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ABSTRACT. In a Hilbert space, concepts of attractive point and acute point stud-
ied by many researchers. Moreover these concepts extended to Banach space. In
previous paper we introduced a new class of mappings on Banach space corre-
sponding to the class of all widely more generalized hybrid mappings on Hilbert
space. In this paper we introduce some extensions of weak convergence theorems.

1. INTRODUCTION

In [23] Takahashi and Takeuchi introduced a concept of attractive point in a
Hilbert space. Let H be a real Hilbert space, let C' be a nonempty subset of H and
let T be a mapping from C into H. x € H is called an attractive point of T" if

o =Tyl < [l —yll
for any y € C. Let
AT) ={x e H |||z = Ty|| < ||z — y|| for any y € C}.

Moreover they proved that the Baillon type ergodic theorem [2] for generalized
hybrid mappings [18] without convexity of C. A mapping T from C into H is said
to be generalized hybrid if there exist «, § € R such that

a|Tz — Ty|* + (1 - a)llz — Tyl* < BTz — y[* + (1 - B)l|l= — yI?
for any x,y € C. Such a mapping is said to be (a, 3)-generalized hybrid. The class
of all generalized hybrid mappings is a new class of nonlinear mappings including
nonexpansive mappings, nonspreading mappings [20] and hybrid mappings [22]. A
mapping 71" from C' into H is said to be nonexpansive if
[Tz =Tyl < llz —yll
for any z,y € C; nonspreading if
2Tz — Ty|* < | Tz — y||* + | Ty — «|
for any z,y € C; hybrid if
3Tz — Tyl* < |lo =yl + 1Tz — ylI* + | Ty — =|?
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for any z,y € C. Any nonexpansive mapping is (1,0)-generalized hybrid; any
nonspreading mapping is (2, 1)-generalized hybrid; any hybrid mapping is (%, %)—
generalized hybrid.

Motivated these mappings, in [15] Kawasaki and Takahashi introduced a new very
wider class of mappings, called widely more generalized hybrid mappings, than the
class of all generalized hybrid mappings. A mapping 7T from C into H is widely
more generalized hybrid if there exist «, 8,7, 9d,¢,(,n € R such that

o Tz — Ty||* + Bllz — Ty|I* + || Tz — yl|* + 8[|z — y|
+ellz — Tz|* +Clly — Tyl* +nll(x — Tz) — (y — Ty)|* <0

for any z,y € C. Such a mapping is said to be («,3,7,9,¢,(,n)-widely more
generalized hybrid. This class includes the class of all generalized hybrid mappings
and also the class of all k-pseudo-contractions [3] for k € [0,1]. A mapping T from
C into H is said to be k-pseudocontractive if

1T = Tyl* < ||z = ylI* + kll(z = Tz) — (y = Ty)||*

for any xz,y € C. Any (a, §)-generalized hybrid mapping is (o,1 — o, —3,8 — 1,
0,0,0)-widely more generalized hybrid; any k-pseudo-contraction is (1,0,0,—1,0,
0, —k)-widely more generalized hybrid. Moreover they proved some fixed point
theorems [5-10,14-17] and some ergodic theorems [5,6,14-16].

There are some studies on Banach space related to these results. In [24] Taka-
hashi, Wong and Yao introduced the generalized nonspreading mapping and the
skew-generalized nonspreading mapping in a Banach space. Let E be a smooth
Banach space and let C' be a nonempty subset of E. A mapping T from C into E
is said to be generalized nonspreading if there exist «;, 3,7, 6, &, € R such that

ad(Tz, Ty) + Bé(z, Ty) + vo(Tz,y) + 6d(x,y)
< €(¢(Tyv TiL') - d)(Ty? iL‘)) + C(¢(ya Tx) - ¢(y7 .’L'))

for any z,y € C, where J is the duality mapping on £ and
$(u,v) = [[ull* = 2(u, Jv) + ||v]*.

Such a mapping is said to be (a, 3,7, d, €, ()-generalized nonspreading. A mapping
T from C into E is said to be skew-generalized nonspreading if there exist «, 3, ,
d,e,C € R such that

ad(Tz,Ty) + Bé(x, Ty) + vp(Tx, y) + dé(z, y)

for any z,y € C. Such a mapping is said to be («, 3,7, 9, ¢, ()-skew-generalized
nonspreading. These classes include the class of generalized hybrid mappings in
a Hilbert space, however, it does not include the class of widely more generalized
hybrid mappings. Moreover they introduced some extensions of attractive point
and proved some attractive point theorems. z € E is an attractive point of T if

¢(z,Ty) < ¢(x,y)
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for any y € C; x € E is a skew-attractive point of T if

¢(Ty,z) < ¢(y,x)
for any y € C'. Let

AT) = {zeE|¢(x,Ty) < ¢(x,y) for any y € C};
B(T) = {z€E|¢(Ty x)<¢(y,z) for any y € C}.

Let C be a nonempty subset of a smooth Banach space E. A mapping T from
C into E is said to be generalized nonexpansive [4] if the set of all fixed points of T’
is nonempty and

¢(Tx,y) < d(z,y)

for any = € C' and for any fixed point y of T'. Let C' be a nonempty subset of E of
a Banach space F. A mapping R from F onto C is said to be sunny if

R(Rx +t(x — Rx)) = Rz

for any x € E and for any ¢ € [0,00). A mapping R from E onto C is called a
retraction or a projection if Rx = x for any x € C.
Takahashi, Wong and Yao also proved the following weak convergence theorem.

Theorem 1.1. Let E be a uniformly convexr Banach space with a uniformly Fréchet
differentiable norm, let C' be a nonempty convex subset of E and let T be an («, 3,7,
J, €, ()-generalized nonspreading mapping from C' into itself satisfying a+B+~vy+06 >
0 and o+ 8 > 0. Suppose that A(T) = B(T) # 0. Let R be the sunny generalized
nonexpansive retraction of E onto B(T) and let {«,} be a sequence of real numbers
with oy, € (0,1) and liminf,, o an(l — o) > 0. Then a sequence {x,} generated
by xy =x € C and

Tnt1 = @y + (1 — ap)Txy,

for any n € N is weakly convergent to an element q € A(T), where ¢ = lim,,_,oo RTy,.

On the other hand, in [1] Atsushiba, Iemoto, Kubota and Takeuchi introduced a
concept of acute point as an extension of attractive point in a Hilbert space. Let H
be a real Hilbert space, let C' be a nonempty subset of H and let T' be a mapping
from C into H and k € [0,1]. € H is called a k-acute point of T if

lz = Tyll* < llz = yl* + klly — Tyl*
for any y € C'. Let
i (T) ={x € H | |z - Ty|]* < [lz — y|I* + klly — Ty|* for any y € C}.

Moreover, using a concept of acute point, they proved convergence theorems without
convexity of C.

Motivated these results, in previous paper [11] we introduced a new class of
mappings on Banach space corresponding to the class of all widely more generalized
hybrid mappings on Hilbert space. In this paper we introduce some extensions of
weak convergence theorems.



150

TOSHIHARU KAWASAKI

2. PRELIMINARIES

We know that the following hold; for instance, see [21].

(T1)

(T2)

(T3)

(T4)

(T5)

If a Banach space FE is unformly convex, then E is reflexive.
Let E be a Banach space and let J be the duality mapping on E defined by

J(@) = {a* € B* | ||2|* = (z,27) = [l2"*}

for any x € E. Then F is strictly convex if and only if J is injective, that
is,  # y implies J(z) N J(y) = 0.

