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for any x, y ∈ C. Any nonexpansive mapping is (1, 0)-generalized hybrid; any
nonspreading mapping is (2, 1)-generalized hybrid; any hybrid mapping is

(
3
2 ,

1
2

)
-

generalized hybrid.
Motivated these mappings, in [15] Kawasaki and Takahashi introduced a new very

wider class of mappings, called widely more generalized hybrid mappings, than the
class of all generalized hybrid mappings. A mapping T from C into H is widely
more generalized hybrid if there exist α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for any x, y ∈ C. Such a mapping is said to be (α, β, γ, δ, ε, ζ, η)-widely more
generalized hybrid. This class includes the class of all generalized hybrid mappings
and also the class of all k-pseudo-contractions [3] for k ∈ [0, 1]. A mapping T from
C into H is said to be k-pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(x− Tx)− (y − Ty)∥2

for any x, y ∈ C. Any (α, β)-generalized hybrid mapping is (α, 1 − α,−β, β − 1,
0, 0, 0)-widely more generalized hybrid; any k-pseudo-contraction is (1, 0, 0,−1, 0,
0,−k)-widely more generalized hybrid. Moreover they proved some fixed point
theorems [5–10,14–17] and some ergodic theorems [5, 6, 14–16].

There are some studies on Banach space related to these results. In [24] Taka-
hashi, Wong and Yao introduced the generalized nonspreading mapping and the
skew-generalized nonspreading mapping in a Banach space. Let E be a smooth
Banach space and let C be a nonempty subset of E. A mapping T from C into E
is said to be generalized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that

αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ε(ϕ(Ty, Tx)− ϕ(Ty, x)) + ζ(ϕ(y, Tx)− ϕ(y, x))

for any x, y ∈ C, where J is the duality mapping on E and

ϕ(u, v) = ∥u∥2 − 2⟨u, Jv⟩+ ∥v∥2.

Such a mapping is said to be (α, β, γ, δ, ε, ζ)-generalized nonspreading. A mapping
T from C into E is said to be skew-generalized nonspreading if there exist α, β, γ,
δ, ε, ζ ∈ R such that

αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ε(ϕ(Ty, Tx)− ϕ(y, Tx)) + ζ(ϕ(Ty, x)− ϕ(y, x))

for any x, y ∈ C. Such a mapping is said to be (α, β, γ, δ, ε, ζ)-skew-generalized
nonspreading. These classes include the class of generalized hybrid mappings in
a Hilbert space, however, it does not include the class of widely more generalized
hybrid mappings. Moreover they introduced some extensions of attractive point
and proved some attractive point theorems. x ∈ E is an attractive point of T if

ϕ(x, Ty) ≤ ϕ(x, y)
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for any y ∈ C; x ∈ E is a skew-attractive point of T if

ϕ(Ty, x) ≤ ϕ(y, x)

for any y ∈ C. Let

A(T ) = {x ∈ E | ϕ(x, Ty) ≤ ϕ(x, y) for any y ∈ C};
B(T ) = {x ∈ E | ϕ(Ty, x) ≤ ϕ(y, x) for any y ∈ C}.

Let C be a nonempty subset of a smooth Banach space E. A mapping T from
C into E is said to be generalized nonexpansive [4] if the set of all fixed points of T
is nonempty and

ϕ(Tx, y) ≤ ϕ(x, y)

for any x ∈ C and for any fixed point y of T . Let C be a nonempty subset of E of
a Banach space E. A mapping R from E onto C is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for any x ∈ E and for any t ∈ [0,∞). A mapping R from E onto C is called a
retraction or a projection if Rx = x for any x ∈ C.

Takahashi, Wong and Yao also proved the following weak convergence theorem.

Theorem 1.1. Let E be a uniformly convex Banach space with a uniformly Fréchet
differentiable norm, let C be a nonempty convex subset of E and let T be an (α, β, γ,
δ, ε, ζ)-generalized nonspreading mapping from C into itself satisfying α+β+γ+δ ≥
0 and α + β > 0. Suppose that A(T ) = B(T ) ̸= ∅. Let R be the sunny generalized
nonexpansive retraction of E onto B(T ) and let {αn} be a sequence of real numbers
with αn ∈ (0, 1) and lim infn→∞ αn(1 − αn) > 0. Then a sequence {xn} generated
by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn

for any n ∈ N is weakly convergent to an element q ∈ A(T ), where q = limn→∞Rxn.

On the other hand, in [1] Atsushiba, Iemoto, Kubota and Takeuchi introduced a
concept of acute point as an extension of attractive point in a Hilbert space. Let H
be a real Hilbert space, let C be a nonempty subset of H and let T be a mapping
from C into H and k ∈ [0, 1]. x ∈ H is called a k-acute point of T if

∥x− Ty∥2 ≤ ∥x− y∥2 + k∥y − Ty∥2

for any y ∈ C. Let

Ak(T ) = {x ∈ H | ∥x− Ty∥2 ≤ ∥x− y∥2 + k∥y − Ty∥2 for any y ∈ C}.

Moreover, using a concept of acute point, they proved convergence theorems without
convexity of C.

Motivated these results, in previous paper [11] we introduced a new class of
mappings on Banach space corresponding to the class of all widely more generalized
hybrid mappings on Hilbert space. In this paper we introduce some extensions of
weak convergence theorems.
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2. Preliminaries

We know that the following hold; for instance, see [21].

(T1) If a Banach space E is unformly convex, then E is reflexive.
(T2) Let E be a Banach space and let J be the duality mapping on E defined by

J(x) = {x∗ ∈ E∗ | ∥x∥2 = ⟨x, x∗⟩ = ∥x∗∥2}

for any x ∈ E. Then E is strictly convex if and only if J is injective, that
is, x ̸= y implies J(x) ∩ J(y) = ∅.

