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for all x ∈ E; see [12].
Let C be a subset of E. Then, C, ∂C, and Int(C) denote the closure, the

boundary, and the interior of C, respectively. Also, co(C) and cc(C) denote the
convex hull and the closed convex hull of C, respectively. By a well–known theorem
of Mazur, cc(C) is compact if C is compact. Br[x] denotes the closed ball of E
with center at x ∈ E and radius r > 0. Br(x) denotes the corresponding open ball.
Then, Br[x] is closed and convex, and Int(Br[x]) is Br(x). For simplicity, we use
Br instead of Br[0].

Let S be a mapping from C into E and let A be an operator from C into 2E .
Sometimes we denote by D(A) and R(A) the domain and the range of A, respec-
tively. So, C = D(S) and S(C) = {Sx : x ∈ C} = R(S). F (S) denotes the fixed
point set of S, that is, F (S) = {v ∈ C : Sv = v}.

S is called bounded if it maps bounded subsets of C onto bounded sets. S is
called compact if S is continuous and it maps bounded subsets of C onto relatively
compact sets. A is called accretive if there is j ∈ J(x− y) satisfying ⟨u− v, j⟩ ≥ 0
for x, y ∈ C, u ∈ Ax and v ∈ Ay. Let A be accretive and let a ∈ (0,∞). The Yosida
resolvent Ja from R(I + aA) onto C = D(A) and the Yosida approximant Aa from
R(I + aA) into E are defined respectively by

Ja = (I + aA)−1, Aa = 1
a(I − Ja).

So, D(Ja) = R(I + aA) and R(Ja) = D(A). For Ja and Aa, the following hold:

◦ ∥Jax− Jay∥ ≤ ∥x− y∥ for all x, y ∈ D(Ja) = R(I + aA).
◦ Aax ∈ AJax for all x ∈ R(I + aA).

A is called m–accretive if A is accretive and R(I + aA) = E for all a ∈ (0,∞); see
[12, 13] for more details.

Some basic fixed point theorems.

We present some basic fixed point theorems related to our argument.

Theorem 2.1. Let C be a compact convex subset of an Euclidean space. Let S be
a continuous self–mapping on C. Then, there is v ∈ C satisfying Sv = v.

This theorem is referred to as Brouwer’s fixed point theorem. Then, Schauder
proved the following well–known extension of the theorem.

Theorem 2.2. Let C be a compact convex subset of E. Let S be a continuous
self–mapping on C. Then, there is v ∈ C satisfying Sv = v.

The following is a version of Schauder’s fixed point theorem.

Theorem 2.3. Let C be a closed convex subset of E. Let S be a continuous self–
mapping on C such that S(C) is relatively compact. Then, there exists v ∈ C
satisfying Sv = v.

Proof. By assumptions, cc(S(C)) is compact and convex, and cc(S(C)) ⊂ C. So,
we can regard S as a continuous self–mapping on cc(S(C)). Then, by Theorem 2.2,
there is v ∈ cc(S(C)) ⊂ C satisfying Sv = v. □
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This theorem is important in this note. In a locally convex space, the corre-
sponding assertion also holds. Bonsall [1] says that Singbal gave a simple proof of
the assertion; the proof is in [1. Appendix]. In the proof, he used only Brouwer’s
fixed point theorem. Also, recently, some elementally proofs of Brouwer’s theorem
appeared; for example, see Takeuchi and Suzuki [14, 15]. From these, in his direc-
tion, we give another proof. In this way, Schauder’s theorem, Mazur’s theorem, and
degree theory are unnecessary.

Another proof of Theorem 2.3. Let N be the set of positive integers. Set K =
S(C). Then, K is compact. Fix any r > 0. Then, {Br(x)}x∈K is an open cover of
K and has a finite subcover {Br(xi)}ni=1. Set I = {1, 2, · · · , n}. For simplicity, we
denote {xi}ni=1 by {xi}. We can regard co({xi}) as a compact convex subset of an
Euclidean space. Also, co({xi}) ⊂ C.

Following Nagumo [8], for i ∈ I, define a continuous mapping di from E into [0, r]
by di(x) = max{0, r − ∥x − xi∥} for x ∈ E. For x ∈ K, there is i ∈ I satisfying
∥x− xi∥ < r, that is, di(x) > 0. Also, the following hold:

(1) For x ∈ K and i ∈ I, di(x) > 0 if and only if ∥x− xi∥ < r.