Let E be a Banach space, let E* be the topological dual space of F and
let J be the duality mapping on E. Then F is reflexive if and only if J is
surjective, that is, |J,cp J(z) = £

Let E be a Banach space and let J be the duality mapping on E. Then F
is smooth if and only if J is single-valued.

Let E be a Banach space and let J be the duality mapping on E. Then

holds for any x,y € FE, for any x* € J(x) and for any y* € J(y).

Let F be a Banach space and let J be the duality mapping on E. If J is
single-valued, then J is norm-to-weak™ continuous.

Let F be a Banach space and let J be the duality mapping on E. If E has
the Fréche differentiable norm, then .J is norm-to-norm continuous.

Let E be a Banach space and let J be the duality mapping on E. Then F
is strictly convex if and only if

1 - <$7y*> >0

for any z,y € E with x # y and ||z|| = ||y|| = 1 and for any y* € J(y).

Let E be a Banach space and let E* be the topological dual space of E.
Then F is reflexive if and only if E* is reflexive.

Let E be a Banach space and let E* be the topological dual space of E.
If E* is strictly convex, then E is smooth. Conversely, F is reflexive and
smooth, then E* is strictly convex.

Let E be a Banach space and let E* be the topological dual space of E.
If E* is smooth, then FE is strictly convex. Conversely, F is reflexive and
strictly convex, then E* is smooth.

Let E be a Banach space and let E* be the topological dual space of E.
E has uniformly Frécht differentiable norm if and only if E* is uniformly
convex.

Let E be a smooth Banach space, let J be the duality mapping on F and let ¢
be the mapping from F x E into [0, 00) defined by

¢z, y) = llel® = 2(z, Jy) + I|y|*

for any x,y € E. Since by (T4) J is single-valued, ¢ is well-defined. It is obvious
that © = y implies ¢(z,y) = 0. Conversely, by (T8)

(T13)

If E is also strictly convex, then ¢(z,y) = 0 implies z = y.
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Let E be a strictly convex and smooth Banach space. By (T2) an (T4) J is a
bijective mapping from E onto J(E). In particular, if E is also reflective, then by
(T3) J is a bijective mapping from F onto E*. Suppose that E is strictly convex,
reflective and smooth. Let ¢, be the mapping from E* x E* into [0, 00) defined by

Ou(a*,y*) = [l2*| = 20Ty ) + [ly* |12
for any z*,y* € E*. Then

(2.1) Ou (2", y") = ¢(J 1y, T ")
holds. Therefore
(T13)* ¢u(z*,y*) = 0 if and only if z* = y*.

We use the following lemmas in this paper.

The following showed in [25].

Lemma 2.1. Let E be a uniformly convexr Banach space and let r € (0,00). Then

there exists a strictly increasing, continuous and convex function g from [0,00) into
[0, 00) with g(0) =0 and

1Az 4 (1= Nyl < Allz[” + (1 = Myl? = 21 = Ng(llz = yl)
for any x,y € B, d:ef{z € E||z|| <r} and for any X € [0,1].
The following showed in [4].

Lemma 2.2. Let E be a strictly convexr and smooth Banach space and let C' be a
nonempty closed subset of E. Suppose that there exists a sunny generalized nonex-
pansive retraction of E onto C'. Then the sunny generalized nonexpansive retraction
1s uniquely determined.

Lemma 2.3. Let E be a strictly convexr and smooth Banach space and let C' be a
nonempty closed subset of E£. Suppose that there exists a sunny generalized nonez-
pansive retraction of E onto C. Then the following hold.

(i)  z=Recz if and only if (x — z,Jz — Jy) > 0 for any y € C;
(ii)  ¢(Rex,y) + ¢z, Rox) < ¢(x,y) for any y € C.

The following showed in [19].

Lemma 2.4. Let E be a strictly convezx, reflexive and smooth Banach space and let
C be a nonempty closed subset of E. Then the following are equivalent:

(i) There exists a sunny generalized nonexpansive retraction of E onto C;
(ii)  There ezists a generalized nonexpansive retraction of E onto C;
(iii) J(C) is closed and conver.

Lemma 2.5. Let E be a strictly convex, reflexive and smooth Banach space, let C
be a nonempty closed subset of E and (x,z) € E x C. Suppose that there exists a
sunny generalized nonexpansive retraction Rc of E onto C. Then the following are
equivalent:

(i) 2= Rcw;
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(i) o(x,2) =mingec ¢(z,y).

The following showed in [24].
Lemma 2.6. Let E be a uniformly convex and smooth Banach space, let C be a
nonempty convexr subset of E and let T be a mapping from C' into itself. Suppose
that B(T) # 0. Let R be the sunny generalized nonexpansive retraction of E onto
B(T), let {an} be a sequence of real numbers with o, € (0,1) and let {z,} be a
sequence generated by x1 = x € C and

Tpnt1 = Xy + (1 — ap)Txy,

for any n € N. Then {Rz,} is strongly convergent to an element in B(T).

3. ACUTE POINT AND SKEW-ACUTE POINT

Most of this section are included in [11], however, the following are described for
completeness.

Let E be a smooth Banach space, let C' be a nonempty subset of E, let T be a
mapping from C into F and let k,¢ € R. = € E is called a (k, {)-acute point of 7" if

(3.1) o(z, Ty) < ¢z, y) + ko(y, Ty) + Lo(Ty,y)
for any y € C. x € E is called a (k, £)-skew-acute point of T if

(3.2) o(Ty,z) < ¢y, ) + ko (y, Ty) + Ld(Ty,y)
for any y € C. Let
to(T)

={r e B ¢(z,Ty) < ¢(z,y) + ko(y, Ty) + Lp(Ty,y) for any y € C'};
B (T)

={r € E|¢(Ty,z) < ¢(y,z) + ko(y, T'y) + £p(T'y,y) for any y € C}.
It is obvious that
JZ{161751 (T) C dk2752 (T)7 ‘@kl,& (T) C %kz,fz (T)
for any ki, ke, £l1,f2 € R with k1 < ko and £ < 0s.

The following lemmas are important property characterizing them.

Lemma 3.1. Let E be a smooth Banach space, let C' be a nonempty subset of E,
let T be a mapping from C into E and let k,£ € R. Then a, (T) is closed and
convex.

Proof. (3.1) is equivalent to
2(x, Jy — JTy) < (k — D)o(y, Ty) + Lp(Ty,y) + 2{y, Jy — JTy).

