuous mapping from F into E and U(B,) is relatively
compact. Thus, by Theorem 3.1, we have the results. O

Theorem 4.2. Let A be an m-accretive operator from D(A) C E into 2F. Let S
be a continuous mapping from D(A) into E such that J; = (I + A)~! is compact.
Let p € E and r > 0. Then, there exists u € B, such that cu = p + Jiu — SJiu,

where ¢ = max{r,||p+ilu—SJ1uH} €|

(1) c=1 and u=p+ Jiu — SJiu are equivalent.

(2) ¢ =1 is a sufficient condition for establishing p € R(A+ S).
(3) Suppose u € Int(B,) = B;(0). Then, ¢ = 1.

Set v = Jiu. From traditional view points, the following hold:

(4) Assume that j € E* satisfies (u,j) # 0. Then,
(i)e=1 and (i) (Aiju —p+ Sv,j) =0 are equivalent.

1,00). Furthermore, the following hold:
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Proof. Let U be as in Theorem 4.1, that is, Uy = p+ J1y — SJ1y for y € E. Then,
we already know that p € R(A + 5) holds if u € F(U) exists.
Also, consider f, and V, such that f,(y) = m for y € E, and
Viy = f-(Uy)Uy € B, for y € B,.

By Theorem 4.1, there is u € B, satisfying u = V,u = f,(Uu)Uu. We know

fr(Uu) € (0,1]. Then, we can easily see ¢ = fT(lUu) € [1,00), and

(4.1) cu=Uu=p+ Jju— SJiu.

We show the latter half. By (4.1), ¢ = 1 if and only if u = p+ Jyu — SJju. Then,
(1) holds. Also, ¢ = 1if and only if u € F(U). Then, ¢ = 1 implies p € R(A+S). So,
(2) holds. Suppose u € Int(B,) = B,(0). By Theorem 4.1 (2), we know f,(Uu) = 1,
that is, ¢ = 1. Then, (3) holds.

We show (4). Assume that j € E* satisfies (u,j) # 0. Then, by v = Jyu and
(4.1), we know
(4.2) Aiu=u—v, cu=p+Jiu—Shu=p+v— Sv.

We show (i)—(ii). Suppose ¢ = 1. Then, by (4.2), we see
O=u—v—p+Sv=Au—p+ Sv, (Aju—p+ Sv,j)=0.
We show (ii)—(i). Suppose (u —v — p + Sv,j) = 0. Then, by (u,j) # 0, we may
show (¢ —1)(u, j) = 0. By (4.2), we see
0= <CU —v—p+ va.j> = (C_ 1)<u7j> +0= (C_ 1)<u7j>
We confirmed that (4) holds. O

Theorem 4.3. Let A be an m-accretive operator from D(A) C E into 2% such that
J1 = (I + A)~! is compact. Let S be a continuous mapping from D(A) into E. Let
p€ E andr > 0. Set vy, = J1y fory € E. Assume that, for each y € 0B, there is
J € E* satisfying

Thenp € R(A+S).

Proof. Theorem 4.2 asserts that there is v € B, satisfying cu = p+ Jiu — SJiu and
p € R(A+S) holds if ¢ =1, where ¢ = max{r’”pﬁfufs‘hu”} € [1,00).

Suppose v € 9B,. We show ¢ = 1. Arguing by contradiction, assume ¢ > 1. By
vy = Jiu and (), there is j € E* satisfying
(4.3) (u,7) #0, (u,j)(u — vy —p+ Svy,j) > 0.

In the case of (u,j) >0, by cu = p+ Jiu— SJiu and (c — 1)(u, j) > 0, we see

0= (cu—vy —p+ Svy,j)
=(c—1)(u,j) + (u—vy —p+ Svy, j) > (u—vy —p+ Svy, j).
By (u,j) > 0, this contradicts to (4.3). In the case of (u,j) < 0, we see
0= (cu—vy —p+ Svy,j)
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= (c—1){u, j) + (u — vy —p+ Svy, ) < (U — vy —p+ Svy, j).