(2) For x ∈ K, di(x)∑n
i=1 di(x)

∈ [0, 1] for i ∈ I, and
∑n

i=1(
di(x)∑n
i=1 di(x)

) = 1.

Then, we consider a continuous mapping Tr from K into co({xi}) such that

(3) Trx =
∑n

i=1
di(x)∑n
i=1 di(x)

xi for x ∈ K.

By (1)–(3), we see ∥x− Trx∥ ≤ 1∑n
i=1 di(x)

∑n
i=1 di(x)∥x− xi∥ < r for x ∈ K.

Furthermore, we consider the continuous self–mapping TrS on co({xi}). By
Brouwer’s fixed point theorem, there is u ∈ co({xi}) satisfying TrSu = u. By
Su ∈ K, we already know ∥Su− TrSu∥ < r, that is, ∥Su− u∥ < r.

By the argument so far, we see that there is a sequence {um} ⊂ C satisfying
∥Sum − um∥ < 1/m for m ∈ N . Since K is compact and {Sum} ⊂ K, there is
a subsequence {Sumj} of {Sum} which converges to some v ∈ K ⊂ C. Then, by
limm ∥Sum − um∥ = 0, {umj} also converges to v. We know

∥v − Sv∥ ≤ ∥v − Sumj∥+ ∥Sumj − Sv∥ for j ∈ N.

From these, since S is continuous, we see ∥v − Sv∥ = 0, that is, v = Sv.
Remark. Consider the finite dimensional linear space L spanned by {xi}ni=1. Then,
only one topology of L makes it a linear topological space. We may consider the
topology as familiar Euclidean topology. Then, Euclidean topology of L and the
relative topology of L as a subspace of E have to be coincide. □

3. A theorem

Theorem 3.1. Let C be a subset of E with 0 ∈ Int(C). Let r > 0 satisfy Br ⊂ C.
Let S be a continuous mapping from C into E such that S(Br) is relatively compact.
Define mappings fr from E into (0, 1] and Mr from E into Br respectively by fr(y) =

r
max{r,∥y∥} and Mry = fr(y)y for y ∈ E. Define a self–mapping Vr on Br by

Vry = MrSy = fr(Sy)Sy ∈ Br for y ∈ Br.
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Then, there is yr ∈ Br ⊂ C satisfying Vryr = yr. Also, the following hold:

(1) Syr = yr if Syr ∈ Br.
In particular, Syr = yr if yr ∈ ∂Br and Syr ∈ Br.

(2) Syr = yr ( fr(Syr) = 1 ) if yr ∈ Int(Br) = Br(0).

Remark. By considering a suitable translation, we can have the corresponding
results if ø ̸= Int(C). In the definition of Vr, we consider S as a mapping from Br

into E. By (2), there is yr ∈ Br(0) satisfying Syr = yr if Vr is fixed point free on
∂Br. We do not know the relation between yr and F (S) if Syr ̸∈ Br.

Proof. By 0 ∈ Int(C), we can choose such r > 0. We can easily see the following:

(i) fr(y) = 1 and Mry = y ∈ Br for y ∈ Br.
(ii) fr(y) ∈ (0, 1) and Mry = r

∥y∥y ∈ Br for y ̸∈ Br.

(iii) fr and Mr are continuous.

For y ̸∈ Br, Mry = fr(y)y = r
∥y∥y and ∥ r

∥y∥y∥ = r
∥y∥∥y∥ = r. So, Mry ∈ Br. We

confirmed only the latter of (ii). By (i) and (ii), we see

Mr(E) ⊂ Br, Vr(Br) = MrS(Br) ⊂ Mr(S(Br)) ⊂ Br.

By assumptions, S(Br) is compact. Then, by (iii), Vr(Br) ⊂ Br, Vr is continuous,
and Vr(Br) is relatively compact. Thus, by Theorem 2.3, there is yr ∈ Br satisfying
Vryr = MrSyr = yr. We show (1). Suppose Syr ∈ Br. Then, by (i), we see
Syr = MrSyr = yr. To prove (2), by (1), it suffices to show Syr ∈ Br.

