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means defined on Lorentz cone, some inequalities and trace inequalities are estab-
lished, see [10, Chpater 4].

In our recent work [14], we build up some trace versions of Young inequality in
the SOC setting and indicate that the Young inequality does not hold in general. In
this paper, we pay attention to Young inequality under Euclidean Jordan algebra.
By using spectral decomposition, we extend one trace version of Young inequality
to the general setting of symmetric cone. In addition, we provide conditions under
which the Young inequality holds in the SOC setting. More specifically, we conclude
that the Young inequality associated with SOC holds under one of the following two
conditions holds: (i) p = q = 2 or (ii) any two vectors share the same Jordan frame.
Accordingly, one can construct counterexamples in general case.

2. Preliminaries

A Euclidean Jordan algebra [11] is a finite dimensional inner product space
(V, ⟨·, ·⟩) (V for short) over the field of real numbers R equipped with a bilinear
map (x, y) 7→ x ◦ y : V× V −→ V, which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V;
(iii) ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x, y, z ∈ V,

where x2 := x ◦ x, and x ◦ y is called the Jordan product of x and y. If a Jordan
product only satisfies the conditions (i) and (ii) in the above definition, the algebra
V is said to be a Jordan algebra. Moreover, if there is an (unique) element e ∈ V
such that x ◦ e = x for all x ∈ V, the element e is called the identity element
in V. Note that a Jordan algebra does not necessarily have an identity element.
Throughout this paper, we assume that V is a Euclidean Jordan algebra with an
identity element e.

In a given Euclidean Jordan algebra V, the set of squares K := {x2 : x ∈ V}
is a symmetric cone [11, Theorem III.2.1]. This means that K is a self-dual closed
convex cone and, for any two elements x, y ∈ int(K), there exists an invertible linear
transformation Γ : V −→ V such that Γ(x) = y and Γ(K) = K. Accordingly, there
is a natural partial order in V. We write x ⪰K y if x − y ∈ K, and x ≻K y if
x− y ∈ intK.

For any given x ∈ V, we denote m(x) the degree of the minimal polynomial of x,
that is,

m(x) :=
{
k > 0 | {e, x, . . . , xk} is linearly dependent

}
.

Since m(x) ≤ dim(V) where dim(V) is the dimension of V, the rank of V is well-
defined by r := max{m(x) |x ∈ V}. In Euclidean Jordan algebra V, an element

e(i) ∈ V is an idempotent if (e(i))2 = e(i), and it is a primitive idempotent if it is
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nonzero and cannot be written as a sum of two nonzero idempotents. The idempo-
tents e(i) and e(j) are said to be orthogonal if e(i) ◦ e(j) = 0. In addition, we say that
a finite set {e(1), e(2), . . . , e(r)} of primitive idempotents in V is a Jordan frame if

e(i) ◦ e(j) = 0 for i ̸= j, and

r∑
i=1

e(i) = e.

Note that ⟨e(i), e(j)⟩ = ⟨e(i) ◦ e(j), e⟩ whenever i ̸= j. There also exist the so-called
spectral decomposition for any element x in V, see below theorem.

Theorem 2.1. [11, Theorem III.1.2] Let V be a Euclidean Jordan algebra. Then
there is a number r such that, for every x ∈ V, there exists a Jordan frame
{e(1), . . . , e(r)} and real numbers λ1(x), . . . , λr(x) with

x = λ1(x)e
(1) + · · ·+ λr(x)e

(r).

Here, the numbers λi(x) (i = 1, . . . , r) are the spectral values of x, the expression

λ1(x)e
(1) + · · · + λr(x)e

(r) is the spectral decomposition of x. Moreover, tr x :=∑r
i=1 λi(x) is called the trace of x, and det(x) =

∏r
i=1 λi(x) is call the determinant

of x.

Given a Euclidean Jordan algebra V with dim(V) = n > 1, from Proposition
III 4.4-4.5 and Theorem V.3.7 in [11], we know that any Euclidean Jordan algebra
V and its corresponding symmetric cone K are, in a unique way, a direct sum
of simple Euclidean Jordan algebras and the constituent symmetric cones therein,
respectively, i.e.,

V = V1 × · · · × Vm and K = K1 × · · · × Km,

where every Vi is a simple Euclidean Jordan algebra (that cannot be a direct sum
of two Euclidean Jordan algebras) with the corresponding symmetric cone Ki for
i = 1, . . . ,m, and n =

∑m
i=1 ni (ni is the dimension of Vi). Therefore, for any

x = (x1, . . . , xm)T and y = (y1, . . . , ym)T ∈ V with xi, yi ∈ Vi, we have

x ◦ y = (x1 ◦ y1, . . . , xm ◦ ym)T ∈ V and ⟨x, y⟩ = ⟨x1, y1⟩+ · · ·+ ⟨xm, ym⟩.
For simplicity, we focus on the single symmetric cone K because all the analysis can
be carried over to the setting of Cartesian product.

3. Trace version of Young inequality under Euclidean Jordan
algebra

In a recent work [14], we established three trace versions of Young inequality in
the setting of second-order cone; and also made a conjecture that the eigenvalue
version of Young inequality in the SOC setting holds. However, only two trace
versions of Young inequality were extended to the setting of symmetric cone (under
Euclidean Jordan algebra). In this section, we build up the third trace version of
Young inequality based on Gowda’s proof in [13]. To proceed, we first recall the
below crucial inequality which was achieved in [1, Theorem 23].
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Theorem 3.1. [1, Theorem 23] Let V be a simple Euclidean Jordan algebra with
rank r. For any x, y ∈ K, there holds

tr(x ◦ y) ≤
r∑

i=1

λi(x)λi(y),

where λi(x) and λi(y) are the spectral values of x and y with decreasing order,
respectively.

Theorem 3.2. (EJA Young inequality-Type III) Let V be a simple Euclidean
Jordan algebra with rank r. For any x, y ∈ V, there holds

tr(|x ◦ y|) ≤ tr

(
|x|p

p
+

|y|q

q

)
where 1 < p, q < ∞ and

1

p
+

1

q
= 1 and |x| = |λ1(x)|e(1) + · · ·+ |λr(x)|e(r).