So, in both cases, we have a contradiction. Thus, ¢ = 1.
There remains the case of v € 0B,. In this case, u € Int(B,) = B,(0). Then, by
Theorem 4.2 (3), we know ¢ = 1. O

Finally, for reference, we present Theorem 5 in Kartsatos [4].

Theorem 4.4. Let A be an m-accretive operator from D(A) C E into 2¥ such that
J1 = (I+A)~! is compact. Let S be a continuous and bounded mapping from D(A)
into E. Let p € E. Assume that b > 0 satisfies the following: For every x € D(A)
with ||z|| > b, there is j € Jx satisfying

() (u—p+ Sz,5) >0 for u € Ax.
Thenp € R(A+S).

5. APPENDIX

X denotes a real locally convex linear Hausdorff topological space; in short, locally
convex space. For a subset C' of X, C, 0C, and Int(C) denote respectively the
closure of C, the boundary of C, and the interior of C.

In the locally convex space setting, we show an extension of Theorem 3.1. Let
K be a closed convex subset of a locally convex space X with 0 € Int(K'). Define
mappings g from X into [0,00) and f from X into (0, 1] by

g(x) =inf{r >0: 2 € rK}, f(x):m
g is called the Mankowski functional associated to K. Then, the following hold:
(my) g(x) €[0,1) if and only if x € Int(K).

for z € X.

az) = ag(x) for z € X and a € [0, 00).

x)=1forxz € K, and f(z) = g(lx) €(0,1) forx ¢ K.

(
(z) € (1,00) if and only if z ¢ K.
(
(

(mg) g and f are continuous.

We already know that Singbal gave a proof of the following theorem.

Theorem 5.1. Let C be a closed convexr subset of X. Let S be a continuous self-
mapping on C such that S(C) is relatively compact. Then, there exists v € C
satisfying Sv = v.

In Theorem 3.1, 1[|-| is the Mankowski functional associated to B,. Furthermore,
in the proof, we only used properties (mj)-(mg) of || - |. Then, in a similar way,
we can have the following extension of Theorem 3.1.

Theorem 5.2. Let K and C be a subset of X such that K is closed and convex,
and 0 €Int(K) C K C C. Let S be a continuous mapping from C into X such that
S(K) is relatively compact. Define mappings f from X into (0,1] and M from X
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into K by f(y) = m and Mx = f(y)y fory € X, where g is the Mankowski

functional associated to K. Define a self-mapping V on K by
Vy=MSy = f(Sy)Sy € K for ye K.
Then, there is v € K C C satisfying Vv = v. Also, the following hold:

(1) Sv=vifSve K (Sv=vifvedK and Sv e K ).
(2) Sv=wv (fr(Sv)=1) if v €Int(K).

Proof. By (mj)—(mg) and the definition of M, we easily see the following:

(i) My=y e K fory € K, (ii)Myzrly)yerorng,

(iii) M is continuous.

Fory ¢ K, My = f(y)y = ;59 and g(5059) = 55;9(y) = 1. So, My € K. We
confirmed only (ii). By (i) and (ii), we see

M(X)C K, V(K)=MS(K)c M(S(K)) C K.

By assumptions, S(K) is compact. Then, by (iii), V(K) C K, V is continuous,
and V(K) is relatively compact. Thus, by Theorem 5.1, there is v € K C C
satisfying Vv = M Sv = v. We show (1). Suppose Sv € K. Then, by (i), we see
Sv = MSv =wv. To prove (2), by (1), we may show Sv € K.

Arguing by contradiction, assume Sv ¢ K. By v € Int(K), Sv ¢ K, and (ii), we
immediately have a contradiction:

1>gw)=g(MSv)=g (g(%v)&o = g(%v)g(SU) =1.
Of course, Sv € K implies f(Sv) = 1. O
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