Since
(3.3) o(u,v) = d(u, w) + d(w,v) + 2(u — w, Jw — Jv)
for any w,v,w € E, o, ¢(T) is closed and convex. O

Lemma 3.2. Let E be a smooth Banach space, let C' be a nonempty subset of E,
let T be a mapping from C into E and let k,¢ € R. Then %y, o(T) is closed.
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Proof. (3.2) is equivalent to

2y = Ty, Ju) <k¢(y, Ty) + (¢ = Do(Ty,y) + 2(y — Ty, Jy)
from (3.3). Moreover by (T6) J is norm-to-weak™® continuous. Therefore %y, ,(T') is
closed. g

Let E* be the dual space of a strictly convex, reflexive and smooth Banach space
E, let C* be a nonempty subset of E*, let T* be a mapping from C* into E* and
let k, ¢ € R. * € E* is called a (k,¢)-*-acute point of T if

(3-4) G« (2", T7Y") < 0ula™,y") + ku(y*, T7y") + L (T, ")
for any y* € C*. z* € E* is called a (k, £)-*-skew-acute point of 7% if
(3.5) O (T7y", 2%) < ou(y",2") + ko (v, T7y") + Lo (T7y", y")
for any y* € C*. Let
o (T7)
for any y* € C* ’
B o(T7)

_ e pr | STy %) < 9yt @) + ke (yn, Ty7) + Lou(TMy", y)
for any y* € C* '

Lemma 3.3. Let E* be the dual space of a strictly convex, reflective and smooth
Banach space E, let C* be a nonempty subset of E*, let T* be a mapping from C*
into E* and let k,£ € R. Then <7 ,(T*) is closed and convex.
Proof. (3.4) is equivalent to
2<J_1y* _ J_lT*y*,ZL‘*>

< (k= Dgu(y*, T ) + o (T Y, y") + 20y = T Ty, y)
from (3.3) and (2.1), & ,(T™) is closed and convex. O
Lemma 3.4. Let E* be the dual space of a strictly convex, reflexive and smooth
Banach space E, let C* be a nonempty subset of E*, let T* be a mapping from C*
into E* and let k,£ € R. Then %}, ,(T*) is closed.
Proof. (3.5) is equivalent to

2<J_1£L‘*, y* _ T*y*>

< kou (v T ") + (= Do (Ty", y") + 20y y* = THy")

from (3.3) and (2.1). Moreover by (T6) J~! is norm-to-weak* continuous. Therefore

5.o(T7) is closed. O

Lemma 3.5. Let E be a strictly convex, reflexive and smooth Banach space, let C
be a nonempty subset of E, let T be a mapping from C into E, let T* = JTJ ™' and
let k,£ € R. Then

D (T7) = J(Bei(T)), By o(T7) = J (A ,(T)).
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In particular, J(By(T)) is closed and convex and J(e, (T)) is closed.
Proof. Let 2* € @7 ,(T*). Then
G« (@, T7Y") < 0ula™,y") + ko (v, T7y") + L (T, ")
for any y* € J(C). From (2.1)
S(J Ty, T )
<G T RO T 9 T T
for any y* € J(C). Since J~!T* = TJ~!, putting y = J~'y*, we obtain

O(Ty, J'a*) < ¢y, J'a*) + Loy, Ty) + ko(Ty, y).

Therefore J~'2* € %, (T) and hence o7 ,(T*) = J(By(T)).

By (1) = J( x(T)) can be shown sfmilarly.

Moreover, by Lemma 3.3 J(%y ¢(T)) is closed and convex and by Lemma 3.4
J(t, 0(T)) is closed. O

Lemma 3.6. Let E be a strictly convex and smooth Banach space, let C be a

nonempty subset of E, let T' be a mapping from C into E and let k,£ € R. Then

the following hold.

(1) If(k,0) € (—00,1] x (00,0 \ {(1,0)}, then C' Nt o(T) is included in the set
of all fixed points of T';

(2) If (k,0) € (—00,0] x (—00,1]\ {(0,1)}, then CN By (T) is included in the set
of all fixed points of T.

Proof. Let © € C'N o, ¢(T). Then (3.1) holds for any y € C. Putting y = z, we
obtain (1 —k)¢(x, Tx) —Lp(Tx,x) < 0. If (k,£) € (—o0,1] x (—00,0]\ {(1,0)}, then
by (T13) we obtain x = T'z.

Let x € C N %y (T). Then (3.2) holds for any y € C. Putting y = z, we obtain
—ko(z, Tx)+ (1 — ) p(Tx,z) <0. If (k,£) € (—00,0] x (—o0,1] \ {(0,1)}, then by
(T13) we obtain x = T'z. O

Lemma 3.7. Let E* be a strictly convexr and smooth topological dual space of a

Banach space, let C* be a nonempty subset of E*, let T* be a mapping from C* into

E* and let k,0 € R. Then the following hold.

(1) If (k,€) € (—00,1] x (—00,0]\ {(1,0)}, then C' N (T*) is included in the
set of all fized points of T*;

(2)  If (k,0) € (—00,0] x (=00, 1]\ {(0,1)}, then C N A} ,(T*) is included in the
set of all fized points of T*. 7

Proof. Let x* € C* N’ (T"). Then (3.4) holds for any y* € C*. Putting y* = 27,
by we obtain (1 — k)¢, (z*, T*x*) — €, (T*x*, 2*) < 0. If (k,¢) € (—o0, 1] x (—00, 0]\
{(1,0)}, then by (T13)* we obtain z* = T*x*.

Let z* € C* N %’;Z(T*). Then (3.5) holds for any y* € C*. Putting y* = z*, by
we obtain —k¢, (x*, T*x*) + (1 — ) g, (T*z*, 2*) < 0. If (k, £) € (—00,0] x (—o0, 1] \
{(0,1)}, then by (T13)* we obtain z* = T*x*. O
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4. WEAK CONVERGENCE THEOREMS

Lemma 4.1. Let E be a strictly conver Banach space with a uniformly Gateauz
differentiable norm and let {x,} and {y,} be sequences in E. If {xzn} is bounded
and {x, — yn} is strongly convergent to 0, then {Jx, — Jyn} is weakly convergent
to 0.

Proof. Since {zy} is bounded and {x,, —y,} is strongly convergent to 0, {y,} is also

bounded. Firstly we show in the case of {z,},{y,} C S(E) def {z € E||z] =1}.

Note that
eyl =1
for any z,y € S(E) if the norm || - || of £ is Gateaux differentiable. Since the norm
| - || of E is uniformly Gateaux differentiable, we have that, for any w € E with
w # 0 and for any € > 0, there exists 6 > 0 such that, if 0 < |¢| < 0, then

t p—

’ - (w, Jxn)| < e,
t [[o]] "

for any n € N. Therefore we obtain

t [[w]]

t t
Tn + HHwH <l+te+ —(w,Jxy,),
w

]l

Ty — th <1l+te— L<w,Juvn,),
[[w]|

]l

t t
Yn + Hw”wH <1l+te+ —(w,Jyn,),

[[]]

t t
Yn — wH <1l+4+te — —(w, Jyn,)
[[0]]

[[]]

for any ¢t € (0,9). Since

[(@n Jyn) =1 = zn = yn, Jyn)|
< lzn = wnll;

[(Yns Jan) =1 = [(yn — 2p, J20)]
< Mlyn — aall,

we have that there exists IV € N such that
(@, Jyn) — 1] <fte,
(Y, Jxn) — 1| < te
for any n > N. Therefore
—te < (mp,Jyn) —1
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Tn +

ul +

t t t
— Ty — —w|| — —(w, Jyp, — Jxn) — 2
[[w]] "l H [[o]] v

t
< 2te — —(w, Jyp, — Jxy)
w
and hence

(w, Jyp — Jxp) < 3||wl|e;
—te < (yn,Jxn)—1
t t t
= <yn + —w, an> + <yn - —w, Jyn> — —(w, Jxy, — Jyp) — 2
[Jw]] [[w]] [[wl]
e+ ]
< —w|| +
[Jwll

t
< 2te — ——(w, Jxy, — Jyn)

[[]]

Yn + —(w, Jrn, — Jyn) — 2

]
Yn — rwll =
]

and hence

(w, Jxy — Jypn) < 3|jw|e.
Therefore we obtain

[(w, T — Tyn)] < Bwlle

and hence {Jx,, — Jy,} is weakly convergent to 0. In the general case, if z,, = 0 or
Yn = 0, then