Proof. For x◦y ∈ K∪ (−K), the desired result follows from [14, Theorem 3.11]. For
the remainder case, we suppose x ◦ y is decomposed as

x ◦ y =
(
λ1e

(1) + · · ·+ λke
(k)
)
−
(
λk+1e

(k+1) + · · ·+ λre
(r)
)
,

where λi ≥ 0 and k is some positive integer with 1 ≤ k ≤ r. For convenience, we
denote

c := e(1) + · · ·+ e(k)

d := e(1) + · · ·+ e(k) −
(
e(k+1) + · · ·+ e(r)

)
= 2c− e.

Applying the Peirce decomposition [11], we know that

V = V(c, 1)⊕ V(c, 1/2)⊕ V(c, 0),

where V(c, 1) is a Euclidean Jordan algebra of rank k containing the subspace

spanned by {e(1), . . . , e(k)} and V(c, 0) is a Euclidean Jordan algebra of rank r − k

containing the subspace spanned by {e(k+1), . . . , e(r)}. Moreover, we write y =
u + v + w, where u ∈ V(c, 1), v ∈ V(c, 1/2), and w ∈ V(c, 0). We notice that
V(c, 1) ∩ V(c, 0) = {0}, |x ◦ y| = (x ◦ y) ◦ d, and y ◦ d = u− w. On the other hand,
suppose that the spectral decomposition of u,w are in the forms of

u := λ1(u)ẽ
(1) + · · ·+ λ1(u)ẽ

(k)

w := λ1(w)ẽ
(k+1) + · · ·+ λr−k(w)ẽ

(r).

Then, we observe that

y ◦ d = u− w = λ1(u)ẽ
(1) + · · ·+ λ1(u)ẽ

(k) − λ1(w)ẽ
(k+1) − · · · − λr−k(w)ẽ

(r).

It follow from the proof of Theorem 1.1 in [13] that tr(|y ◦d|q) ≤ tr(|y|q). Therefore,
we obtain

tr(|x ◦ y|) = ⟨|x ◦ y|, e⟩ = ⟨(x ◦ y) ◦ d, e⟩ = ⟨x, y ◦ d⟩.
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In light of Theorem 3.1, we further have

tr(|x ◦ y|) ≤
r∑

i=1

λi(x)λi(y ◦ d)

≤
r∑

i=1

(
|λi(x)|p

p
+

|λi(y ◦ d)|q

q

)
=

tr(|x|p)
p

+
tr(|y ◦ d|q)

q

≤ tr(|x|p)
p

+
tr(|y|q)

q

= tr

(
|x|p

p
+

|y|q

q

)
.

Hence, we conclude the desired inequality. □

Remark 3.3. In the setting of second-order cone, Huang et al. [14] obtained the
desired conclusion via establishing the following inequality

tr(|x ◦ y|) ≤ |λ1(x)λ1(y)|+ |λ2(x)λ2(y)|.

However, we do not know yet whether the similar inequality in Euclidean Jordan
algebra hold or not. In other words, it is a future direction to prove or disprove

tr(|x ◦ y|) ≤
r∑

i=1

|λi(x)λi(y)|,

for any x, y ∈ V, where λi(x) and λi(y) are the spectral values of x and y with
decreasing order, respectively.

4. Counterexample of Young inequality

In this section, we show that the general Young inequality does not hold under
Euclidean Jordan algebra. We will show how to construct counterexamples in the
SOC setting. According, they serve as counterexamples in the symmetric cone
setting under Euclidean Jordan algebra. From the construction procedure, we also
conclude under what conditions the Young inequality will hold in the SOC setting.

To proceed, we recall some materials regarding the SOC in Rn, an important
example of symmetric cones. Officially, the SOC is defined as follows:

Kn :=
{
x = (x0, x̄) ∈ R× Rn−1 | x0 ≥ ∥x̄∥

}
,

and the corresponding Jordan product of x and y in Rn with x = (x0, x̄), y =
(y0, ȳ) ∈ R× Rn−1 is given by

x ◦ y :=

[
xT y

x0ȳ + y0x̄

]
.
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We note that e = (1, 0) ∈ R × Rn−1 acts as the Jordan identity. Later, we need
to verify Young inequality in the SOC setting as two vectors belong to Kn with
different Jordan frame. To do this, we use vector decomposition and then compare
it to the condition with same Jordan frame.

For each x ∈ Rn, it follows from [10, 11, 12] that the spectral decomposition
associated with Kn is of the form

(4.1) x = λ1(x)u
(1)
x + λ2(x)u

(2)
x .

where λi(x) and ui(x) are called the spectral values and the spectral vectors of x,
respectively, which defined by

(4.2) λi(x) = x1 + (−1)i−1∥x2∥,

(4.3) u(i)x =

{ 1
2(1, (−1)i−1 x2

∥x2∥) if x2 ̸= 0,
1
2(1, (−1)i−1w) if x2 = 0,

for i = 1, 2 with w being any vector in Rn−1 satisfying ∥w∥ = 1. When x2 ̸= 0, the
spectral factorization is unique.

Let m be any real number and x ∈ Kn. Then the mth power of x is defined by

(4.4) xm =
(
λ1(x)

)m
u(1)x +

(
λ2(x)

)m
u(2)x .

With this definition, we are interested in the properties of Young inequality in the
SOC setting. For x ⪰Kn 0, y ⪰Kn 0, and p, q are positive real numbers such that
1
p + 1

q = 1, it is clear that the Young inequality holds for p = q = 2 since

x2 + y2

2
⪰Kn x ◦ y ⇐⇒ x2 + y2 ⪰Kn 2x ◦ y

⇐⇒ x2 − 2x ◦ y + y2 ⪰Kn 0

⇐⇒ (x− y)2 ⪰Kn 0.

Now, we first consider x, y ∈ Kn such that x and y shart the same Jordan frame.