(T3) Let E be a Banach space, let E∗ be the topological dual space of E and
let J be the duality mapping on E. Then E is reflexive if and only if J is
surjective, that is,

∪
x∈E J(x) = E∗.

(T4) Let E be a Banach space and let J be the duality mapping on E. Then E
is smooth if and only if J is single-valued.

(T5) Let E be a Banach space and let J be the duality mapping on E. Then

⟨x− y, x∗ − y∗⟩ ≥ 0

holds for any x, y ∈ E, for any x∗ ∈ J(x) and for any y∗ ∈ J(y).
(T6) Let E be a Banach space and let J be the duality mapping on E. If J is

single-valued, then J is norm-to-weak* continuous.
(T7) Let E be a Banach space and let J be the duality mapping on E. If E has

the Fréche differentiable norm, then J is norm-to-norm continuous.
(T8) Let E be a Banach space and let J be the duality mapping on E. Then E

is strictly convex if and only if

1− ⟨x, y∗⟩ > 0

for any x, y ∈ E with x ̸= y and ∥x∥ = ∥y∥ = 1 and for any y∗ ∈ J(y).
(T9) Let E be a Banach space and let E∗ be the topological dual space of E.

Then E is reflexive if and only if E∗ is reflexive.
(T10) Let E be a Banach space and let E∗ be the topological dual space of E.

If E∗ is strictly convex, then E is smooth. Conversely, E is reflexive and
smooth, then E∗ is strictly convex.

(T11) Let E be a Banach space and let E∗ be the topological dual space of E.
If E∗ is smooth, then E is strictly convex. Conversely, E is reflexive and
strictly convex, then E∗ is smooth.

(T12) Let E be a Banach space and let E∗ be the topological dual space of E.
E has uniformly Frécht differentiable norm if and only if E∗ is uniformly
convex.

Let E be a smooth Banach space, let J be the duality mapping on E and let ϕ
be the mapping from E × E into [0,∞) defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for any x, y ∈ E. Since by (T4) J is single-valued, ϕ is well-defined. It is obvious
that x = y implies ϕ(x, y) = 0. Conversely, by (T8)

(T13) If E is also strictly convex, then ϕ(x, y) = 0 implies x = y.
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Let E be a strictly convex and smooth Banach space. By (T2) an (T4) J is a
bijective mapping from E onto J(E). In particular, if E is also reflective, then by
(T3) J is a bijective mapping from E onto E∗. Suppose that E is strictly convex,
reflective and smooth. Let ϕ∗ be the mapping from E∗ ×E∗ into [0,∞) defined by

ϕ∗(x
∗, y∗) = ∥x∗∥2 − 2⟨J−1y∗, x∗⟩+ ∥y∗∥2

for any x∗, y∗ ∈ E∗. Then

ϕ∗(x
∗, y∗) = ϕ(J−1y∗, J−1x∗)(2.1)

holds. Therefore

(T13)∗ ϕ∗(x
∗, y∗) = 0 if and only if x∗ = y∗.

We use the following lemmas in this paper.
The following showed in [25].

Lemma 2.1. Let E be a uniformly convex Banach space and let r ∈ (0,∞). Then
there exists a strictly increasing, continuous and convex function g from [0,∞) into
[0,∞) with g(0) = 0 and

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)

for any x, y ∈ Br
def
= {z ∈ E | ∥z∥ ≤ r} and for any λ ∈ [0, 1].

The following showed in [4].

Lemma 2.2. Let E be a strictly convex and smooth Banach space and let C be a
nonempty closed subset of E. Suppose that there exists a sunny generalized nonex-
pansive retraction of E onto C. Then the sunny generalized nonexpansive retraction
is uniquely determined.

Lemma 2.3. Let E be a strictly convex and smooth Banach space and let C be a
nonempty closed subset of E. Suppose that there exists a sunny generalized nonex-
pansive retraction of E onto C. Then the following hold.

(i) z = RCx if and only if ⟨x− z, Jz − Jy⟩ ≥ 0 for any y ∈ C;
(ii) ϕ(RCx, y) + ϕ(x,RCx) ≤ ϕ(x, y) for any y ∈ C.

The following showed in [19].

Lemma 2.4. Let E be a strictly convex, reflexive and smooth Banach space and let
C be a nonempty closed subset of E. Then the following are equivalent:

(i) There exists a sunny generalized nonexpansive retraction of E onto C;
(ii) There exists a generalized nonexpansive retraction of E onto C;
(iii) J(C) is closed and convex.

Lemma 2.5. Let E be a strictly convex, reflexive and smooth Banach space, let C
be a nonempty closed subset of E and (x, z) ∈ E × C. Suppose that there exists a
sunny generalized nonexpansive retraction RC of E onto C. Then the following are
equivalent:

(i) z = RCx;
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(ii) ϕ(x, z) = miny∈C ϕ(x, y).

The following showed in [24].

Lemma 2.6. Let E be a uniformly convex and smooth Banach space, let C be a
nonempty convex subset of E and let T be a mapping from C into itself. Suppose
that B(T ) ̸= ∅. Let R be the sunny generalized nonexpansive retraction of E onto
B(T ), let {αn} be a sequence of real numbers with αn ∈ (0, 1) and let {xn} be a
sequence generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn

for any n ∈ N. Then {Rxn} is strongly convergent to an element in B(T ).

3. Acute point and skew-acute point

Most of this section are included in [11], however, the following are described for
completeness.