[(w, Jon = Jyn)| < JwlllJzn — Jynl
= lwlllzn = ynll;

otherwise

(w0, T — Tyn)|

= (ol (7 () =7 (qaon)) + ot = tomb (om) )
< loal | (w7 (o) =7 (m ) Y] + ol ol =
cblfs () e

Since {z,} is bounded, {J (”Tlonn) —J (ﬁy&} is weakly convergent to 0 and
{zn — yn} is strongly convergent to 0, {Jz,, — Jy,} is weakly convergent to 0. [



WEAK CONVERGENCE THEOREMS FOR NEW MAPPINGS IN A BANACH SPACE 157

Let E be a smooth Banach space and let C' be a nonempty subset of E. A
mapping 7' from C into E is called a generalized pseudocontraction [11] if there
exist ay, ag, B1, B2,71,72,01,02,€1,€2,(1, (2 € R such that

a1¢(Tx7 Ty) + a2¢(Ty7 T.’L‘) + ﬂ1¢(x7 Ty) + ﬁQQS(Tya JI)
(1) +110(Tz,y) + 120y, Tx) + 619(x,y) + d26(y, v)

+e19(Tw, ) + e2d(w, Tx) + G1o(y, Ty) + C2o(T'y, y)
<0

for any x,y € C. Such a mapping is called an (a1, oo, 51, B2, 71,72, 01, 02, €1, €2, (1,
(2)-generalized pseudocontraction.

Lemma 4.2. Let E be a smooth Banach space, let C' be a nonempty subset of E,
let D be a nonempty convex subset of E, let T' be an (o, oz, 1, B2, 71,72, 01, 02, €1,
€9, (1, (2)-generalized pseudocontraction from C into D and let X € [0,1]. Then T is
a ((1 - )\)051 +)\Oz2)7 )\041 + (1 - )\)ag, (1 — )\),81 +/\72, )\’}/1 + (1 — )\),62, (1 - )\)’}/1 + )\52,
AB1 + (1 — /\)’yg, (1 — )\)51 + Mg, Ay + (1 — /\)(52, (1 — )\)61 + A2, A(1 + (1 — )\)&2,
(1 = X)) + e, Aer + (1 — A)(2)-generalized pseudocontraction from C' into D.

Proof. Changing the variables x and y in (4.1), we obtain

a2d(Tz, Ty) + a19(Ty, Tx) + v2¢(z, Ty) + 119(Ty, z)

+Go(Tx, z) + G o(x, Tx) + e20(y, Ty) + e16(Ty, y)
< 0.

Adding (4.1) multiplied by 1 — A and (4.2) multiplied by A, we obtain
(1 =XNoaqg + Aao)p(Tx, Ty) + (Ao + (1 = Na)p(Ty, Tx)

(1= A)B1 + M2)9(x, Ty) + (A1 + (1 = A)B2)d(Ty, x)
(1= X)m + AB2)d(Tx, y) + (AB1 + (1 — A)y2)o(y, Tx)
+((1 = A)d1 + Ad2)o(z,y) + (Ad1 + (1 — A)d2)d(y, )
+((1 = Ne1 + A2) ¢ (Tﬂfaw) + (MG + (1 = Nez)d(z, Tx)
(1 =N + Ae2)9(y, Ty) + (Ae1 + (1 = AN)(2)d(Ty, )

<0.

Therefore T is a ((1 — X)ag + Aaz), Aag + (1 — N)ag, (1 = X) 51+ Ay2, Ay + (1 — A) B2,
(1 — )\)’)/1 + AB2, A\B1 + (1 — A)’yg, (1 — )\)(51 + A9, Ady + (1 — )\)(52, (1 — A)61 + A2,
A+ (1= ANea, (1= A)G + Aez, Aeq + (1 — A)(2)-generalized pseudocontraction. [J

Theorem 4.3. Let E be a strictly convex Banach space with a uniformly Gateaux
differentiable norm, let C be a nonempty subset of E, let {x,} be a sequence in C
and let T be an (a1, ag, B1, B2, 71,72, 01, 02, €1, €2, (1, (2)-generalized pseudocontrac-
tion from C into E. Suppose that there exists \ € [0,1] such that

(1 =X (a1 4+ B14+ 71+ 1) + AMag + B2+ 72 + d2) > 0;

Mar +71) + (1 = N)(az + 52) > 0;

ABL+61) + (1 = A)(y2 +02) > 0;

(1= Aer + Ag > 0;
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G+ (1= A)ez > 0;
(1 =X (o1 + 1) + Aaz +72) > 0.

If {z,,} is weakly convergent to q and {x,, — T'zy} is strongly convergent to 0, then

qc '52{7 (1=M)¢1+Aeo _ Ae1+(1-=N)¢o (T)
(I=M)(ap+B1)+A(ag+72) " (1-X)(a1+B1)+A(az+72)

In particular, any fized point of T belongs to

o (1=X\)¢ FAeg _ Aep+(1=N)Co (T).
A= (a1 +B81)+A(ag+72)"  (1=M)(a1+B1)+A(a2+72)
Proof. By Lemma 4.2 T'is a ((1—X)ai1+Aa2), Aag + (1 —A)ag, (1—=X)B1+Ay2, Ay1+
(1—)\)ﬁ2, (1—)\)’}/14-)\52, )\,Bl—i-(l—)\)’yg, (1—)\)51+A(52, )\51—1—(1—)\)52, (1—)\)€1+)\C2,
A+ (1= X)ea, (1=A)C1+ Aez, Aer 4 (1 — A)(2)-generalized pseudocontraction. From
(3.3) we obtain

((T=A
+

+ A)o(Tz, Ty) + (Aag + (1 — Nao)p(Ty, Tx)
= A)B1+A2)o(z, Ty) + (A + (1 = A)B2)o(Ty, x)
M+ AB2)o(Tz,y) + (ABL + (1 — N)y2)d(y, Tx)

A)d1 + Ad2)d(z,y) + (M1 + (1 — X)d2)d(y, x)

)

)

_l’_

+((1 = XNer + A2)od(Tx,x) + (A1 + (1 — Neg)p(x, Tx)
— NG+ Ae2)d(y, Ty) + (Aer + (1 = A)G2)d(Ty, y)
= (1 =No1 + Aa2)o(Tz, Ty) + (Ao + (1 = Naz)p(Ty, Tx)
—((1T = XNa1 + Xaz)o(x, Ty)
(1 A(ar + Br) + Maz +72))(@(@,y) + ¢(y, Ty) + 2(x —y, Jy — JTy))
(1= A)B2)o(Ty, x)
— )7+ AB2)d(Tx,y) + (AB1 + (1 — A)ye)d(y, T'x)
)
)
)

Jeu
(1
((1-

+((1
((
(¢

+

L= X)d1 + A2)d(z, y) + (A1 + (1 — N)d2)é(y, x)
1—=MNe1 + A0)o(Tz,x) + (MG + (1 — Neg)o(x, Tx)
1= A)G + Ae2)d(y, Ty) + (Aer + (1 = N)G@)o(Ty, v)
= ((1 = Nox + Aa2)o(Tz, Ty) + (Aar + (1 = Aaz)p(Ty, Tx)
—((T = XNa1 + Aa2)o(z, Ty) + (A + (1 = A)B2)o(Ty, x)
(1= X)7 + AB2)d(Tx,y) + (AB1L + (1 = AN)y2)9(y, T'z)
(1 =X)(a1 4+ B14+ 1) + Moz +y2 + 02))p(x, y)
(1 —=X)d2)9(y,z)
—Ne1 + A)¢(Tx, z) + (MG + (1 — Aez)d(z, Tx)
= A)(a1+ b1+ ) + AMaz + 72 +€2))9(y, Ty)
£1 +(1 A)G)d(Ty, y)