Theorem 4.1. Suppose x ⪰Kn 0, y ⪰Kn 0, and p, q are positive real numbers such
that 1

p + 1
q = 1. Let x, y share the same Jordan frame, that is, x, y have spectral

decomposition

x = λ1u1 + λ2u2, y = λ3u3 + λ4u4

with u1 = u3, u2 = u4 or u1 = u4, u2 = u3. Then, we have xp

p + yq

q ⪰Kn x ◦ y.

Moreover, the equality holds if and only if xp = yq.

Proof. Without loss of generality, we assume that u1 = u3, u2 = u4, and the proof
can be carried over to the similar case when u1 = u4, u2 = u3. First, we observe
that

xp

p
+

yq

q
=

1

p
(λp

1u1 + λp
2u2) +

1

q
(λq

3u1 + λq
4u2)
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=

(
λp
1

p
+

λq
3

q

)
u1 +

(
λp
2

p
+

λq
4

q

)
u2,(4.5)

and

x ◦ y = (λ1u1 + λ2u2) ◦ (λ3u1 + λ4u2)

= λ1λ3u
2
1 + λ1λ4u1 ◦ u2 + λ2λ3u2 ◦ u1 + λ2λ4u

2
2

= λ1λ3u1 + λ2λ4u2.(4.6)

Subtracting (4.5) from (4.6), we see that

xp

p
+

yq

q
− x ◦ y =

[(
λp
1

p
+

λq
3

q

)
u1 +

(
λp
2

p
+

λq
4

q

)
u2

]
− (λ1λ3u1 + λ2λ4u2)

=

(
λp
1

p
+

λq
3

q
− λ1λ3

)
u1 +

(
λp
2

p
+

λq
4

q
− λ2λ4

)
u2.(4.7)

Since x ⪰Kn 0, y ⪰Kn 0, we know that x1 ≥ ∥x2∥, y1 ≥ ∥y2∥, and hence λi ≥ 0 for
all i = 1, 2, 3, 4. Thus, by the traditional Young inequality for numbers, we have

λp
1

p
+

λq
3

q
− λ1λ3 ≥ 0 and

λp
2

p
+

λq
4

q
− λ2λ4 ≥ 0.

This means xp

p + yq

q − x ◦ y ∈ Kn, i.e., xp

p + yq

q ⪰Kn x ◦ y. Moreover, since u1, u2 are

linearly independent. From (4.7), we have

xp

p
+

yq

q
= x ◦ y ⇐⇒ xp

p
+

yq

q
− x ◦ y = 0

⇐⇒
(
λp
1

p
+

λq
3

q
− λ1λ3

)
u1 +

(
λp
2

p
+

λq
4

q
− λ2λ4

)
u2 = 0

⇐⇒ λp
1

p
+

λq
3

q
− λ1λ3 =

λp
2

p
+

λq
4

q
− λ2λ4 = 0

⇐⇒ λp
1

p
+

λq
3

q
= λ1λ3 and

λp
2

p
+

λq
4

q
= λ2λ4

⇐⇒ λp
1 = λq

3 and λp
2 = λq

4

⇐⇒ xp = λp
1u1 + λp

2u2 = λq
3u3 + λq

4u4 = yq,

where the fifth equivalence holds by Young inequality for real number. In other
words, the equality holds if and only if xp = yq. □

Up to now, we show that the Young inequality holds in the SOC setting under
the condition that x, y share the same Jordan frame. However, it is much harder
to verify two vectors belong to Kn with different Jordan frame. For notations
simplicity, we denote

xp

p
+

yq

q
− x ◦ y := (α, β) ∈ R× Rn−1.

Then, it is clear that xp

p + yq

q ⪰K x◦y holds if and only if α2−∥β∥2 ≥ 0. In addition,

the equality holds if and only if α2 − ∥β∥2 = 0. In order to develop some tools for
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the case when two vectors belong to Kn with different Jordan frame. As below, we
start with calculating α2 − ∥β∥2.

Theorem 4.2. Suppose x ⪰Kn 0, y ⪰Kn 0, and p, q are positive real numbers such
that 1

p +
1
q = 1. Suppose that x = (x1, x2) ∈ R×Rn−1, y = (y1, y2) ∈ R×Rn−1, and

θ =

{
arccos

( xT
2 y2

∥x2∥∥y2∥
)

if∥x2∥∥y2∥ ̸= 0,

0 otherwise.

that is, θ is the angle between two vectors x2, y2, the spectral decompositions of x, y
associated with Kn are

x = λ1u1 + λ2u2,

y = λ3u3 + λ4u4.

Then, there holds

α2 − ∥β∥2 = f1 + (1− cos θ)
[
γ − (1 + cos θ)δ

]
= f2 − (1 + cos θ)

[
γ + (1− cos θ)δ

]
,

(4.8)

where

f1 =
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
4 + λp

2λ
q
3)

−
[
(
λp
1

p
+

λq
3

q
)λ2λ4 + (

λp
2

p
+

λq
4

q
)λ1λ3

]
,

f2 =
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
3 + λp

2λ
q
4)

−
[
(
λp
1

p
+

λq
4

q
)λ2λ3 + (

λp
2

p
+

λq
3

q
)λ1λ4

]
,

γ =
1

2pq
(λp

1 − λp
2)(λ

q
3 − λq

4)−
λ1λ2

2p
(λp−1

1 − λp−1
2 )(λ3 − λ4)

−λ3λ4

2q
(λq−1

3 − λq−1
4 )(λ1 − λ2),

δ =
(λ1 − λ2)

2(λ3 − λ4)
2

16
.