Let E be a smooth Banach space, let C be a nonempty subset of E, let T be a
mapping from C into E and let k, ℓ ∈ R. x ∈ E is called a (k, ℓ)-acute point of T if

ϕ(x, Ty) ≤ ϕ(x, y) + kϕ(y, Ty) + ℓϕ(Ty, y)(3.1)

for any y ∈ C. x ∈ E is called a (k, ℓ)-skew-acute point of T if

ϕ(Ty, x) ≤ ϕ(y, x) + kϕ(y, Ty) + ℓϕ(Ty, y)(3.2)

for any y ∈ C. Let

Ak,ℓ(T )
= {x ∈ E | ϕ(x, Ty) ≤ ϕ(x, y) + kϕ(y, Ty) + ℓϕ(Ty, y) for any y ∈ C};
Bk,ℓ(T )
= {x ∈ E | ϕ(Ty, x) ≤ ϕ(y, x) + kϕ(y, Ty) + ℓϕ(Ty, y) for any y ∈ C}.

It is obvious that

Ak1,ℓ1(T ) ⊂ Ak2,ℓ2(T ), Bk1,ℓ1(T ) ⊂ Bk2,ℓ2(T )

for any k1, k2, ℓ1, ℓ2 ∈ R with k1 ≤ k2 and ℓ1 ≤ ℓ2.
The following lemmas are important property characterizing them.

Lemma 3.1. Let E be a smooth Banach space, let C be a nonempty subset of E,
let T be a mapping from C into E and let k, ℓ ∈ R. Then Ak,ℓ(T ) is closed and
convex.

Proof. (3.1) is equivalent to

2⟨x, Jy − JTy⟩ ≤ (k − 1)ϕ(y, Ty) + ℓϕ(Ty, y) + 2⟨y, Jy − JTy⟩.
Since

ϕ(u, v) = ϕ(u,w) + ϕ(w, v) + 2⟨u− w, Jw − Jv⟩(3.3)

for any u, v, w ∈ E, Ak,ℓ(T ) is closed and convex. □
Lemma 3.2. Let E be a smooth Banach space, let C be a nonempty subset of E,
let T be a mapping from C into E and let k, ℓ ∈ R. Then Bk,ℓ(T ) is closed.
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Proof. (3.2) is equivalent to

2⟨y − Ty, Jx⟩ ≤ kϕ(y, Ty) + (ℓ− 1)ϕ(Ty, y) + 2⟨y − Ty, Jy⟩
from (3.3). Moreover by (T6) J is norm-to-weak* continuous. Therefore Bk,ℓ(T ) is
closed. □

Let E∗ be the dual space of a strictly convex, reflexive and smooth Banach space
E, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗ into E∗ and
let k, ℓ ∈ R. x∗ ∈ E∗ is called a (k, ℓ)-*-acute point of T ∗ if

ϕ∗(x
∗, T ∗y∗) ≤ ϕ∗(x

∗, y∗) + kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)(3.4)

for any y∗ ∈ C∗. x∗ ∈ E∗ is called a (k, ℓ)-*-skew-acute point of T ∗ if

ϕ∗(T
∗y∗, x∗) ≤ ϕ∗(y

∗, x∗) + kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)(3.5)

for any y∗ ∈ C∗. Let

A ∗
k,ℓ(T

∗)

=

{
x∗ ∈ E∗

∣∣∣∣ ϕ∗(x
∗, T ∗y∗) ≤ ϕ∗(x

∗, y∗) + kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)
for any y∗ ∈ C∗

}
;

B∗
k,ℓ(T

∗)

=

{
x∗ ∈ E∗

∣∣∣∣ ϕ∗(T
∗y∗, x∗) ≤ ϕ∗(y

∗, x∗) + kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)
for any y∗ ∈ C∗

}
.

Lemma 3.3. Let E∗ be the dual space of a strictly convex, reflective and smooth
Banach space E, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗

into E∗ and let k, ℓ ∈ R. Then A ∗
k,ℓ(T

∗) is closed and convex.

Proof. (3.4) is equivalent to

2⟨J−1y∗ − J−1T ∗y∗, x∗⟩
≤ (k − 1)ϕ∗(y

∗, T ∗y∗) + ℓϕ∗(T
∗y∗, y∗) + 2⟨J−1y∗ − J−1T ∗y∗, y∗⟩

from (3.3) and (2.1), A ∗
k,ℓ(T

∗) is closed and convex. □
Lemma 3.4. Let E∗ be the dual space of a strictly convex, reflexive and smooth
Banach space E, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗

into E∗ and let k, ℓ ∈ R. Then B∗
k,ℓ(T

∗) is closed.

Proof. (3.5) is equivalent to

2⟨J−1x∗, y∗ − T ∗y∗⟩
≤ kϕ∗(y

∗, T ∗y∗) + (ℓ− 1)ϕ∗(T
∗y∗, y∗) + 2⟨J−1y∗, y∗ − T ∗y∗⟩

from (3.3) and (2.1). Moreover by (T6) J−1 is norm-to-weak* continuous. Therefore
B∗

k,ℓ(T
∗) is closed. □

Lemma 3.5. Let E be a strictly convex, reflexive and smooth Banach space, let C
be a nonempty subset of E, let T be a mapping from C into E, let T ∗ = JTJ−1 and
let k, ℓ ∈ R. Then

A ∗
k,ℓ(T

∗) = J(Bℓ,k(T )), B∗
k,ℓ(T

∗) = J(Aℓ,k(T )).
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In particular, J(Bk,ℓ(T )) is closed and convex and J(Ak,ℓ(T )) is closed.