— A)(a1 + B1) + Maz + 7))z —y, Jy — JTy).
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Since
(1= (a1 + B +51)+)\(a2+ﬁ2+52) =((T =X+ Ay2);
A1+ (1=X)B2 > —(Aag + (1 — N)ag);
Ao+ (1= A)d2 > —(AB1 + (1 = A)ye);
( )\)61 + /\CQ > 0;
A+ (1= X)eg >0,
we obtain
(1= Nar + Aa2)p(Tz, Ty) + (Aox + (1 = A)az)d(Ty, Tx)
—((1 = Na1 + Aaz)d(x, Ty) + (A1 + (1 = A)B2)d(Ty, x)
+((L = N7+ AB2)o(Tz,y) + (AB1 + (1 = A)y2)e(y, Tx)
+((1 = A)(a1 + B1 +01) + Aoz + 72 + 62))9(z, y)
+(Ad1 + (1 = A)d2)é(y, x)
+((1 = Ae1 + AR)o(Tz,z) + (MG + (1 = A)e2)o(z, Tx)
+((1 = N1 + B+ Q) + Moz + 72 +€2))d(y, Ty)
+(Ae1+ (1= A)@)o(Ty,y)
+2((1 = M) (a1 + B1) + Mag +72))(z — vy, Jy — JTy)
> (1= Naa + da2)(¢(Tz, Ty) — ¢(z,Ty))
+(Aar + (1 = Naz)(¢(Ty, T'z) — ¢(T'y, x))
+((1 = Nm + AB2)(¢(Tz, y) — ¢(x,y))
+(AB1 + (1 = A)72)(d(y, Tx) — ¢(y, )
+((1 = N1 + B+ Q) + Moz + 72 +€2))d(y, Ty)
+(Ae1 + (1 = AN))o(Ty, v)
+2((1 = M) (a1 + B1) + AMag +72))(z —y, Jy — JTy).
Therefore

(1= Na1 + Aaz2)(¢(Tz, Ty) — ¢(x, Ty))
+()‘041 + (1 - )‘)042)(¢(Ty7 T:C) - ¢(Ty7 33))

+((1 = )7+ AB2)(¢(Tz,y) — d(x,y))

+(AB1+ (1 = A)72)(o(y, Tz) — ¢(y,x))

+((1 =N (a1 + b1+ 1) + Mag +v2 + €2))d(y, Ty)

+(Ae1 4+ (1= N)G)o(Ty, y)

+2((1 = A) (a1 + B1) + Maz + 7)) —y, Jy — JTy)
<0.

Let {z,} be a sequence in C. Suppose that {z,} is weakly convergent to ¢ and
{x, — Tx,} is strongly convergent to 0. Replacing = by x,, we obtain

(1= XNar + Aa)(¢(Tzn, Ty) — ¢(2n, Ty))
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+

(Aox + (1 = Na)(¢(Ty, Twn) — ¢(Ty, xn))
(L =)+ AB2)(¢(Tan,y) — d(an,y))

()‘61 + (1 ) )( (va-Tn) - qb(y, l'n))
(
(

+ + +

(L =M(a1+ 1+ ) + Maz + 72 +€2))d(y, Ty)
+(Ae1 + (1= A)@)o(Ty,y)
+2((1 = A)(ea + B1) + AMaz +72)){zn — y, Jy — JTy)
<0.
From (3.3) we obtain
O(Txn, w) — ¢(Tn, w) = 2(xy — Ty, Jw) + ”T‘TnH2 - ”In||27
d(w, Txy) — o(w, ) = 2(w, Jx, — JTx) + | Tznl|* — ||lza|/?.
Since {x,, — Tz} is strongly convergent to 0, we obtain

lim (x,, — Tz, Jw) = 0.
oo

n—

Since {zy} is weakly convergent, {x,} is bounded. Moreover, since {x,, — Tz, } is
strongly convergent to 0, by Lemma 4.1 we obtain

lim (w, Jz, — JTz,) = 0.
n—oo

Since

T2l = lln?| (I Tzall + lzn ) 1Tz ]| — llanll]

Tzl + llznlDIT2n — 2

IN

and {x,, — Tx,} is strongly convergent to 0, we obtain
lim (|| T, |* = [|2,]%) = 0.
n—oo

Therefore we obtain

(T =) (a1 + B+ ) + Moz + 72 +22))9(y, Ty)
+(Ae1 + (1 = A)G@)o(Ty. v)
+2((1 = A)(a1 + B1) + Maz +72))(q —y, Jy — JTy)
<0.
From (3.3) we obtain

(1= NG+ Ae2)d(y, Ty) + (Aer + (1 = N)¢2)9(Ty, y)
+((1 = A)(a1 + B1) + Maz 4+ 72))(¢(q, Ty) — ¢(q,y))
<0.

Since (1 — X)(a1 + 1) + A(ag + 72) > 0, we obtain
_ (1 — )\)Cl + )\52
AT = A0 ™ 5o 1 61) + Al 172
_ el + (1 — )\)CQ
(1 =XM1 + B1) + AMaz +2)

oy, Ty)

o(Ty,y)
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and hence

qc 42{_ (1=N)¢1+Aeg _ Ae1+(1-N)Co (T)
(I=XN)(a1+B1)+A(ag2+72)" (1=N)(a1+B1)+A(az+72)

O

Theorem 4.4. Let E be a uniformly convex Banach space with a uniformly Fréchet
differentiable norm, let C' be a nonempty convex subset of E and let T be an (aq,
a9, 1, B2, 71, Y2, 01, 02, €1, €2, (1, (2)-generalized pseudocontraction from C into itself.
Suppose that there exists A € [0,1] such that

(1 =X (o1 +B1+71 +61) + Moz + B2+ 72 + d2) > 0;

AMag +71) + (1= N)(ag + B2) > 0;

A(Bi+01) + (1 = A) (72 + d2) = 0;

(1= XAe1+ A2 > 0;

ACL+ (1= A)ez > 05

(1= X)(a1+ B1) + Maz +72) >0,
and suppose that

4 (1=2)¢q+Aeg Aeq+(1—A)Co (T) C B(T) #0.

T AN (e +B)FA (e +2) ) (T=N) (a1 +81)FA(ag+72)

Let R be the sunny generalized nonexpansive retraction of E onto B(T) and let {cu, }
be a sequence of real numbers with a, € (0,1) and liminf, o an(l—ay) > 0. Then
a sequence {x,} generated by x1 =z € C and

Tnt1 = @y + (1 — ap)Txy,
for any n € N is weakly convergent to an element

Q€A a-ngre _ aataong (T,
(1= (a1 +B1)+A(ag+72) " (A=A (a1+B1)+A(az+v2)

where ¢ = lim,, oo Rxy,.
Additionally, if C is closed and one of the following holds:

(1) A=XN(ar+B1+C)+Maz+72+e2) >0 and Aey + (1 —A)G2 > 0;
(2) (T=X(a1+pB1+C)+ Maz+72+e2) >0 and Aex + (1 — A)C2 > 0,

then q is a fized point of T.
Proof. By the assumption E is strictly convex and smooth, and by (T1) E is re-
flexive. By Lemma 3.2 B(T) is closed and by Lemma 3.5 J(B(T')) is closed and
convex. Therefore by Lemmas 2.4 and 2.2 there exists a unique sunny nonexpansive
retraction R of E onto B(T).