Arguing by contradiction, assume Syr ̸∈ Br. By yr ∈ Int(Br) = Br(0), Syr ̸∈ Br,
and (ii), we immediately have a contradiction:

r > ∥yr∥ = ∥MrSyr∥ = ∥ r
∥Syr∥Syr∥ = r

∥Syr∥∥Syr∥ = r.

Of course, Syr ∈ Br implies fr(Syr) = 1. □

In a sense, Theorem 3.1 is a refined version of Rohte’s fixed point theorem.

Theorem 3.2. Let r > 0 and let S be a compact mapping from Br into E satisfying
S(∂Br) ⊂ Br. Then there is v ∈ Br satisfying Sv = v.

Proof. In Theorem 3.1, set C = Br. Then, the result is immediate. □

4. Applications

Let E be a Banach space. Let A be an m-accretive operator from a subset
D(A) of E into 2E , and let S be a mapping from a subset D(S) of E into E with
D(A) ⊂ D(S). Let p ∈ E. Consider the nonlinear equations of the form

(P) p ∈ Ax+ Sx.

Obviously, (P) has a solution if and only if p ∈ R(A+ S).
Recall properties of J1 and A1. Then, for y ∈ E, the following are equivalent:

(a) A1y + SJ1y − p = (I − J1)y + SJ1y − p = 0.
(b) y = p+ J1y − SJ1y.
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Define a mapping U from E into E by

Uy = p+ J1y − SJ1y for y ∈ E.

Suppose there is u ∈ F (U). Then, since (a) and (b) are equivalent, we see p =
A1u+ SJ1u. By A1u ∈ AJ1u, set x = J1u ∈ D(A). So, we see p ∈ Ax+ Sx. Thus,
we confirmed that (P) has a solution if U has a fixed point.

This problem has been studied by Morales [7], Hirano [3], Kartsatos [4], and
others. Maybe, for students, their arguments and handling of Leray–Shauder type
theorems are slightly complicated. By the reason and theoretical interest, we try
to clarify a structure of the problem; for simplicity, we consider the case that A
has a compact resolvent. Then, to do this, we show Theorem 4.2. Also, we present
Theorems 4.3 whose expression is similar to their results.

In advance, we prepare the following version of Theorem 3.1, in which Mr is
omitted because maybe readers are accustomed to the situation.

Theorem 4.1. Let A be an m-accretive operator from D(A) ⊂ E into 2E. Let S

be a continuous mapping from D(A) into E such that J1 = (I + A)−1 is compact.
Let p ∈ E. Define a mapping U from E into E by

Uy = p+ J1y − SJ1y for y ∈ E.

Let r > 0. Define a mapping fr from E into (0, 1] by fr(y) =
r

max{r,∥y∥} for y ∈ E,

and define a self–mapping Vr on Br by

Vry = fr(Uy)Uy ∈ Br for y ∈ Br.

Then, there is yr ∈ Br satisfying Vryr = yr. Also, the following hold:

(1) Uyr = yr if yr ∈ ∂Br and Uyr ∈ Br.
(2) Uyr = yr ( fr(Uyr) = 1 ) if yr ∈ Int(Br) = Br(0).

Proof. Since J1 is compact and S is continuous, J1(Br) is relatively compact and

U is continuous. Since J1(Br) is compact and J1(Br) ⊂ D(A), S(J1(Br)) is also

compact. By S(J1(Br)) ⊂ S(J1(Br)), SJ1(Br) and U(Br) are relatively compact.
From these, U is a continuous mapping from E into E and U(Br) is relatively
compact. Thus, by Theorem 3.1, we have the results. □

Theorem 4.2. Let A be an m-accretive operator from D(A) ⊂ E into 2E. Let S

be a continuous mapping from D(A) into E such that J1 = (I + A)−1 is compact.
Let p ∈ E and r > 0. Then, there exists u ∈ Br such that cu = p + J1u − SJ1u,

where c = max{r,∥p+J1u−SJ1u∥}
r ∈ [1,∞). Furthermore, the following hold:

(1) c = 1 and u = p+ J1u− SJ1u are equivalent.
(2) c = 1 is a sufficient condition for establishing p ∈ R(A+ S).
(3) Suppose u ∈ Int(Br) = Br(0). Then, c = 1.