Proof. According to the spectral decomposition associated with Kn, we have

x = λ1u1 + λ2u2, and y = λ3u3 + λ4u4,

where

λ1 = x1 + ∥x2∥, λ2 = x1 − ∥x2∥, u1 =

(
1

2
,

x2
2∥x2∥

)
, u2 =

(
1

2
,
−x2
2∥x2∥

)
,

λ3 = y1 + ∥y2∥, λ4 = y1 − ∥y2∥, u3 =

(
1

2
,

y2
2∥y2∥

)
, u4 =

(
1

2
,
−y2
2∥y2∥

)
.
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Then, we write out

xp

p
=

λp
1

p
u1 +

λp
2

p
u2 =

(
1

2p
(λp

1 + λp
2),

1

2p
(λp

1 − λp
2)

x2
∥x2∥

)
,

yq

q
=

λq
3

q
u3 +

λq
4

q
u4 =

(
1

2q
(λq

3 + λq
4),

1

2q
(λq

3 − λq
4)

y2
∥y2∥

)
,

x ◦ y =
(
x1y1 + xT2 y2, x1y2 + y1x2

)
.

Since we have denoted xp

p + yq

q − x ◦ y by (α, β), we have

α =
1

2p
(λp

1 + λp
2) +

1

2q
(λq

3 + λq
4)− (x1y1 + xT2 y2),

β =
1

2p
(λp

1 − λp
2)

x2
∥x2∥

+
1

2q
(λq

3 − λq
4)

y2
∥y2∥

− (x1y2 + y1x2).

Thus, we see that

α2 =
1

4p2
(λ2p

1 + λ2p
2 + 2λp

1λ
p
2) +

1

4q2
(λ2q

3 + λ2q
4 + 2λq

3λ
q
4)

+(x21y
2
1 + (xT2 y2)

2 + 2x1y1x
T
2 y2) +

1

2pq
(λp

1λ
q
3 + λp

1λ
q
4 + λp

2λ
q
3 + λp

2λ
q
4)

−1

p
(λp

1x1y1 + λp
1x

T
2 y2 + λp

2x1y1 + λp
2x

T
2 y2)

−1

q
(λq

3x1y1 + λq
3x

T
2 y2 + λq

4x1y1 + λq
4x

T
2 y2),(4.9)

and

∥β∥2 =
1

4p2
(λ2p

1 + λ2p
2 − 2λp

1λ
p
2) +

1

4q2
(λ2q

3 + λ2q
4 − 2λq

3λ
q
4)

+(x21∥y2∥2 + y21∥x2∥2 + 2x1y1x
T
2 y2) +

1

2pq
(λp

1λ
q
3 − λp

1λ
q
4 − λp

2λ
q
3 + λp

2λ
q
4)

−1

p
(λp

1x1
xT2 y2
∥x2∥

+ λp
1y1∥x2∥ − λp

2x1
xT2 y2
∥x2∥

− λp
2y1∥x2∥)

−1

q
(λq

3x1∥y2∥+ λq
3y1

xT2 y2
∥y2∥

− λq
4x1∥y2∥+ λq

4y1
xT2 y2
∥y2∥

).(4.10)

Subtracting (4.10) from (4.9) yields

α2 − ∥β∥2

=
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+
[
x21y

2
1 + (xT2 y2)

2 − x21∥y2∥2 − y21∥x2∥2
]

+
1

2pq
[(λp

1λ
q
3 + λp

2λ
q
4)(1−

xT2 y2
∥x2∥∥y2∥

) + (λp
1λ

q
4 + λp

2λ
q
3)(1 +

xT2 y2
∥x2∥∥y2∥

)]

+
1

p
[λp

1x1(
xT2 y2
∥x2∥

− y1) + λp
1∥x2∥(y1 −

xT2 y2
∥x2∥

)]

−1

p
[λp

2x1(
xT2 y2
∥x2∥

+ y1) + λp
2∥x2∥(y1 +

xT2 y2
∥x2∥

)]
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+
1

q
[λq

3x1(∥y2∥ − y1) + λq
3x

T
2 y2(

y1
∥y2∥

− 1)]

−1

q
[λq

4x1(∥y2∥+ y1) + λq
4x

T
2 y2(

y1
∥y2∥

+ 1)]

=
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ [x21y

2
1 + ∥x2∥2∥y2∥2 cos2 θ − x21∥y2∥2 − y21∥x2∥2]

+
1

2pq
(λp

1λ
q
3 + λp

2λ
q
4)(1− cos θ) +

1

2pq
(λp

1λ
q
4 + λp

2λ
q
3)(1 + cos θ)

+
1

p
[(λp

1x1(∥y2∥ cos θ − y1) + λp
1∥x2∥(y1 − ∥y2∥ cos θ)]

−1

p
[(λp

2x1(∥y2∥ cos θ + y1) + λp
2∥x2∥(y1 + ∥y2∥ cos θ)]

+
1

q
[λq

3x1(∥y2∥ − y1) + λq
3∥x2∥ cos θ(y1 − ∥y2∥)]

−1

q
[λq

4x1(∥y2∥+ y1) + λq
4∥x2∥ cos θ(y1 + ∥y2∥)]

=
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+
[
x21(y

2
1 − ∥y2∥2)− ∥x2∥2(y21 − ∥y2∥2 cos2 θ)

]
+

1

2pq

[
(λp

1λ
q
3 + λp

2λ
q
4)(1− cos θ) + (λp

1λ
q
4 + λp

2λ
q
3)(1 + cos θ)

]
−λp

1

p
λ2(y1 − ∥y2∥ cos θ)−

λp
2

p
λ1(y1 + ∥y2∥ cos θ)

−λq
3

q
λ4(x1 − ∥x2∥ cos θ)−

λq
4

q
λ3(x1 + ∥x2∥ cos θ).(4.11)

It is difficult to estimate that the value is positive or negative as the equality contains
the term cos θ since −1 ≤ cos θ ≤ 1. For the case that two vectors have the same
Jordan frame, we can replace the term cos θ by 1 or −1 since two vectors have the
same Jordan frame if and only if | cos θ| = 1. To proceed, we need to discuss two
subcases.