Let z € B(T). Then we obtain

¢($n+1u Z) = QZ)(anxn + (1 - an)Txrw Z)

an‘b(mna Z) + (1 - Oén)</>(T1‘n, Z)
an¢(xna z) + (1 - an)¢(xna z)
P(n, 2).

IN A
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Therefore {¢(xy, 2)} is non-increasing and hence lim,,_,o, ¢(zy, 2) exists. Moreover
{zy} is bounded and {T'z,} is also bounded. Put r = sup,cn{||znll, [|Tzn]|}. By
Lemma 2.1 we obtain
(Tni1,2) = Glanzn + (1 — an)Tan, 2)
lanzn + (1 = an)Tan||> = 2{anty + (1 — o) T, J2) + |2
O‘onn”2 + (1 - an)HTanz —an(l —an)g(l|zn — Tn|)
—2anxy + (1 — )Ty, J2) + | 2|
= an(llzall? = 2z, J2) + ||2])
(1= an) (| Tanl* = 2(Tn, J2) + ||2[*)
—an(l —an)g(l|zn — Tan|)
= and(n,2) + (1 — an)d(Tn, 2) — an(l — an)g(||zn — Tan|)
< B(@n, 2) — an(l — an)g(llzn — Tz ).

Therefore we obtain

an(l = an)g(llzn — Tanl]) < ¢(@n, 2) — ¢(Tnt1, 2).

Since liminf,, s an(l — ay) > 0, we obtain

IN

lim g(||z, — Tx,||) = 0.
n—oo
From the properties of g we obtain

lim ||z, — Tz,| = 0.

n—oo

Since E is reflexive and {x,} is bounded, there exists a subsequence {x,,} of {z,}
such that {z,, } is weakly convergent to an element p € E. Let {x,,} be an another
subsequence of {x,} and suppose that {x,;} is weakly convergent to p; € E. By
Theorem 4.3

PP1LE S -G _ ataong (1)
(I=XN) (a1 +B1)+A(ag+72) " (1=XA)(a1+B1)+A(az+72)
Since
%_ (1=XN)¢1+Aen _ Ae1+(1=X)¢o (T) C B(T)a
(I=X) (a1 +B1)+A(ag+72) " (1=A)(a1+B1)+A(cx+72)

limy, 00 ¢(p, p) and limy, 0 @(xy, p1) exist. Put a = limy, o0 (¢(20, p) — d(20, p1)).
Since

¢(Tn,p) — (Tn, p1) = 2(xn, Jp1 — Jp) + p]|* — lIp1 %,
we obtain
a=2(p, Jp1 — Jp) + |p|* = lIp1II”,
a = 2(p1, Jp1 — Jp) + [IplI* — |Ip1|*.
Therefore we obtain

(p—p1,Jp1 —Jp) =0.
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From (3.3) we obtain

—¢(p,p1) — ¢(p1,p) = 0.
By (T13) we obtain p; = p and hence {,} is weakly convergent to

pE %f (1=X)¢1+Aeg _ Ae1+(1-=X)Co (T)
(I=AN) (a1 +B1)+Mag+72) " (1-A)(a1+B1)+A(az+72)

On the other hand, by Lemma 2.6 {Rz,} is strongly convergent to an element
q € B(T). By Lemma 2.3 we obtain

(xp — Rxp, JRxy — Ju) >0
for any u € B(T). Since by (T7) J is norm-to-norm continuous and

pE o (1—A)Cq+Aeg Aeq+(1—A)Co (T) - B(T),

T @=N(ar+B1)FA(az+2) T (T=AN) (a1 +B1)+ (e +72)

we obtain

(p—q,Jqa—Jp) = 0.
From (3.3) we obtain

—¢(p,q) — (g, p) > 0.

By (T13) we obtain p = g.
Additionally, if C' is closed and (1) or (2) holds, then p € C. By Lemma 3.6 ¢ = p
is a fixed point of T O

Let E* be the dual space of a strictly convex, reflexive and smooth Banach space
E and let C* be a nonempty subset of E*. A mapping 7™ from C* into E* is called
a *-generalized pseudocontraction [11] if there exist i, as, f1, 82,71, 72,01, 92,1,
€2,(1, (2 € R such that

a1¢.(T*x*, T*y*) + o (Ty*, T*x*) + B1ox(a*, T*y*) + Lo (T*y*, x*)
F710 (T 2%, y*) + Y204 (¥, T*x*) + 0104 (2%, y*) + d2u (y*, %)
Fe10x(THx", 2%) + e2du (27, T"2") + Qo (y", T*y") + G (T*y*, ™)

<0

for any z*,y* € C*. Such a mapping is called an (a1, a9, 1, 82,71,72, 01, 02, €1, €2,
(1, C2)-*-generalized pseudocontraction.

Lemma 4.5. Let E* be the dual space of a strictly conver, reflexive and smooth
Banach space E, let C* and D* be nonempty subsets of E*, let T* be an (a1, ag, b1,
B2,71,Y2, 01,02, €1, €2, (1, C2) - *-generalized pseudocontraction from C* into D* and
let X €[0,1]. Then T* is a ((1 —N)aq + Aaa), Aag + (1 = N)ag, (1 —X)B1 4+ Ay, Ay +
(1—/\)ﬂ2, (1—/\)’)/1-1-)\,82, )\514-(1—)\)72, (1—)\)(51+)\(52, )\(51+(1—)\)52, (1—/\)81 +)\C2,
MG+ (1=N)eg, (1 =X)C + Aeg, Ae1 + (1 — N)(2)-*-generalized pseudocontraction from
C* into D*.

Proof. The proof is similar to the proof of Lemma 4.2. O
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Theorem 4.6. Let E* be the dual space of a strictly convex, reflexive and smooth
Banach space E, where E* has a uniformly Gateaux differentiable norm, let C* be
a nonempty subset of E*, let {z}} be a sequence in C* and let T* be an (a1, aa,
B1, B2,71, 72, 01,02, €1, €2, (1, (2)-*-generalized pseudocontraction from C* into E*.
Suppose that there exists A € [0,1] such that

(I =X)(a1+ B+ +01) + Maz + B2 + 72 + 2) = 0;

Alar+m) + (1 = A)(az + B2) > 0;

AL+0) + (1= N2 +8) 2 0;

(1 =A)e1+ A2 > 0;

AG+ (1= A)ez > 0;

(1 =X (a1 + p1) + Aaz + v2) > 0.
If {x}} is weakly convergent to ¢* and {x} —T*x}} is strongly convergent to 0, then

* * *
q¢ € JZ{_ (1=N)¢1+Aeg _ Ae1+(1-=N)¢o (T )
(1= (a1 +B1)+A(ag+72) " (A=) (a1+B1)+A(a2+72)

In particular, any fized point of T* belongs to

* *
27_ (A=N){g+Aeg _ Ae1+(1-2N)¢o (T )
(I=X) (a1 +B1)+A(ag+72) " (1=A)(a1+B1)+A(ax+72)

Proof. By Lemma 4.5 T* is a ((1—X)a1 +Aa2), Aai +(1—X)az, (1—=X)B1+Ay2, Ay +
(1—)\)ﬁ2, (1—)\)’}/14-)\52, )\,Bl—i-(l—)\)’yg, (1—)\)51+A(52, )\51—1—(1—)\)(52, (1—)\)€1+)\C2,
AC A+ (1 — Nea, (1 — N1+ Ae, Aer + (1 — A)(a)-*-generalized pseudocontraction.
From (2.1) and (3.3) we obtain

(4.3) @u(u*,v*) = du(u*, w*) + du(w*,v*) + 2(J tw* — T Lo* u* — w*).