Proof. Let x∗ ∈ A ∗
k,ℓ(T

∗). Then

ϕ∗(x
∗, T ∗y∗) ≤ ϕ∗(x

∗, y∗) + kϕ∗(y
∗, T ∗y∗) + ℓϕ∗(T

∗y∗, y∗)

for any y∗ ∈ J(C). From (2.1)

ϕ(J−1T ∗y∗, J−1x∗)

≤ ϕ(J−1y∗, J−1x∗) + kϕ(J−1T ∗y∗, J−1y∗) + ℓϕ(J−1y∗, J−1T ∗y∗)

for any y∗ ∈ J(C). Since J−1T ∗ = TJ−1, putting y = J−1y∗, we obtain

ϕ(Ty, J−1x∗) ≤ ϕ(y, J−1x∗) + ℓϕ(y, Ty) + kϕ(Ty, y).

Therefore J−1x∗ ∈ Bℓ,k(T ) and hence A ∗
k,ℓ(T

∗) = J(Bℓ,k(T )).

B∗
k,ℓ(T

∗) = J(Aℓ,k(T )) can be shown similarly.

Moreover, by Lemma 3.3 J(Bk,ℓ(T )) is closed and convex and by Lemma 3.4
J(Ak,ℓ(T )) is closed. □

Lemma 3.6. Let E be a strictly convex and smooth Banach space, let C be a
nonempty subset of E, let T be a mapping from C into E and let k, ℓ ∈ R. Then
the following hold.

(1) If (k, ℓ) ∈ (−∞, 1]× (−∞, 0] \ {(1, 0)}, then C ∩Ak,ℓ(T ) is included in the set
of all fixed points of T ;

(2) If (k, ℓ) ∈ (−∞, 0]× (−∞, 1] \ {(0, 1)}, then C ∩Bk,ℓ(T ) is included in the set
of all fixed points of T .

Proof. Let x ∈ C ∩ Ak,ℓ(T ). Then (3.1) holds for any y ∈ C. Putting y = x, we
obtain (1−k)ϕ(x, Tx)− ℓϕ(Tx, x) ≤ 0. If (k, ℓ) ∈ (−∞, 1]× (−∞, 0]\{(1, 0)}, then
by (T13) we obtain x = Tx.

Let x ∈ C ∩ Bk,ℓ(T ). Then (3.2) holds for any y ∈ C. Putting y = x, we obtain
−kϕ(x, Tx) + (1− ℓ)ϕ(Tx, x) ≤ 0. If (k, ℓ) ∈ (−∞, 0]× (−∞, 1] \ {(0, 1)}, then by
(T13) we obtain x = Tx. □

Lemma 3.7. Let E∗ be a strictly convex and smooth topological dual space of a
Banach space, let C∗ be a nonempty subset of E∗, let T ∗ be a mapping from C∗ into
E∗ and let k, ℓ ∈ R. Then the following hold.

(1) If (k, ℓ) ∈ (−∞, 1] × (−∞, 0] \ {(1, 0)}, then C ∩ A ∗
k,ℓ(T

∗) is included in the
set of all fixed points of T ∗;

(2) If (k, ℓ) ∈ (−∞, 0] × (−∞, 1] \ {(0, 1)}, then C ∩ B∗
k,ℓ(T

∗) is included in the
set of all fixed points of T ∗.

Proof. Let x∗ ∈ C∗ ∩A ∗
k,ℓ(T

∗). Then (3.4) holds for any y∗ ∈ C∗. Putting y∗ = x∗,

by we obtain (1−k)ϕ∗(x
∗, T ∗x∗)−ℓϕ∗(T

∗x∗, x∗) ≤ 0. If (k, ℓ) ∈ (−∞, 1]×(−∞, 0]\
{(1, 0)}, then by (T13)∗ we obtain x∗ = T ∗x∗.

Let x∗ ∈ C∗ ∩ B∗
k,ℓ(T

∗). Then (3.5) holds for any y∗ ∈ C∗. Putting y∗ = x∗, by

we obtain −kϕ∗(x
∗, T ∗x∗)+ (1− ℓ)ϕ∗(T

∗x∗, x∗) ≤ 0. If (k, ℓ) ∈ (−∞, 0]× (−∞, 1] \
{(0, 1)}, then by (T13)∗ we obtain x∗ = T ∗x∗. □
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4. Weak convergence theorems

Lemma 4.1. Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm and let {xn} and {yn} be sequences in E. If {xn} is bounded
and {xn − yn} is strongly convergent to 0, then {Jxn − Jyn} is weakly convergent
to 0.

Proof. Since {xn} is bounded and {xn−yn} is strongly convergent to 0, {yn} is also

bounded. Firstly we show in the case of {xn}, {yn} ⊂ S(E)
def
= {z ∈ E | ∥z∥ = 1}.

Note that

lim
t→0

∥x+ ty∥ − 1

t
= ⟨y, Jx⟩

for any x, y ∈ S(E) if the norm ∥ · ∥ of E is Gâteaux differentiable. Since the norm
∥ · ∥ of E is uniformly Gâteaux differentiable, we have that, for any w ∈ E with
w ̸= 0 and for any ε > 0, there exists δ > 0 such that, if 0 < |t| < δ, then∣∣∣∣∣∣

