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Theorem 1.2 ( [1]). Let N ≥ 1 be an integer and let {Ti}Ni=1 be a finite family
of nonexpansive self-mappings of C with a nonempty common fixed point set F :=
∩N
i=1Fix(Ti). Assume in addition

(1.2) F = Fix(TN . . . T2T1) = Fix(T1TN . . . T2) = · · · = Fix(TN−1 . . . T1TN ).

Given x0, u ∈ C. Define a sequence (xn) by the iteration process

(1.3) xn+1 = λn+1u+ (1− λn+1)Tn+1xn, n ≥ 0,

where (λn) ⊂ (0, 1) and Tn = TnmodN , with the mod N function taking values
in {1, 2, . . . , N}. Assume the conditions (C1) and (C2) are satisfied. Assume in
addition the condition (C5) below is also satisfied:

(C5)
∑∞

n=0 |λn − λn+N | < ∞.

Then (xn) converges in norm to a point in F .

The result of Theorem 1.2 was extended to a Banach space setting [9] where the
space is either uniformly smooth or has a weakly continuous generalized duality
map.

On the other hand, Moudafi [8] introduced the viscosity methods to nonexpansive
mappings. He considered the following iteration process for single nonexpansive
mapping:

(1.4) xn+1 = λnf(xn) + (1− λn)Txn,

where f : C → C is a γ-contraction for some constant γ ∈ [0, 1); that is, f satisfies
the contraction property: ∥f(x)− f(y)∥ ≤ γ∥x− y∥ for all x, y ∈ C.

This viscosity method for single mapping was extended to the uniformly smooth
Banach space setting in [15].

The purpose of the present paper is to extend the result of [15] to the case of a
finite family of nonexpansive mappings in uniformly smooth Banach spaces.

2. Preliminaries

Let X be a uniformly smooth Banach space, C a nonempty closed convex subset
of X, and T : C → C a nonexpansive mapping. Assume Fix(T ) is nonempty.
Let ΠC denote the collection of all contractions from C into itself. That is, f ∈
ΠC if and only if f is a self-mapping of C and satisfies the contraction property:
∥f(x)− f(y)∥ ≤ γ∥x− y∥ for all x, y ∈ C and some γ ∈ [0, 1). In this case, f is said
to be a γ-contraction.

The following result, known as viscosity method of nonexpansive mappings, will
be needed in the proof of the main result of the paper to be presented in the next
section.

Theorem 2.1 ([15]). Under the above setting, there exists a unique sunny nonex-
pansive retraction Q : ΠC → Fix(T ) which is given by

(2.1) Q(f) = lim
t→0+

zt, f ∈ ΠC ,
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where zt is the unique fixed point of the contraction C ∋ x 7→ tf(x) + (1 − t)Tx.
Moreover, Q(f) solves the variational inequality (VI)

(2.2) ⟨(I − f)Q(f), J(Q(f)− p)⟩ ≤ 0, f ∈ ΠC , p ∈ Fix(T ).

Here J : X → X∗ is the normalized duality map from X into X∗ and X∗ is the
dual space of X.

Recall that the normalized duality map J is defined as

J(x) = {x∗ ∈ X∗ : ∥x∥2 = ∥x∗∥2 = ⟨x, x∗⟩}, x ∈ X.

It is known that for a uniformly smooth Banach space X, the duality map J is
single-valued and norm-to-norm uniformly continuous over every bounded subset of
X. [See [17] for more information on uniform smoothness of Banach spaces.]

We also need two technical tools stated in the lemmas below.

Lemma 2.2 ([16]). Assume (sn) is a sequence of nonnegative real numbers such
that

sn+1 ≤ (1− αn)sn + σn, n ≥ 0

where (αn) is a sequence in (0, 1) and (σn) is a sequence of real numbers such that

(i)
∑∞

n=1 αn = ∞;
(ii) lim supn→∞ σn/αn ≤ 0 or

∑∞
n=1 |σn| < ∞.

Then limn→∞ sn = 0.

Lemma 2.3. Let J be the normalized duality map of a smooth Banach space X.
Then, for all x, y ∈ X, the following inequality holds

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩.