Note that by (T10) E* is strictly convex. Therefore we obtain similarly to the proof
of Theorem 4.3

(1= Nan + Aa) (o (T72", T7y") — du (2™, Ty"))
+(Aar + (1= A)ag) (¢ (T7y", T72") — ¢ (T7y", 27))

+((L =Ny + AB2) (@ (T72", y") — du(z™,y"))

+(AB1 4+ (1 = MN)72) (9« (y", T72") — (™, 27))
+((1=MN(a1 4+ B+ C1) + Maz + 72 +€2)) o (v*, T y")
+(Aer + (1 = N)Q)o(T7y", y7)

+2((1 = M) (a1 + B1) + Mag + 7)) (I Hy* — T 1T y* 2" — y*)
<0.

Let {z}} be a sequence in C. Suppose that {z}} is weakly convergent to ¢* and
{z} — T*z}} is strongly convergent to 0. Replacing z* by z, we obtain

(1= Aar + Aaa)(d« (Txy, T"y") — bu (2, T"y7))
+(Aar + (1= A)ag) (9 (T7y", T ;) — ¢ (Ty", 27,))
(1= X714 AB2) (0« (T" a7, y*) — P2, y7))
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FABL+ (1 = A)v2) (@ (v, T a7,) — 0 (y™, 7))
H((T = A)(a1 + B1 + C1) + Moz + 72 + €2)) o« (y*, T™y")
+(Ae1 + (1 = N)G)o (T, y")
+2((1 = N)(a1 + B1) + Moz + 7)) (I 1y = T Ty, — o)
<0.

From (4.3) we obtain

Gu (T, ") — oy, ") = 2(J "y — Tay) + [Ty P — [l 1%,

Ou (W, T*xy) — ¢ (w*, ) = 2(T gy — T Ty, w*) + | Ty |2 — |l |1
Since {x} — T*z}} is strongly convergent to 0, we obtain

lim (J lw*, z — T*2%) = 0.

n—oo

Moreover by Lemma 4.1 we obtain

lim (J 'ak — J T2 w*) = 0.

n—oo
Since {z}} is weakly convergent, {z}} is bounded. Moreover, since {x} — Tz} is
strongly convergent to 0, {7z} } is also bounded. Since
Tzl = 22| = (Tl + eI sl — |
< (1Tl + [l DT 27, — 25|
and {z} — T*z}} is strongly convergent to 0, we obtain
. * 0k (12 * (12 __
Tim (T2 — [l 2) = 0.
Therefore we obtain
(1 =N (ea + B+ 1) + Moz + 72 +€2)) ¢ (y", Ty
+(Aer + (1= N)G)e(T7y", y")
+2((1 = M) (a1 + B1) + Maz +92))d" — ", J7ly" = T T™y")
<0.
From (4.3) we obtain
(L= + Ae2)da (y", T7y") + (Aer + (1= A)G2) (T, ")
(1= N1+ b1) + Maz +72))(9(¢", T*y") — ¢«(q7,y"))
<0.
Since (1 — A)(a1 + f1) + Aoz +72) > 0, we obtain
* ok % * % (1_>‘)<1+)‘€2
* 7T S * ) -
P T < 0uld37) (1 =M1+ B1) + Aaz +72)

_ )\51+(]—_)‘)<2 * ok
= N1 1 B+ Mo 779y VY

o« (Y™, T y")

and hence

* *
q¢ € JZ{_ (1=XN)¢1+Aeg _ Ae1+(1-=N)¢o (T)
(A=) (a1 +B1)+A(aa+7v2) " (A=) (a1+B1)+A(az+72)
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g

Theorem 4.7. Let E* be a uniformly convex topological dual space with a uniformly
Fréchet differentiable norm, let C* be a nonempty convex subset of E* and let T*
be an (a1, a9, B1, B2,71,72, 01,02, €1, €2, (1, (2)-*-generalized pseudocontraction from
C* into itself. Suppose that there exists A € [0, 1] such that

IT=XN(a1+B1+7+01) + XMaz+ B2+ 72+ d2) > 0;

AMag +71) + (1= AN)(ag + B2) > 0;

A(Br+61) + (1 = A) (72 + d2) = 0;

(1=XNe1+ A& >0;

AG 4 (1= A)eg > 0;

(1= X) (a1 + B1) + AMag +12) > 0,

and suppose that
o™ (1=A)¢1 +Aen Aeq+(1=A)Co (T") C Byo(T7) # 0.

T O=N(ar B FA(ag+r2) T (T=N)(ay +81) A (az+72)

Let R* be the sunny generalized nonexpansive retraction of E* onto 4 (T*) and let
{an} be a sequence of real numbers with oy, € (0,1) and liminf,,_, a, (1 —ay) > 0.

Then a sequence {z}} generated by x = xz* € C* and
Ty =ty + (1 —ap)T ),

n

for any n € N is weakly convergent to an element

* * *
q € JZ{_ (1=X)¢1+Aeg _ Ae1+(1=X)¢o (T ),
(A=) (a1 +B1)+A (g +72) " (1=XN) (a1 +B1)+A(a2+72)

where ¢* = limy, o0 R*x}.

Additionally, if C* is closed and one of the following holds:
(1) A=XN(ar+B1+C)+Maz+72+e2)>0and Aey + (1 = NG > 0;
2 =N+ +G)+ANag+r2+e2) >0 and Aer + (1 — M) >0,

then q¢* is a fized point of T™.

Proof. By (T1) and (T12) E is a uniformly convex Banach space with a uniformly
Fréchet differentiable norm. Therefore ¢, is well-defined. By the assumption E* is
strictly convex and smooth, and by (T1) E* is reflexive. By Lemma 3.2 %;,(T™)
is closed and by Lemma 3.5 J(%( ,(T™)) is closed and convex. Therefore by Lem-
mas 2.4 and 2.2 there exists a unique sunny nonexpansive retraction R* of £* onto

B 0(T7).
Let 2* € % o(T™). Then we obtain
Gu(xhy1,2") = Oulanzy, + (1 — an)T™ ), 2%)
< Ozn(ﬁ*(l':;, Z*) + (1 - an)é*(T*x:w Z*)
< an@s(@h,27) + (1 — an)du (2, 27)

P, 27)-
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Therefore {¢p. (2}, 2*)} is non-increasing and hence lim,, o ¢« (2}, 2*) exists. More-
over {z},} is bounded and {T™z}} is also bounded. Put r = sup,,cn{||z} ||, | T2} ||}
By Lemma 2.1 we obtain
¢*( Tpt1r % )
= ¢u(anz), + (1 —ap)T 2}, 2¥)
= llanzy, + (1 = an) T 2y || = 20712, anay, + (1 — an) T ay) + |27
< oanxZH? + (1= an) T2, |* = an(l — an)g (|, — T*, )
—2(J7 2 apan + (1 — o) T k) + |27
= an(flzp|* = 20712, 23) + [12]%)
+(1 = an) (| T2 |17 = 20712, Ty + 1|27)1%)
—an(1 = an)g(|lz;, — T zy])
— (@ 2%) + (1 = )Bu(T*55 2%) — an(l — an)g(z, - T2 1)
< Guly, 27) — an (1 — an)g([lay, — T 2y )