∥∥∥xn + t
∥w∥w

∥∥∥− 1

t
− 1

∥w∥
⟨w, Jxn⟩

∣∣∣∣∣∣ < ε,

∣∣∣∣∣∣
∥∥∥yn + t

∥w∥w
∥∥∥− 1

t
− 1

∥w∥
⟨w, Jyn⟩

∣∣∣∣∣∣ < ε

for any n ∈ N. Therefore we obtain∥∥∥∥xn +
t

∥w∥
w

∥∥∥∥ < 1 + tε+
t

∥w∥
⟨w, Jxn, ⟩,∥∥∥∥xn − t

∥w∥
w

∥∥∥∥ < 1 + tε− t

∥w∥
⟨w, Jxn, ⟩,∥∥∥∥yn +

t

∥w∥
w

∥∥∥∥ < 1 + tε+
t

∥w∥
⟨w, Jyn, ⟩,∥∥∥∥yn − t

∥w∥
w

∥∥∥∥ < 1 + tε− t

∥w∥
⟨w, Jyn, ⟩

for any t ∈ (0, δ). Since

|⟨xn, Jyn⟩ − 1| = |⟨xn − yn, Jyn⟩|
≤ ∥xn − yn∥,

|⟨yn, Jxn⟩ − 1| = |⟨yn − xn, Jxn⟩|
≤ ∥yn − xn∥,

we have that there exists N ∈ N such that

|⟨xn, Jyn⟩ − 1| < tε,

|⟨yn, Jxn⟩ − 1| < tε

for any n > N . Therefore

−tε < ⟨xn, Jyn⟩ − 1



156 TOSHIHARU KAWASAKI

=

⟨
xn +

t

∥w∥
w, Jyn

⟩
+

⟨
xn − t

∥w∥
w, Jxn

⟩
− t

∥w∥
⟨w, Jyn − Jxn⟩ − 2

≤
∥∥∥∥xn +

t

∥w∥
w

∥∥∥∥+

∥∥∥∥xn − t

∥w∥
w

∥∥∥∥− t

∥w∥
⟨w, Jyn − Jxn⟩ − 2

< 2tε− t

∥w∥
⟨w, Jyn − Jxn⟩

and hence

⟨w, Jyn − Jxn⟩ < 3∥w∥ε;

−tε < ⟨yn, Jxn⟩ − 1

=

⟨
yn +

t

∥w∥
w, Jxn

⟩
+

⟨
yn − t

∥w∥
w, Jyn

⟩
− t

∥w∥
⟨w, Jxn − Jyn⟩ − 2

≤
∥∥∥∥yn +

t

∥w∥
w

∥∥∥∥+

∥∥∥∥yn − t

∥w∥
w

∥∥∥∥− t

∥w∥
⟨w, Jxn − Jyn⟩ − 2

< 2tε− t

∥w∥
⟨w, Jxn − Jyn⟩

and hence

⟨w, Jxn − Jyn⟩ < 3∥w∥ε.

Therefore we obtain

|⟨w, Jxn − Jyn⟩| < 3∥w∥ε

and hence {Jxn − Jyn} is weakly convergent to 0. In the general case, if xn = 0 or
yn = 0, then

|⟨w, Jxn − Jyn⟩| ≤ ∥w∥∥Jxn − Jyn∥
= ∥w∥∥xn − yn∥;

otherwise

|⟨w, Jxn − Jyn⟩|

=

∣∣∣∣⟨w, ∥xn∥
(
J

(
1

∥xn∥
xn

)
− J

(
1

∥yn∥
yn

))
+ (∥xn∥ − ∥yn∥)J

(
1

∥yn∥
yn

)⟩∣∣∣∣
≤ ∥xn∥

∣∣∣∣⟨w, J

(
1

∥xn∥
xn

)
− J

(
1

∥yn∥
yn

)⟩∣∣∣∣+ ∥w∥
∣∣∥xn∥ − ∥yn∥

∣∣
≤ ∥xn∥

∣∣∣∣⟨w, J

(
1

∥xn∥
xn

)
− J

(
1

∥yn∥
yn

)⟩∣∣∣∣+ ∥w∥∥xn − yn∥.

Since {xn} is bounded,
{
J
(

1
∥xn∥xn

)
− J

(
1

∥yn∥yn

)}
is weakly convergent to 0 and

{xn − yn} is strongly convergent to 0, {Jxn − Jyn} is weakly convergent to 0. □
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Let E be a smooth Banach space and let C be a nonempty subset of E. A
mapping T from C into E is called a generalized pseudocontraction [11] if there
exist α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2 ∈ R such that

α1ϕ(Tx, Ty) + α2ϕ(Ty, Tx) + β1ϕ(x, Ty) + β2ϕ(Ty, x)
+γ1ϕ(Tx, y) + γ2ϕ(y, Tx) + δ1ϕ(x, y) + δ2ϕ(y, x)
+ε1ϕ(Tx, x) + ε2ϕ(x, Tx) + ζ1ϕ(y, Ty) + ζ2ϕ(Ty, y)

≤ 0

(4.1)

for any x, y ∈ C. Such a mapping is called an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1,
ζ2)-generalized pseudocontraction.

Lemma 4.2. Let E be a smooth Banach space, let C be a nonempty subset of E,
let D be a nonempty convex subset of E, let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1,
ε2, ζ1, ζ2)-generalized pseudocontraction from C into D and let λ ∈ [0, 1]. Then T is
a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2, (1−λ)γ1+λβ2,
λβ1 + (1 − λ)γ2, (1 − λ)δ1 + λδ2, λδ1 + (1 − λ)δ2, (1 − λ)ε1 + λζ2, λζ1 + (1 − λ)ε2,
(1− λ)ζ1 + λε2, λε1 + (1− λ)ζ2)-generalized pseudocontraction from C into D.

Proof. Changing the variables x and y in (4.1), we obtain

α2ϕ(Tx, Ty) + α1ϕ(Ty, Tx) + γ2ϕ(x, Ty) + γ1ϕ(Ty, x)
+β2ϕ(Tx, y) + β1ϕ(y, Tx) + δ2ϕ(x, y) + δ1ϕ(y, x)
+ζ2ϕ(Tx, x) + ζ1ϕ(x, Tx) + ε2ϕ(y, Ty) + ε1ϕ(Ty, y)

≤ 0.