3. Viscous Iteration in Banach Spaces

Consider a closed convex subset C of a Banach space X and let N ≥ 1 be a given
integer. Suppose Ti : C → C for i = 1, 2, . . . , N are nonexpansive mappings which
satisfy the following consistency condition:

(3.1) ∅ ̸=
N∩
i=1

Fix(Ti) = Fix(TNTN−1 . . . T1).

Note that this consistency condition implies that
(3.2)

N∩
i=1

Fix(Ti) = Fix(TN . . . T2T1) = Fix(T1TN . . . T2) = · · · = Fix(TN−1 . . . T1TN ).

Remark 3.1. The consistency condition (3.1) is not restrictive. As a matter of

fact, if we replace Ti with the averaged mapping T̂i := (1 − αi)I + αiTi, where

αi ∈ (0, 1) for 1 ≤ i ≤ N . Then Fix(T̂i) = Fix(Ti) for each i and the consistency

condition (3.1) holds for the family of the mappings T̂ ′
is which has the same set of

common fixed points with the original family of mappings T ′
is.
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Now we consider the following viscous iteration process:

(3.3) xn+1 = λn+1f(xn) + (1− λn+1)T[n+1]xn, n = 0, 1, . . . ,

where the initial guess x0 ∈ C is arbitrary, and f ∈ ΠC is a γ-contraction with
γ ∈ [0, 1). Here [n+ 1] is defined by [n+ 1] := (n mod N) + 1 for n ≥ 0.

The main result of this paper is the following result.

Theorem 3.2. Let X be a uniformly smooth Banach space, C a nonempty closed
convex subset of X, and {Ti}N=1 be N ≥ 1 nonexpansive self-mappings of C. Assume
the consistency condition (3.1) and the conditions (C1)-(C2). Assume, in addition,
(λn) satisfies either (C5) or (C6) which is stated below:

(C6) limn→∞
λn−λn+N

λn+N
= 0; equivalently, limn→∞

λn
λn+N

= 1.

Then the sequence (xn) generated by the viscous iteration process (3.3) converges
in norm to Q(f), where Q : ΠC → F is the unique sunny nonexpansive retraction
from ΠC onto F . Here F = ∩N

i=1Fix(Ti).

Proof. As standard, the proof consists of six steps.

Step 1: (xn) is bounded.

To see this, we take p ∈ F to get by using (3.3)

∥xn+1 − p∥ ≤ λn∥f(xn)− p∥+ (1− λn)∥T[n+1]xn − p∥
≤ λn(∥f(xn)− f(p)∥+ ∥f(p)− p∥) + (1− λn)∥xn − p∥
≤ (1− (1− γ)λn)∥xn − p∥+ λn∥f(p)− p∥

≤ max

{
∥xn − p∥, 1

1− γ
∥f(p)− p∥

}
.

By induction, we obtain

∥xn − p∥ ≤ max

{
∥x0 − p∥, 1

1− γ
∥f(p)− p∥

}
for all n ≥ 0. It turns out that (xn) is bounded.

Step 2: ∥xn+1 − T[n+1]xn∥ → 0 as n → ∞.

This is quite straightforward. Indeed we have from (3.3) that

∥xn+1 − T[n+1]xn∥ = λn+1∥f(xn)− T[n+1]xn∥.
The boundedness of (xn) and the fact that λn → 0 (as n → ∞) immediately imply
the conclusion of Step 2.

Step 3: ∥xn+N − xn∥ → 0 as n → ∞.

In fact, noticing the fact that T[n+1+N ] = T[n+1], we derive that

∥xn+1+N − xn+1∥ = ∥λn+1+Nf(xn+N ) + (1− λn+1+N )T[n+1+N ]xn+N
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− [λn+1f(xn) + (1− λn+1)T[n+1]xn]

= ∥λn+1+N (f(xn+N )− f(xn))

+ (1− λn+1+N )(T[n+1]xn+N − T[n+1]xn)

+ (λn+1+N − λn+1)(f(xn)− T[n+1]xn)∥.