Case 1. Change cos θ to 1, by applying (4.11), we have

α2 − ∥β∥2

=
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+
[
x21(y

2
1 − ∥y2∥2)− ∥x2∥2(y21 − ∥y2∥2(1 + cos2 θ − 1))

]
+

1

2pq
(λp

1λ
q
3 + λp

2λ
q
4)(1− 1 + (1− cos θ))

+
1

2pq
(λp

1λ
q
4 + λp

2λ
q
3)(1 + 1 + (cos θ − 1))

−λp
1

p
λ2(y1 − ∥y2∥(1 + (cos θ − 1)))− λp

2

p
λ1(y1 + ∥y2∥(1 + (cos θ − 1)))

−λq
3

q
λ4(x1 − ∥x2∥(1 + (cos θ − 1)))− λq

4

q
λ3(x1 + ∥x2∥(1 + (cos θ − 1)))
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=
{λp

1λ
p
2

p2
+

λq
3λ

q
4

q2
+
[
x21(y

2
1 − ∥y2∥2)− ∥x2∥2(y21 − ∥y2∥2)

]
+

1

2pq

[
(λp

1λ
q
3 + λp

2λ
q
4)(1− 1) + (λp

1λ
q
4 + λp

2λ
q
3)(1 + 1)

]
−
[λp

1

p
λ2(y1 − ∥y2∥) +

λp
2

p
λ1(y1 + ∥y2∥)

+
λq
3

q
λ4(x1 − ∥x2∥) +

λq
4

q
λ3(x1 + ∥x2∥)

]}
+
{
∥x2∥2∥y2∥2(cos2 θ − 1)

+
1

2pq

[
(λp

1λ
q
3 + λp

2λ
q
4)(1− cos θ) + (λp

1λ
q
4 + λp

2λ
q
3)(cos θ − 1)

]
−
[
− λp

1

p
λ2∥y2∥(cos θ − 1) +

λp
2

p
λ1∥y2∥(cos θ − 1)

−λq
3

q
λ4∥x2∥(cos θ − 1) +

λq
4

q
λ3∥x2∥(cos θ − 1)

]}
=

{λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
4 + λp

2λ
q
3)

−(
λp
1

p
λ2λ4 +

λp
2

p
λ1λ3 +

λq
3

q
λ4λ2 +

λq
4

q
λ3λ1)

}
+(1− cos θ)

{
− ∥x2∥2∥y2∥2(1 + cos θ)

+
1

2pq

[
(λp

1λ
q
3 + λp

2λ
q
4)− (λp

1λ
q
4 + λp

2λ
q
3)
]

−
[λp

1

p
λ2∥y2∥ −

λp
2

p
λ1∥y2∥+

λq
3

q
λ4∥x2∥ −

λq
4

q
λ3∥x2∥

]}
.

After direct calculation, we further have

α2 − ∥β∥2

=
λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
4 + λp

2λ
q
3)

−
[
(
λp
1

p
+

λq
3

q
)λ2λ4 + (

λp
2

p
+

λq
4

q
)λ1λ3

]
+(1− cos θ)

{
− ∥x2∥2∥y2∥2(1 + cos θ) +

1

2pq

[
λp
1(λ

q
3 − λq

4) + λp
2(λ

q
4 − λq

3)
]

−
[
(
λp
1λ2

p
− λ1λ

p
2

p
)∥y2∥+ (

λq
3λ4

q
− λ3λ

q
4

q
)∥x2∥

]}
=

λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
4 + λp

2λ
q
3)

−
[
(
λp
1

p
+

λq
3

q
)λ2λ4 + (

λp
2

p
+

λq
4

q
)λ1λ3

]
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+(1− cos θ)
{
− ∥x2∥2∥y2∥2(1 + cos θ) +

1

2pq

[
λp
1(λ

q
3 − λq

4) + λp
2(λ

q
4 − λq

3)
]

−
[λ1λ2

p
(λp−1

1 − λp−1
2 )∥y2∥+

λ3λ4

q
(λq−1

3 − λq−1
4 )∥x2∥

]}
=

λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
4 + λp

2λ
q
3)

−
[
(
λp
1

p
+

λq
3

q
)λ2λ4 + (

λp
2

p
+

λq
4

q
)λ1λ3

]
+(1− cos θ)

{
− (

λ1 − λ2

2
)2(

λ3 − λ4

2
)2(1 + cos θ) +

1

2pq
(λp

1 − λp
2)(λ

q
3 − λq

4)

−λ1λ2

p
(λp−1

1 − λp−1
2 )

λ3 − λ4

2
− λ3λ4

q
(λq−1

3 − λq−1
4 )

λ1 − λ2

2

}
=

λp
1λ

p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
4 + λp

2λ
q
3)

−
[
(
λp
1

p
+

λq
3

q
)λ2λ4 + (

λp
2

p
+

λq
4

q
)λ1λ3

]
+(1− cos θ)

{[ 1

2pq
(λp

1 − λp
2)(λ

q
3 − λq

4)−
λ1λ2

2p
(λp−1

1 − λp−1
2 )(λ3 − λ4)

−λ3λ4

2q
(λq−1

3 − λq−1
4 )(λ1 − λ2)

]
− (1 + cos θ)

(λ1 − λ2)
2(λ3 − λ4)

2

16

}
:= f1 + (1− cos θ)

[
γ − (1 + cos θ)δ

]
,

where the third equality holds since ∥x2∥ = λ1−λ2
2 , ∥y2∥ = λ3−λ4

2 .

Case 2. Change cos θ to −1, by applying the same argument in Case 1, we have

α2 − ∥β∥2

=
{λp

1λ
p
2

p2
+

λq
3λ

q
4

q2
+ λ1λ2λ3λ4 +

1

pq
(λp

1λ
q
3 + λp

2λ
q
4)

−
[
(
λp
1

p
+

λq
4

q
)λ2λ3 + (

λp
2

p
+

λq
3

q
)λ1λ4

]}
−(1 + cos θ)

{[ 1

2pq
(λp

1 − λp
2)(λ

q
3 − λq

4)−
λ1λ2

2p
(λp−1

1 − λp−1
2 )(λ3 − λ4)

−λ3λ4

2q
(λq−1

3 − λq−1
4 )(λ1 − λ2)

]
+ (1− cos θ)

(λ1 − λ2)
2(λ3 − λ4)

2

16

}
:= f2 − (1 + cos θ)

[
γ + (1− cos θ)δ

]
.