(4.2)

Adding (4.1) multiplied by 1− λ and (4.2) multiplied by λ, we obtain

((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)
+((1− λ)β1 + λγ2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)
+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)
+((1− λ)δ1 + λδ2)ϕ(x, y) + (λδ1 + (1− λ)δ2)ϕ(y, x)
+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)
+((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

≤ 0.

Therefore T is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+(1−λ)β2,
(1 − λ)γ1 + λβ2, λβ1 + (1 − λ)γ2, (1 − λ)δ1 + λδ2, λδ1 + (1 − λ)δ2, (1 − λ)ε1 + λζ2,
λζ1 +(1−λ)ε2, (1−λ)ζ1 +λε2, λε1 +(1−λ)ζ2)-generalized pseudocontraction. □

Theorem 4.3. Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm, let C be a nonempty subset of E, let {xn} be a sequence in C
and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontrac-
tion from C into E. Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;
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λζ1 + (1− λ)ε2 ≥ 0;

(1− λ)(α1 + β1) + λ(α2 + γ2) > 0.

If {xn} is weakly convergent to q and {xn − Txn} is strongly convergent to 0, then

q ∈ A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ).

In particular, any fixed point of T belongs to

A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ).

Proof. By Lemma 4.2 T is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+
(1−λ)β2, (1−λ)γ1+λβ2, λβ1+(1−λ)γ2, (1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2,
λζ1+(1−λ)ε2, (1−λ)ζ1+λε2, λε1+(1−λ)ζ2)-generalized pseudocontraction. From
(3.3) we obtain

((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

+((1− λ)β1 + λγ2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)δ1 + λδ2)ϕ(x, y) + (λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

= ((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

−((1− λ)α1 + λα2)ϕ(x, Ty)

+((1− λ)(α1 + β1) + λ(α2 + γ2))(ϕ(x, y) + ϕ(y, Ty) + 2⟨x− y, Jy − JTy⟩)
+(λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)δ1 + λδ2)ϕ(x, y) + (λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

= ((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

−((1− λ)α1 + λα2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2))ϕ(x, y)

+(λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩.
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Since

(1− λ)(α1 + β1 + δ1) + λ(α2 + β2 + δ2) ≥ −((1− λ)γ1 + λγ2);

λγ1 + (1− λ)β2 ≥ −(λα1 + (1− λ)α2);

λδ1 + (1− λ)δ2 ≥ −(λβ1 + (1− λ)γ2);

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0,

we obtain

((1− λ)α1 + λα2)ϕ(Tx, Ty) + (λα1 + (1− λ)α2)ϕ(Ty, Tx)

−((1− λ)α1 + λα2)ϕ(x, Ty) + (λγ1 + (1− λ)β2)ϕ(Ty, x)

+((1− λ)γ1 + λβ2)ϕ(Tx, y) + (λβ1 + (1− λ)γ2)ϕ(y, Tx)

+((1− λ)(α1 + β1 + δ1) + λ(α2 + γ2 + δ2))ϕ(x, y)

+(λδ1 + (1− λ)δ2)ϕ(y, x)

+((1− λ)ε1 + λζ2)ϕ(Tx, x) + (λζ1 + (1− λ)ε2)ϕ(x, Tx)

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩
≥ ((1− λ)α1 + λα2)(ϕ(Tx, Ty)− ϕ(x, Ty))

+(λα1 + (1− λ)α2)(ϕ(Ty, Tx)− ϕ(Ty, x))

+((1− λ)γ1 + λβ2)(ϕ(Tx, y)− ϕ(x, y))

+(λβ1 + (1− λ)γ2)(ϕ(y, Tx)− ϕ(y, x))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩.

Therefore

((1− λ)α1 + λα2)(ϕ(Tx, Ty)− ϕ(x, Ty))

+(λα1 + (1− λ)α2)(ϕ(Ty, Tx)− ϕ(Ty, x))

+((1− λ)γ1 + λβ2)(ϕ(Tx, y)− ϕ(x, y))

+(λβ1 + (1− λ)γ2)(ϕ(y, Tx)− ϕ(y, x))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨x− y, Jy − JTy⟩
≤ 0.

Let {xn} be a sequence in C. Suppose that {xn} is weakly convergent to q and
{xn − Txn} is strongly convergent to 0. Replacing x by xn, we obtain

((1− λ)α1 + λα2)(ϕ(Txn, T y)− ϕ(xn, T y))
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+(λα1 + (1− λ)α2)(ϕ(Ty, Txn)− ϕ(Ty, xn))

+((1− λ)γ1 + λβ2)(ϕ(Txn, y)− ϕ(xn, y))

+(λβ1 + (1− λ)γ2)(ϕ(y, Txn)− ϕ(y, xn))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨xn − y, Jy − JTy⟩
≤ 0.

From (3.3) we obtain

ϕ(Txn, w)− ϕ(xn, w) = 2⟨xn − Txn, Jw⟩+ ∥Txn∥2 − ∥xn∥2,
ϕ(w, Txn)− ϕ(w, xn) = 2⟨w, Jxn − JTxn⟩+ ∥Txn∥2 − ∥xn∥2.

Since {xn − Txn} is strongly convergent to 0, we obtain

lim
n→∞

⟨xn − Txn, Jw⟩ = 0.

Since {xn} is weakly convergent, {xn} is bounded. Moreover, since {xn − Txn} is
strongly convergent to 0, by Lemma 4.1 we obtain

lim
n→∞

⟨w, Jxn − JTxn⟩ = 0.