Set v = J1u. From traditional view points, the following hold:

(4) Assume that j ∈ E∗ satisfies ⟨u, j⟩ ̸= 0. Then,
(i) c = 1 and (ii) ⟨A1u− p+ Sv, j⟩ = 0 are equivalent.
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Proof. Let U be as in Theorem 4.1, that is, Uy = p+ J1y − SJ1y for y ∈ E. Then,
we already know that p ∈ R(A+ S) holds if u ∈ F (U) exists.

Also, consider fr and Vr such that fr(y) =
r

max{r,∥y∥} for y ∈ E, and

Vry = fr(Uy)Uy ∈ Br for y ∈ Br.

By Theorem 4.1, there is u ∈ Br satisfying u = Vru = fr(Uu)Uu. We know
fr(Uu) ∈ (0, 1]. Then, we can easily see c = 1

fr(Uu) ∈ [1,∞), and

cu = Uu = p+ J1u− SJ1u.(4.1)

We show the latter half. By (4.1), c = 1 if and only if u = p+J1u−SJ1u. Then,
(1) holds. Also, c = 1 if and only if u ∈ F (U). Then, c = 1 implies p ∈ R(A+S). So,
(2) holds. Suppose u ∈ Int(Br) = Br(0). By Theorem 4.1 (2), we know fr(Uu) = 1,
that is, c = 1. Then, (3) holds.

We show (4). Assume that j ∈ E∗ satisfies ⟨u, j⟩ ̸= 0. Then, by v = J1u and
(4.1), we know

A1u = u− v, cu = p+ J1u− SJ1u = p+ v − Sv.(4.2)

We show (i)→(ii). Suppose c = 1. Then, by (4.2), we see

0 = u− v − p+ Sv = A1u− p+ Sv, ⟨A1u− p+ Sv, j⟩ = 0.

We show (ii)→(i). Suppose ⟨u − v − p + Sv, j⟩ = 0. Then, by ⟨u, j⟩ ̸= 0, we may
show (c− 1)⟨u, j⟩ = 0. By (4.2), we see

0 = ⟨cu− v − p+ Sv, j⟩ = (c− 1)⟨u, j⟩+ 0 = (c− 1)⟨u, j⟩.

We confirmed that (4) holds. □

Theorem 4.3. Let A be an m-accretive operator from D(A) ⊂ E into 2E such that

J1 = (I +A)−1 is compact. Let S be a continuous mapping from D(A) into E. Let
p ∈ E and r > 0. Set vy = J1y for y ∈ E. Assume that, for each y ∈ ∂Br, there is
j ∈ E∗ satisfying

⟨y, j⟩ ̸= 0, ⟨y, j⟩⟨A1y − p+ Svy, j⟩ ≥ 0.(∗)

Then p ∈ R(A+ S).

Proof. Theorem 4.2 asserts that there is u ∈ Br satisfying cu = p+J1u−SJ1u and

p ∈ R(A+ S) holds if c = 1, where c = max{r,∥p+J1u−SJ1u∥}
r ∈ [1,∞).

Suppose u ∈ ∂Br. We show c = 1. Arguing by contradiction, assume c > 1. By
vu = J1u and (∗), there is j ∈ E∗ satisfying

⟨u, j⟩ ̸= 0, ⟨u, j⟩⟨u− vu − p+ Svu, j⟩ ≥ 0.(4.3)

In the case of ⟨u, j⟩ > 0, by cu = p+ J1u− SJ1u and (c− 1)⟨u, j⟩ > 0, we see

0 = ⟨cu− vu − p+ Svu, j⟩
= (c− 1)⟨u, j⟩+ ⟨u− vu − p+ Svu, j⟩ > ⟨u− vu − p+ Svu, j⟩.

By ⟨u, j⟩ > 0, this contradicts to (4.3). In the case of ⟨u, j⟩ < 0, we see

0 = ⟨cu− vu − p+ Svu, j⟩
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= (c− 1)⟨u, j⟩+ ⟨u− vu − p+ Svu, j⟩ < ⟨u− vu − p+ Svu, j⟩.

So, in both cases, we have a contradiction. Thus, c = 1.
There remains the case of u ̸∈ ∂Br. In this case, u ∈ Int(Br) = Br(0). Then, by

Theorem 4.2 (3), we know c = 1. □

Finally, for reference, we present Theorem 5 in Kartsatos [4].