Then, the desired result follows.. □

Notice that f1 and f2 equal to α2−∥β∥2 while x, y have the same Jordan Frame.
In fact, α2 − ∥β∥2 = f1 as cos θ = 1 and α2 − ∥β∥2 = f2 as cos θ = −1. We shall
establish some properties of them in following lemma.
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Lemma 4.3. For any x ⪰Kn 0, y ⪰Kn 0, suppose the spectral decompositions of x, y
are

x = λ1u1 + λ2u2,

y = λ3u3 + λ4u4,

and p, q are positive real numbers such that 1
p + 1

q = 1. Then the following hold:

(a): f1 ≥ 0. Moreover, f1 = 0 if and only if λp
1 = λq

3 and λp
2 = λq

4.
(b): f2 ≥ 0. Moreover, f2 = 0 if and only if λi = 0 for i = 1, 2, 3, 4.

Proof. For part(a), we let κ = (κ1, κ2) = (λ1+λ2
2 , λ1−λ2

2 ē) ∈ R×Rn−1, ω = (ω1, ω2) =

(λ3+λ4
2 , λ3−λ4

2 ē) ∈ R×Rn−1, where ē = (1, 0, . . . , 0) ∈ Rn−1, then κ ⪰Kn 0, ω ⪰Kn 0.

Note that κ1 =
λ1+λ2

2 , ∥κ2∥ = λ1−λ2
2 . By the spectral decomposition (4.1)-(4.3), we

have

κ = λ1(κ)u
(1)
κ + λ2(κ)u

(2)
κ = λ1u

(1)
κ + λ2u

(2)
κ .

where

λ1(κ) =
λ1 + λ2

2
+

λ1 − λ2

2
= λ1,

λ2(κ) =
λ1 + λ2

2
− λ1 − λ2

2
= λ2,

u(1)κ =
1

2

(
1,

λ1+λ2
2 e

λ1+λ2
2

)
=

(
1

2
,
e

2

)
,

u(2)κ =
1

2

(
1,−

λ1+λ2
2 e

λ1+λ2
2

)
=

(
1

2
,−e

2

)
.

Similarly, the spectral decomposition of ω is

ω = λ1(ω)u
(1)
ω + λ2(ω)u

(2)
ω = λ3u

(1)
κ + λ4u

(2)
κ .

where

λ1(ω) =
λ3 + λ4

2
+

λ3 − λ4

2
= λ3,

λ2(ω) =
λ3 + λ4

2
− λ3 − λ4

2
= λ4,

u(1)ω =
1

2

(
1,

λ3+λ4
2 e

λ3+λ4
2

)
=

(
1

2
,
e

2

)
= u(1)κ ,

u(2)ω =
1

2

(
1,−

λ3+λ4
2 e

λ3+λ4
2

)
=

(
1

2
,−e

2

)
= u(2)κ .

Since x, κ have the same spectral values λ1, λ2 and y, ω have the same spectral
values λ3, λ4, we get via (4.8) that

(
α2 − ∥β∥2

)
κω

= f1. Moreover κ, ω share the

same Jordan frame u
(1)
κ , u

(2)
κ . By Theorem 4.1, it yields

κp

p
+

ωq

q
⪰Kn κ ◦ ω
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and hence f1 =
(
α2 − ∥β∥2

)
κω

≥ 0. Moreover,

f1 =
(
α2 − ∥β∥2

)
κω

= 0 ⇐⇒ κp

p
+

ωq

q
= κ ◦ ω

⇐⇒ κp = ωq

⇐⇒ (λp
1 − λq

3)u
(1)
κ + (λp

2 − λq
4)u

(2)
κ = 0

⇐⇒ λp
1 − λq

3 = λp
2 − λq

4 = 0(4.12)

⇐⇒ λp
1 = λq

3 and λp
2 = λq

4.

where the equivalence (4.12) holds since u
(1)
κ , u

(2)
κ are linearly independent.

For part(b), we let ζ = (ζ1, ζ2) = (λ1+λ2
2 , λ1−λ2

2 e) ∈ R × Rn−1, η = (η1, η2) =

(λ4+λ3
2 ,−λ4−λ3

2 e) ∈ R× Rn−1, where e = (1, 0, . . . , 0) ∈ Rn−1, then ζ ⪰Kn 0, η ⪰Kn

0. Similarly,

ζ = λ1(ζ)u
(1)
ζ + λ2(ζ)u

(2)
ζ = λ1u

(1)
ζ + λ2u

(2)
ζ .

η = λ1(η)u
(1)
η + λ2(η)u

(2)
η = λ3u

(2)
ζ + λ4u

(1)
ζ .

where

λ1(ζ) =
λ1 + λ2

2
+

λ1 − λ2

2
= λ1,

λ2(ζ) =
λ1 + λ2

2
− λ1 − λ2

2
= λ2,

u
(1)
ζ =

1

2

(
1,

λ1+λ2
2 e

λ1+λ2
2

)
= (

1

2
,
e

2
),

u
(2)
ζ =

1

2

(
1,−

λ1+λ2
2 e

λ1+λ2
2

)
= (

1

2
,−e

2
),

λ1(η) =
λ3 + λ4

2
+

λ3 − λ4

2
= λ3,

λ2(η) =
λ3 + λ4

2
− λ3 − λ4

2
= λ4,

u(1)η =
1

2

(
1,

λ3+λ4
2 (−e)
λ3+λ4

2

)
= (

1

2
,−e

2
) = u

(2)
ζ ,

u(2)η =
1

2

(
1,−

λ3+λ4
2 (−e)
λ3+λ4

2

)
= (

1

2
,
e

2
) = u

(1)
ζ .