Therefore we obtain

an(l —an)g(llz, = Tz, |) < @ulay, 2°) = dul@741,27)-
Since liminf,, s an(l — ay,) > 0, we obtain
Jim g([fa, =T ])) = 0.
By (T1) E* is reflexive. Since {x},} is bounded, there exists a subsequence {z}, }
of {23} such that {z}, } is weakly convergent to an element p* € E*. Let {7 }

be an another subsequence of {z} and suppose that {JJ’;L]} is weakly convergent to
pi € E*. By Theorem 4.6

* * *
p,p1 € fQ/_ (1-N)¢q+Aen _ Aep+(1-N)¢o (T).
(I=N) (a1 +B1)+A(ag+v2)”  (1=N)(a1+B1)+A(az+72)
Since
* * * *
A (1=2)¢q+Aeg 3 Aeqp+(1-A)Co (%) C ﬁo,o(T ),
(I=N)(a1+81)+A(ag+72) " (1=N)(a1+B1)+A(az+72)
limy, o0 (2, p*) and limy, oo ¢u(2), p}) exist. Put a = lim,yoo(@u(x), p*) —

¢« (2}, p7)). Since
G (@, p*) — dulah, p}) = 200 '} — T 1p%, 2l + 1P — w112,
we obtain
a=2(J""p; — 7" ") + Ip* 1P — Pt %
a=2(J"'p} — I, p) + |Ip*]1* — |Ipt %
Therefore we obtain
(J7'pt —J " —p}) =0.
From (4.3) we obtain
—¢+(p", p1) — ¢« (p1,p") = 0.
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By (T13)* we obtain pj = p* and hence {2} is weakly convergent to

% * *
P € d_ (1=N)¢1+Aeg _ Aep+(1=2)¢o (T )
(I=XN)(a1+B1)+A(ag+y2)”  (1=N)(a1+B1)+A(ag+72)

On the other hand, by Lemma 2.6 {R*z}} is strongly convergent to an element
q* € %;o(T*). By Lemma 2.3 we obtain

(J7'R*xr — J 7w af — R*22) >0
for any u* € %; o(T™). Since by (T7) J ~1 is norm-to-norm continuous and

* * * * *
p < JZ{_ (1-X)C1+Aeo _ Aeg+(1-2)Co (T ) - <@0,0(1—‘ )7
(I=N)(a1+B1)+ A (ag+v2) " (1=N)(a1+B1)+ (az+72)

we obtain

<J71q* o Jflp*jp* o q*) > 0.
From (4.3) we obtain

—0«(p",q") — ¢+(¢",p") 2 0.
By (T13) we obtain p* = ¢*.

Additionally, if C* is closed and (1) or (2) holds, then p* € C*. By Lemma 3.7
q* = p* is a fixed point of T*. O
By Theorem 4.7 we obtain the following.
Theorem 4.8. Let E be a uniformly convexr Banach space with a uniformly Fréchet
differentiable norm, let C' be a nonempty subset of E satisfying J(C) is convex

and let T be an (a1, aq, 1, B2,71, V2, 01,02,€1, €2, (1, (2)-generalized pseudocontrac-
tion from C' into itself. Suppose that there exists \ € [0,1] such that

(1= N(a2 + B2+ 72+ d2) + Mar + B1 + 71+ 61) > 0;
Moz +72) + (1 = A)(ea + B1) = 0;

A(B2 4 02) + (1 = A) (71 + 61) = 0;

(1= A)ea + A1 > 0;

AG2 + (1= A)er > 0;

(I =X (a2 + B2) + AMax +71) > 0,

suppose that
B Aeg+(1=A)¢; (1=N)&atAeg (T)CA(T)#0

T @=-N(ag+B2)FA(ar 1) (T=N)(ag+B2)+A (a1 +71)

and suppose that J~1 is weakly sequentially continuous. Let R* be the sunny gen-
eralized nonexpansive retraction of E* onto J(A(T)) and let {a,} be a sequence of
real numbers with o, € (0,1) and liminf, ,o a,(1 — ay,) > 0. Then a sequence
{zn} generated by x1 =z € C and

Tptl = Jﬁl(aann + (1 —ap)JTzy)
for any n € N is weakly convergent to an element

q € %_ Aeg+(1-A)¢q _ (I-A)¢atAey (T)7
(1= (ag+B2)+A(a1+71) " (A=A (ag+B2)+A(1+71)
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where ¢ = limy,_yo0 J T R*J 2.
Additionally, if J(C) is closed and one of the following holds:

(1) (1 — )\)(042 + 52 + CQ) + )\(041 +7 + 61) > 0 and Aegy + (1 — )\)Cl > O,’
(2) (I=XN(az+ B2+ ) +AMar+7 +e1) >0 and Aea + (1 = A)G >0,

then q is a fized point of T'.

Proof. By (T1) and (T12) E* is uniformly convex with a uniformly Fréchet differ-
entiable norm. Let T* = JTJ~!. Then T* is a mapping from J(C) into itself.
Putting z* = Jz and y* = Jy, (4.1) is equivalent to

Qo (T2, T*y*) + a1 (T y*, T*x*) 4 Bagu(z*, T*y*) + L1 (T y*, ™)
Fy204 (T2, y*) + 710 (y*, T")) + 2 (2™, y*) + 0104 (y*, 2*
teau (T ", %) + €104 (2", T*2™) + G (v, T*y*) + Q1o (T*y*, y*)

<0

from (2.1). Therefore T* is an (g, a1, B2, 51,72, 71, 02, 01, €2, €1, (2, (1 )-*-generalized
pseudocontraction from J(C) into itself. Since (T7)"z* = JT"z, ||(T*)"z*|| =
|JT™z| = |[|[T™z| and hence {(T™)"z* | n € NU{0}} is bounded. By Lemma 3.5

* *
»Q{_ (1=M\)Cot+Aeg _ Aeo+(1-A)Cy (T7%)
(I=X)(ag+B2)+A(a1+71)’ (1=N)(ag+B2)+A(az+72)

=J <%( Aeg+(1—-A)¢q (1=X)Cot+Aey (T)> ’

T=N(ag+B2)+ A (ag+72) " (1=X)(ag+B2)+FA (e +71)

Boo(T") = J(A(T)).

By Theorem 4.7 for any = € C, {Jx,} is weakly convergent to an element

¢ eJ <<@ Aea+(1-M)¢y (1=M\)Ca+Aey (T)> ;

T A=N(ag+B2)FA(ag+t12) T (T=N)(ag+B2)+r(a1+71)

where ¢* = lim,, oo R*J2,. Since J~! is weakly sequentially continuous and by
(T7) J~! is norm-to-norm continuous, {x,} is weakly convergent to the element

—1
q= J q* S <%)_ Aeo+(1-2)¢ _ (1=MN)¢otAeq (T),
(I=X)(ag+B2)+A(ag+v2)’  (1=N)(ag+B2)+A(a1+71)

where ¢ = limy, 00 J ' R*J ).
Additionally, if J(C) is closed and (1) or (2) holds, then ¢* is a fixed point of 7™
and hence ¢ = J~'¢* is a fixed point of T O
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