Since (xn) is bounded, we have a constant α ≥ 0 such that ∥f(xn)− T[n+1]xn∥ ≤ α
for all n ≥ 0. Also since f is a γ-contraction, it turns out that

∥xn+1+N − xn+1∥ ≤ (1− (1− γ)λn+1+N )∥xn+N − xn∥+ α|λn+1+N − λn+1|
= (1− (1− γ)λn+1+N )∥xn+N − xn∥+ (1− γ)λn+1+Nβn

where βn = α|λn+1+N − λn+1|/((1 − γ)λn+1+N ). Now under the conditions (C1)-
(C2) and (C5) or (C6), we can apply Lemma 2.2 to immediately obtain Step 3.

Step 4: ∥xn − T[n+N ] . . . T[n+1]xn∥ → 0 as n → ∞.

To prove Step 4, we set U0 = I and Ui = T[n+N ] . . . T[n+N−i+1] for i = 1, 2, . . . , N .
Then Ui are all nonexpansive. Moreover, it is easily seen that U1 = T[n+N ], . . . , UN =
T[n+N ] . . . T[n+1], and Ui+1 = UiT[n+N−i] for i = 0, 1, . . . , N − 1. We then get

∥xn − T[n+N ] . . . T[n+1]xn∥ = ∥xn − UNxn∥
≤ ∥xn − xn+N∥+ ∥xn+N − UNxn∥

= ∥xn − xn+N∥+

∥∥∥∥∥
N−1∑
i=0

(Uixn+N−i − Ui+1xn+N−i−1)

∥∥∥∥∥
= ∥xn − xn+N∥+

∥∥∥∥∥
N−1∑
i=0

(Uixn+N−i − UiT[n+N−i]xn+N−i−1)

∥∥∥∥∥
≤ ∥xn − xn+N∥+

N−1∑
i=0

∥xn+N−i − T[n+N−i]xn+N−i−1∥.

Now by Step 2, we see that each term under the above summation tends to zero
when n → ∞. This combining with Step 3 yields the result of Step 4.

Step 5: lim supn→∞⟨f(q)−q, J(xn−q)⟩ ≤ 0. Here q = Q(f) and Q is the unique
sunny nonexpansive retraction from ΠC onto F = ∩N

i=1Fix(Ti).

To verify Step 5, we take a subsequence (xnk
) of (xn) with the property:

(3.4) lim sup
n→∞

⟨f(q)− q, J(xn − q)⟩ = lim
k→∞

⟨f(q)− q, J(xnk
− q)⟩.

With no loss of generality we may assume that (xnk
) converges weakly to a point x̂

in C. Since the pool of the mappings of the family is finite, we may further assume
that [nk] ≡ i for all k and some i ∈ {1, 2, . . . , N} so that T[nk] = Ti for all k. Let
U = Ti+N . . . T[i+1]. Then F = Fix(U) by (3.2). Moreover, it turns out from Step 4
that ∥xnk

− Uxnk
∥ → 0 as k → ∞.
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By the uniqueness of the sunny nonexpansive retraction from ΠC onto F , we
have that q = Q(f) = limt→0 zt, where zt = tf(zt) + (1 − t)Uzt for 0 < t < 1. By
Lemma 2.3, we get

∥zt − xnk
∥2 = ∥(1− t)(Uzt − xnk

) + t(f(zt)− xnk
)∥2

≤ (1− t)2∥Uzt − xnk
∥2 + 2t⟨f(zt)− xnk

, J(zt − xnk
)⟩

≤ (1− t)2 (∥Uzt − Uxnk
∥+ ∥Uxnk

− xnk
∥)2

+ 2t⟨f(zt)− zt + zt − xnk
, J(zt − xnk

)⟩

≤ (1− t)2 (∥zt − xnk
∥+ ∥Uxnk

− xnk
∥)2

+ 2t
(
∥zt − xnk

∥2 + ⟨f(zt)− zt, J(zt − xnk
)⟩
)

≤ (1 + t2)∥zt − xnk
∥2 + 2t⟨f(zt)− zt, J(zt − xnk

)⟩
+ (1− t)2∥Uxnk

− xnk
∥(∥Uxnk

− xnk
∥+ 2∥zt − xnk

∥).