Since x, ζ have the same λ1, λ2 and y, η have the same λ3, λ4, we get via (4.8) that(
α2 −∥β∥2

)
ζη

= f2. Since ζ, η share the same Jordan frame u
(1)
ζ , u

(2)
ζ . By Theorem

4.1, it yields

ζp

p
+

ηq

q
⪰Kn ζ ◦ η
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which implies f2 =
(
α2 − ∥β∥2

)
ζη

≥ 0. Moreover,

f2 =
(
α2 − ∥β∥2

)
ζη

= 0 ⇐⇒ ζp

p
+

ηq

q
= ζ ◦ η

⇐⇒ ζp = ηq

⇐⇒ (λp
1 − λq

4)u
(1)
ζ + (λp

2 − λq
3)u

(2)
ζ = 0

⇐⇒ λp
1 − λq

4 = λp
2 − λq

3 = 0

⇐⇒ λq
4 = λp

1 ≥ λp
2 = λq

3

⇐⇒ λp
1 = λp

2 = λq
3 = λq

4 = 0.

where last equivalence follows by λq
3 ≥ λq

4. □

Theorem 4.4. Suppose x ⪰Kn 0, y ⪰Kn 0, and p, q are positive real numbers such
that 1

p + 1
q = 1. If γ − (1 + cos θ)δ ≥ 0 or γ + (1 − cos θ)δ ≤ 0 for all 0 ≤ θ ≤ 2π,

then xp

p + yq

q ⪰Kn x ◦ y.

Proof. By Lemma 4.3, we know that f1 ≥ 0 and f2 ≥ 0 because 1 + cos θ, 1− cos θ
are nonnegative.

(i) If γ − (1 + cos θ)δ ≥ 0, then (4.8) yields

α2 − ∥β∥2 = f1 + (1− cos θ)
[
γ − (1 + cos θ)δ

]
≥ 0.

Therefore, we have xp

p + yq

q ⪰Kn x ◦ y.

(ii) If γ + (1− cos θ)δ ≤ 0, then (4.8) yields

α2 − ∥β∥2 = f2 − (1 + cos θ)
[
γ + (1− cos θ)δ

]
≥ 0.

Therefore, we have xp

p + yq

q ⪰Kn x ◦ y. □

Theorem 4.4 provides a way to verify α2 − ∥β∥2. Unfortunately, the condition

in Theorem 4.4 does not always hold. Consequently, xp

p + yq

q ⪰Kn x ◦ y might fail.

To see this, taking p = 3
2 , q = 3 and x = (61, 36, 48) ∈ K3, y = (6, 4, 3) ∈ K3, we

obtain xp

p = (444, 266, 10643 ), yq

q = (222, 5323 , 133), and x ◦ y = (654, 460, 471). Thus,

xp

p
+

yq

q
− x ◦ y =

(
12,−16

2

3
, 16

2

3

)
/∈ K3.

In fact, for p ̸= q and x, y have different Jordan frame, there always exist a coun-
terexample for xp

p + yq

q ⪰Kn x ◦ y. To prove this, we need a technical lemma.

Lemma 4.5. For any x ≻Kn 0, y ≻Kn 0, suppose the spectral decompositions of x,
y are below:

x = λ1u1 + λ2u2,

y = λ3u3 + λ4u4,

and p, q are positive real numbers such that 1
p+

1
q = 1. If cos θ = 4

pq , then there exists

a positive real number ξ ≥ 1 such that λ1
λ2

≥ ξ, which implies γ − (1 + cos θ)δ < 0.
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Proof. First, we observe that

1

p
+

1

q
= 1 ⇐⇒ p+ q = pq ⇐⇒ p = q(p− 1) ⇐⇒ p− 1 =

p

q
,

⇐⇒ q = p(q − 1) ⇐⇒ q − 1 =
q

p
,

and

λp
1 = λq

3 ⇐⇒ λ3 = λ
p
q

1 = λp−1
1 ⇐⇒ λ1 = λ

q
p

3 = λq−1
3 ,

λp
2 = λq

4 ⇐⇒ λ4 = λ
p
q

2 = λp−1
2 ⇐⇒ λ2 = λ

q
p

4 = λq−1
4 .

Then, we have

γ − (1 + cos θ)δ

=
1

2pq
(λp

1 − λp
2)(λ

q
3 − λq

4)− (1 + cos θ)
(λ1 − λ2)

2(λ3 − λ4)
2

16

−λ1λ2

2p
(λp−1

1 − λp−1
2 )(λ3 − λ4)−

λ3λ4

2q
(λq−1

3 − λq−1
4 )(λ1 − λ2)

=
1

2pq
(λp

1 − λp
2)

2 − (1 + cos θ)
(λ1 − λ2)

2(λp−1
1 − λp−1

2 )2

16

− 1

2p
λ1λ2(λ

p−1
1 − λp−1

2 )2 − 1

2q
(λ1λ2)

p−1(λ1 − λ2)
2

=
1

2pq

[
(λp

1 − λp
2)

2 − pq(1 + cos θ)

8
(λ1 − λ2)

2(λp−1
1 − λp−1

2 )2
]

−
[
1

2p
λ1λ2(λ

p−1
1 − λp−1

2 )2 +
1

2q
(λ1λ2)

p−1(λ1 − λ2)
2

]
.(4.13)

Consider the homogeneous part with degree 2p in (4.13):

(λp
1 − λp

2)
2 − pq(1 + cos θ)

8
(λ1 − λ2)

2(λp−1
1 − λp−1

2 )2

= λ2p
2

[
((
λ1

λ2
)p − 1)2 − pq(1 + cos θ)

8
(
λ1

λ2
− 1)2((

λ1

λ2
)p−1 − 1)2

]
:= λ2p

2 · g(t),

where t = λ1
λ2

> 1 and g(t) = (tp−1)2− pq(1+cos θ)
8 (t−1)2(tp−1−1)2. Since 1

p +
1
q = 1

with p ̸= q and p, q are positive, it yields by Arithmetic-Geometric-Mean inequality
that √

1

pq
<

1
p + 1

q

2
=

1

2
=⇒ 4 < pq =⇒ 0 <

4

pq
< 1.