Since ∣∣∥Txn∥2 − ∥xn∥2
∣∣ = (∥Txn∥+ ∥xn∥)

∣∣∥Txn∥ − ∥xn∥
∣∣

≤ (∥Txn∥+ ∥xn∥)∥Txn − xn∥

and {xn − Txn} is strongly convergent to 0, we obtain

lim
n→∞

(∥Txn∥2 − ∥xn∥2) = 0.

Therefore we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ(y, Ty)

+(λε1 + (1− λ)ζ2)ϕ(Ty, y)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨q − y, Jy − JTy⟩
≤ 0.

From (3.3) we obtain

((1− λ)ζ1 + λε2)ϕ(y, Ty) + (λε1 + (1− λ)ζ2)ϕ(Ty, y)

+((1− λ)(α1 + β1) + λ(α2 + γ2))(ϕ(q, Ty)− ϕ(q, y))

≤ 0.

Since (1− λ)(α1 + β1) + λ(α2 + γ2) > 0, we obtain

ϕ(q, Ty) ≤ ϕ(q, y)− (1− λ)ζ1 + λε2
(1− λ)(α1 + β1) + λ(α2 + γ2)

ϕ(y, Ty)

− λε1 + (1− λ)ζ2
(1− λ)(α1 + β1) + λ(α2 + γ2)

ϕ(Ty, y)
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and hence

q ∈ A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ).

□

Theorem 4.4. Let E be a uniformly convex Banach space with a uniformly Fréchet
differentiable norm, let C be a nonempty convex subset of E and let T be an (α1,
α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontraction from C into itself.
Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0;

(1− λ)(α1 + β1) + λ(α2 + γ2) > 0,

and suppose that

A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ) ⊂ B(T ) ̸= ∅.

Let R be the sunny generalized nonexpansive retraction of E onto B(T ) and let {αn}
be a sequence of real numbers with αn ∈ (0, 1) and lim infn→∞ αn(1−αn) > 0. Then
a sequence {xn} generated by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn

for any n ∈ N is weakly convergent to an element

q ∈ A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ),

where q = limn→∞Rxn.
Additionally, if C is closed and one of the following holds:

(1) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) > 0 and λε1 + (1− λ)ζ2 ≥ 0;
(2) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) ≥ 0 and λε1 + (1− λ)ζ2 > 0,

then q is a fixed point of T .

Proof. By the assumption E is strictly convex and smooth, and by (T1) E is re-
flexive. By Lemma 3.2 B(T ) is closed and by Lemma 3.5 J(B(T )) is closed and
convex. Therefore by Lemmas 2.4 and 2.2 there exists a unique sunny nonexpansive
retraction R of E onto B(T ).

Let z ∈ B(T ). Then we obtain

ϕ(xn+1, z) = ϕ(αnxn + (1− αn)Txn, z)

≤ αnϕ(xn, z) + (1− αn)ϕ(Txn, z)

≤ αnϕ(xn, z) + (1− αn)ϕ(xn, z)

= ϕ(xn, z).
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Therefore {ϕ(xn, z)} is non-increasing and hence limn→∞ ϕ(xn, z) exists. Moreover
{xn} is bounded and {Txn} is also bounded. Put r = supn∈N{∥xn∥, ∥Txn∥}. By
Lemma 2.1 we obtain

ϕ(xn+1, z) = ϕ(αnxn + (1− αn)Txn, z)

= ∥αnxn + (1− αn)Txn∥2 − 2⟨αnxn + (1− αn)Txn, Jz⟩+ ∥z∥2

≤ αn∥xn∥2 + (1− αn)∥Txn∥2 − αn(1− αn)g(∥xn − Txn∥)
−2⟨αnxn + (1− αn)Txn, Jz⟩+ ∥z∥2

= αn(∥xn∥2 − 2⟨xn, Jz⟩+ ∥z∥2)
+(1− αn)(∥Txn∥2 − 2⟨Txn, Jz⟩+ ∥z∥2)
−αn(1− αn)g(∥xn − Txn∥)

= αnϕ(xn, z) + (1− αn)ϕ(Txn, z)− αn(1− αn)g(∥xn − Txn∥)
≤ ϕ(xn, z)− αn(1− αn)g(∥xn − Txn∥).

Therefore we obtain

αn(1− αn)g(∥xn − Txn∥) ≤ ϕ(xn, z)− ϕ(xn+1, z).

Since lim infn→∞ αn(1− αn) > 0, we obtain

lim
n→∞

g(∥xn − Txn∥) = 0.

From the properties of g we obtain

lim
n→∞

∥xn − Txn∥ = 0.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni} of {xn}
such that {xni} is weakly convergent to an element p ∈ E. Let {xnj} be an another
subsequence of {xn} and suppose that {xnj} is weakly convergent to p1 ∈ E. By
Theorem 4.3

p, p1 ∈ A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ).

Since

A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ) ⊂ B(T ),

limn→∞ ϕ(xn, p) and limn→∞ ϕ(xn, p1) exist. Put a = limn→∞(ϕ(xn, p)−ϕ(xn, p1)).
Since

ϕ(xn, p)− ϕ(xn, p1) = 2⟨xn, Jp1 − Jp⟩+ ∥p∥2 − ∥p1∥2,

we obtain

a = 2⟨p, Jp1 − Jp⟩+ ∥p∥2 − ∥p1∥2,
a = 2⟨p1, Jp1 − Jp⟩+ ∥p∥2 − ∥p1∥2.

Therefore we obtain

⟨p− p1, Jp1 − Jp⟩ = 0.
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From (3.3) we obtain

−ϕ(p, p1)− ϕ(p1, p) = 0.

By (T13) we obtain p1 = p and hence {xn} is weakly convergent to

p ∈ A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ).