It turns out that, for all k and t ∈ (0, 1),

⟨f(zt)− zt, J(xnk
− zt)⟩

≤ t

2
∥zt − xnk

∥2 + 1

2t
∥Uxnk

− xnk
∥(∥Uxnk

− xnk
∥+ 2∥zt − xnk

∥).(3.5)

Let α > 0 be a constant bigger than ∥zt − xnk
∥2 and ∥Uxnk

− xnk
∥+ 2∥zt − xnk

∥.
Then (3.5) is reduced to, for all k and t ∈ (0, 1),

⟨f(zt)− zt, J(xnk
− zt)⟩ ≤ αt+

α

t
∥Uxnk

− xnk
∥.(3.6)

Since ∥Uxnk
−xnk

∥ → 0 as k → ∞, we can take the limit by letting k → ∞ in (3.6)
to get, for all t ∈ (0, 1),

lim sup
k→∞

⟨f(zt)− zt, J(xnk
− zt)⟩ ≤ αt.(3.7)

However, since zt → q in norm and J is uniformly continuous in the norm topology
over a bounded set that contains (zt)∪ (xn), we can take the limit as t → 0 in (3.7)
to get

lim sup
k→∞

⟨f(q)− q, J(xnk
− q)⟩ ≤ 0.

This together with (3.4) verifies Step 5.

Step 6: xn → Q(f) in norm (as n → ∞). Here again Q is the unique sunny
nonexpansive retraction from ΠC onto F = ∩N

i=1Fix(Ti).

We will use Lemma 2.2 to prove Step 6. Let q = Q(f). It follows from Lemma
2.3 that

∥xn+1 − q∥2 = ∥λn+1(f(xn)− q) + (1− λn+1)(T[n+1]xn − q)∥2

≤ (1− λn+1)
2∥T[n+1]xn − q∥2 + 2λn+1⟨f(xn)− q, J(xn+1 − q)⟩

≤ (1− λn+1)
2∥xn − q∥2 + 2λn+1⟨f(xn)− f(q), J(xn+1 − q)⟩
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+ 2λn+1⟨f(q)− q, J(xn+1 − q)⟩
≤ (1− λn+1)

2∥xn − q∥2 + 2λn+1γ∥xn − q∥ · ∥J(xn+1 − q)∥
+ 2λn+1⟨f(q)− q, J(xn+1 − q)⟩

= (1− λn+1)
2∥xn − q∥2 + 2λn+1γ∥xn − q∥ · ∥xn+1 − q∥

+ 2λn+1⟨f(q)− q, J(xn+1 − q)⟩
≤ (1− λn+1)

2∥xn − q∥2 + λn+1γ(∥xn − q∥2 + ∥xn+1 − q∥2)
+ 2λn+1⟨f(q)− q, J(xn+1 − q)⟩.

It turns out that

∥xn+1 − q∥2 ≤ (1− λn+1)
2 + γλn+1

1− γλn+1
∥xn − q∥2 + 2λn+1

1− γλn+1
⟨f(q)− q, J(xn+1 − q)⟩.

Setting sn = ∥xn − q∥2,

αn = 1− (1− λn+1)
2 + γλn+1

1− γλn+1
=

(2− γ − λn+1)λn+1

1− γλn+1
= O(λn+1),

and

σn =
2λn+1

1− γλn+1
⟨f(q)− q, J(xn+1 − q)⟩,

we may rewrite the last inequality as

(3.8) sn+1 ≤ (1− αn)sn + σn.

It is evidently clear that αn → 0 since λn → 0. In addition, since

σn
αn

=
2

2− γ − λn+1
⟨f(q)− q, J(xn+1 − q)⟩,

it turns out from Step 5 that

lim sup
n→∞

σn
αn

=
2

2− γ
lim sup
n→∞

⟨f(q)− q, J(xn+1 − q)⟩ ≤ 0.

Consequently, Lemma 2.2 is applicable and we obtain from (3.8) that sn → 0,
namely, xn → q in norm. The proof is complete. □

Remark 3.3. (i) The result of Theorem 2.1 remains valid if the uniform smooth-
ness is replaced with the assumption that the space X either is uniformly Gateaux
differentiable with the fixed point property for nonexpansive mappings or has a
weakly continuous duality mapping with some gauge φ.

(ii) Theorem 2.1 has been proved in some papers with an additional condition
that the space X be strictly convex as well (see [3–5,12,13]).
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