Thus, we may take cos θ = 4
pq , and hence

pq(1 + cos θ)

8
=

pq(1 + 4
pq )

8
=

pq + 4

8
>

4 + 4

8
= 1.
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In other words, g(t) has negative leading coefficient. Due to the degree of g(t) is

2p > 1, there exists a positive real number ξ ≥ 1 such that λ1
λ2

= t ≥ ξ, which
implies

g(t) < 0 =⇒ λ2p
2 · g(t) < 0 =⇒ γ − (1 + cos θ)δ < 0.

Here the last implications holds by (4.13), which is negative. Then, the proof is
complete. □

Theorem 4.6. Suppose x ⪰Kn 0, y ⪰Kn 0, and p, q are positive real numbers such
that 1

p + 1
q = 1. If p ̸= q and n ≥ 3, then there always exists a counterexample for

xp

p + yq

q ⪰Kn x ◦ y.

Proof. Suppose x ⪰Kn 0, y ⪰Kn 0 with the spectral decomposition as below:

x = λ1u1 + λ2u2,

y = λ3u3 + λ4u4,

Since p ̸= q, it implies 0 < 4
pq < 1. Then, we take cos θ = 4

pq . Consider those

x = (x1, x2), y = (y1, y2) ∈ R × Rn−1 belong to Kn with λp
1 = λq

3, λ
p
2 = λq

4. By

Lemma 4.5, there exists ξ ≥ 1 such that λ1
λ2

≥ ξ, which implies γ − (1 + cos θ)δ < 0.

We choose two vectors x, y satisfying λ1
λ2

≥ ξ, λp
1 = λq

3, λ
p
2 = λq

4, and cos θ = 4
pq .

Such kinds of x, y exist because n ≥ 3, so there exists x, y with different Jordan
frame, and the angle θ between x2 and y2 satisfies −1 < cos θ < 1. Because λp

1 = λq
3,

λp
2 = λq

4, by applying Lemma 4.3(a) we have f1 = 0. Note that λ1
λ2

≥ ξ, which implies

γ − (1 + cos θ)δ < 0. Thus, it yields that

α2 − ∥β∥2 = 0 + (1− cos θ)
[
γ − (1 + cos θ)δ

]
< 0.

In summary, the Young inequality does not hold. □

Example 4.7. For p = 3
2 , q = 3, n = 3, and taking x = (281,−96,−128) ∈ K3,

y = (16, 4, 3) ∈ K3, we have λ1 = 441, λ2 = 121, λ3 = 21, λ4 = 11, and λ1
λ2

≈ 3.6446,

cos θ ≈ −0.96. Since xp

p = (35302
3 ,−1586,−21142

3),
yq

q = (17651
3 , 1057

1
3 , 793) and

x ◦ y = (3728,−412,−1205), we obtain

xp

p
+

yq

q
− x ◦ y =

(
1568,−116

2

3
,−116

2

3

)
∈ K3.

In other words, xp

p + yq

q ⪰K3 x ◦ y. Although λp
1 = λq

3, λ
p
2 = λq

4 implies f1 = 0,

and (1+cos θ)pq
8 = 0.0225 < 1, which says that g(t) has positive leading coefficient.

Hence, we cannot apply Lemma 4.5 to derive γ − (1 + cos θ)δ < 0. Nonetheless, in

this example, there still holds xp

p + yq

q ⪰K3 x ◦ y.
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Example 4.8. For p = 3
2 , q = 3, n = 3, and taking x = (281, 96, 128) ∈ K3,

y = (16, 4, 3) ∈ K3, we have λ1 = 441, λ2 = 121, λ3 = 21, λ4 = 11, and λ1
λ2

≈
3.6446, cos θ ≈ 0.96. It is easy to compute that xp

p = (35302
3 , 1586, 2114

2
3),

yq

q =

(17651
3 , 1057

1
3 , 793), and x ◦ y = (5264, 2660, 2891). Therefore, we have

xp

p
+

yq

q
− x ◦ y =

(
32,−16

2

3
, 16

2

3

)
∈ K3.

In other words, xp

p + yq

q ⪰K3 x ◦ y. Although λp
1 = λq

3, λ
p
2 = λq

4 implies f1 = 0, and
(1+cos θ)pq

8 = 1.1025 > 1 says that g(t) has negative leading coefficient, λ1
λ2

≈ 3.6446,

which is not large enough to make g(t) < 0. This is why xp

p + yq

q ⪰K3 x ◦ y.

Example 4.9. For p = 3
2 , q = 3, n = 3, and taking x = (61, 36, 48) ∈ K3,

y = (6, 4, 3) ∈ K3, we have λ1 = 121, λ2 = 1, λ3 = 11, λ4 = 1, and λ1
λ2

= 121, cos θ ≈
0.96. Since xp

p = (444, 266, 10643 ), yq

q = (222, 5323 , 133) and x◦y = (654, 460, 471), we

see that
xp

p
+

yq

q
− x ◦ y =

(
12,−16

2

3
, 16

2

3

)
/∈ K3.

In this example, λp
1 = λq

3, λ
p
2 = λq

4 implies f1 = 0, and (1+cos θ)pq
8 = 1.1025 > 1

says that g(t) has negative leading coefficient. Because λ1
λ2

= 121 is large enough to

enable g(t) < 0, we conclude that xp

p + yq

q ⪰̸K3 x ◦ y.

As a consequence of all the above results and discussions, we have the following
corollary which describes under what conditions the Young inequality holds.

Corollary 4.10. Suppose x ⪰Kn 0, y ⪰Kn 0, and p, q are positive real numbers
such that 1

p + 1
q = 1. Then, the Young inequality holds either when p = q or when

n = 2.

Proof. By Theorem 4.1 and Theorem 4.6, the conclusion is drawn. □
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[16] A. Korányi, Monotone functions on formually real Jordan algebras, Math. Ann. 269 (1984),

73–76.

[17] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ 1970.
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