Theorem 4.4. Let A be an m-accretive operator from D(A) ⊂ E into 2E such that

J1 = (I+A)−1 is compact. Let S be a continuous and bounded mapping from D(A)
into E. Let p ∈ E. Assume that b > 0 satisfies the following: For every x ∈ D(A)
with ∥x∥ ≥ b, there is j ∈ Jx satisfying

⟨u− p+ Sx, j⟩ ≥ 0 for u ∈ Ax.(∗∗)

Then p ∈ R(A+ S).

5. Appendix

X denotes a real locally convex linear Hausdorff topological space; in short, locally
convex space. For a subset C of X, C, ∂C, and Int(C) denote respectively the
closure of C, the boundary of C, and the interior of C.

In the locally convex space setting, we show an extension of Theorem 3.1. Let
K be a closed convex subset of a locally convex space X with 0 ∈ Int(K). Define
mappings g from X into [0,∞) and f from X into (0, 1] by

g(x) = inf{r > 0 : x ∈ rK}, f(x) = 1
max{1,g(x)} for x ∈ X.

g is called the Mankowski functional associated to K. Then, the following hold:

(m1) g(x) ∈ [0, 1) if and only if x ∈ Int(K).
(m2) g(x) = 1 if and only if x ∈ ∂K.
(m3) g(x) ∈ (1,∞) if and only if x ̸∈ K.
(m4) g(ax) = ag(x) for x ∈ X and a ∈ [0,∞).
(m5) f(x) = 1 for x ∈ K, and f(x) = 1

g(x) ∈ (0, 1) for x ̸∈ K.

(m6) g and f are continuous.

We already know that Singbal gave a proof of the following theorem.

Theorem 5.1. Let C be a closed convex subset of X. Let S be a continuous self–
mapping on C such that S(C) is relatively compact. Then, there exists v ∈ C
satisfying Sv = v.

In Theorem 3.1, 1
r∥·∥ is the Mankowski functional associated to Br. Furthermore,

in the proof, we only used properties (m1)–(m6) of 1
r∥ · ∥. Then, in a similar way,

we can have the following extension of Theorem 3.1.

Theorem 5.2. Let K and C be a subset of X such that K is closed and convex,
and 0 ∈ Int(K) ⊂ K ⊂ C. Let S be a continuous mapping from C into X such that
S(K) is relatively compact. Define mappings f from X into (0, 1] and M from X
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into K by f(y) = 1
max{1,g(y)} and Mx = f(y)y for y ∈ X, where g is the Mankowski

functional associated to K. Define a self–mapping V on K by

V y = MSy = f(Sy)Sy ∈ K for y ∈ K.

Then, there is v ∈ K ⊂ C satisfying V v = v. Also, the following hold:

(1) Sv = v if Sv ∈ K ( Sv = v if v ∈ ∂K and Sv ∈ K ).
(2) Sv = v ( fr(Sv) = 1 ) if v ∈ Int(K).

Proof. By (m1)–(m6) and the definition of M , we easily see the following:

(i) My = y ∈ K for y ∈ K, (ii) My = 1
g(y)y ∈ K for y ̸∈ K,

(iii) M is continuous.

For y ̸∈ K, My = f(y)y = 1
g(y)y and g( 1

g(y)y) = 1
g(y)g(y) = 1. So, My ∈ K. We

confirmed only (ii). By (i) and (ii), we see

M(X) ⊂ K, V (K) = MS(K) ⊂ M(S(K)) ⊂ K.

By assumptions, S(K) is compact. Then, by (iii), V (K) ⊂ K, V is continuous,
and V (K) is relatively compact. Thus, by Theorem 5.1, there is v ∈ K ⊂ C
satisfying V v = MSv = v. We show (1). Suppose Sv ∈ K. Then, by (i), we see
Sv = MSv = v. To prove (2), by (1), we may show Sv ∈ K.

Arguing by contradiction, assume Sv ̸∈ K. By v ∈ Int(K), Sv ̸∈ K, and (ii), we
immediately have a contradiction:

1 > g(v) = g(MSv) = g
(

1
g(Sv)Sv

)
= 1

g(Sv)g(Sv) = 1.

Of course, Sv ∈ K implies f(Sv) = 1. □
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