On the other hand, by Lemma 2.6 {Rxn} is strongly convergent to an element
q ∈ B(T ). By Lemma 2.3 we obtain

⟨xn −Rxn, JRxn − Ju⟩ ≥ 0

for any u ∈ B(T ). Since by (T7) J is norm-to-norm continuous and

p ∈ A− (1−λ)ζ1+λε2
(1−λ)(α1+β1)+λ(α2+γ2)

,− λε1+(1−λ)ζ2
(1−λ)(α1+β1)+λ(α2+γ2)

(T ) ⊂ B(T ),

we obtain

⟨p− q, Jq − Jp⟩ ≥ 0.

From (3.3) we obtain

−ϕ(p, q)− ϕ(q, p) ≥ 0.

By (T13) we obtain p = q.
Additionally, if C is closed and (1) or (2) holds, then p ∈ C. By Lemma 3.6 q = p

is a fixed point of T . □

Let E∗ be the dual space of a strictly convex, reflexive and smooth Banach space
E and let C∗ be a nonempty subset of E∗. A mapping T ∗ from C∗ into E∗ is called
a *-generalized pseudocontraction [11] if there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1,
ε2, ζ1, ζ2 ∈ R such that

α1ϕ∗(T
∗x∗, T ∗y∗) + α2ϕ∗(T

∗y∗, T ∗x∗) + β1ϕ∗(x
∗, T ∗y∗) + β2ϕ∗(T

∗y∗, x∗)
+γ1ϕ∗(T

∗x∗, y∗) + γ2ϕ∗(y
∗, T ∗x∗) + δ1ϕ∗(x

∗, y∗) + δ2ϕ∗(y
∗, x∗)

+ε1ϕ∗(T
∗x∗, x∗) + ε2ϕ∗(x

∗, T ∗x∗) + ζ1ϕ∗(y
∗, T ∗y∗) + ζ2ϕ∗(T

∗y∗, y∗)
≤ 0

for any x∗, y∗ ∈ C∗. Such a mapping is called an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2,
ζ1, ζ2)-*-generalized pseudocontraction.

Lemma 4.5. Let E∗ be the dual space of a strictly convex, reflexive and smooth
Banach space E, let C∗ and D∗ be nonempty subsets of E∗, let T ∗ be an (α1, α2, β1,
β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized pseudocontraction from C∗ into D∗ and
let λ ∈ [0, 1]. Then T ∗ is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+
(1−λ)β2, (1−λ)γ1+λβ2, λβ1+(1−λ)γ2, (1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2,
λζ1+(1−λ)ε2, (1−λ)ζ1+λε2, λε1+(1−λ)ζ2)-*-generalized pseudocontraction from
C∗ into D∗.

Proof. The proof is similar to the proof of Lemma 4.2. □
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Theorem 4.6. Let E∗ be the dual space of a strictly convex, reflexive and smooth
Banach space E, where E∗ has a uniformly Gâteaux differentiable norm, let C∗ be
a nonempty subset of E∗, let {x∗n} be a sequence in C∗ and let T ∗ be an (α1, α2,
β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized pseudocontraction from C∗ into E∗.
Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0;

(1− λ)(α1 + β1) + λ(α2 + γ2) > 0.

If {x∗n} is weakly convergent to q∗ and {x∗n−T ∗x∗n} is strongly convergent to 0, then

q∗ ∈ A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗).

In particular, any fixed point of T ∗ belongs to

A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗).

Proof. By Lemma 4.5 T ∗ is a ((1−λ)α1+λα2), λα1+(1−λ)α2, (1−λ)β1+λγ2, λγ1+
(1−λ)β2, (1−λ)γ1+λβ2, λβ1+(1−λ)γ2, (1−λ)δ1+λδ2, λδ1+(1−λ)δ2, (1−λ)ε1+λζ2,
λζ1 + (1 − λ)ε2, (1 − λ)ζ1 + λε2, λε1 + (1 − λ)ζ2)-*-generalized pseudocontraction.
From (2.1) and (3.3) we obtain

ϕ∗(u
∗, v∗) = ϕ∗(u

∗, w∗) + ϕ∗(w
∗, v∗) + 2⟨J−1w∗ − J−1v∗, u∗ − w∗⟩.(4.3)

Note that by (T10) E∗ is strictly convex. Therefore we obtain similarly to the proof
of Theorem 4.3

((1− λ)α1 + λα2)(ϕ∗(T
∗x∗, T ∗y∗)− ϕ∗(x

∗, T ∗y∗))

+(λα1 + (1− λ)α2)(ϕ∗(T
∗y∗, T ∗x∗)− ϕ∗(T

∗y∗, x∗))

+((1− λ)γ1 + λβ2)(ϕ∗(T
∗x∗, y∗)− ϕ∗(x

∗, y∗))

+(λβ1 + (1− λ)γ2)(ϕ∗(y
∗, T ∗x∗)− ϕ∗(y

∗, x∗))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨J−1y∗ − J−1T ∗y∗, x∗ − y∗⟩
≤ 0.

Let {x∗n} be a sequence in C. Suppose that {x∗n} is weakly convergent to q∗ and
{x∗n − T ∗x∗n} is strongly convergent to 0. Replacing x∗ by x∗n, we obtain

((1− λ)α1 + λα2)(ϕ∗(T
∗x∗n, T

∗y∗)− ϕ∗(x
∗
n, T

∗y∗))

+(λα1 + (1− λ)α2)(ϕ∗(T
∗y∗, T ∗x∗n)− ϕ∗(T

∗y∗, x∗n))

+((1− λ)γ1 + λβ2)(ϕ∗(T
∗x∗n, y

∗)− ϕ∗(x
∗
n, y

∗))
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+(λβ1 + (1− λ)γ2)(ϕ∗(y
∗, T ∗x∗n)− ϕ∗(y

∗, x∗n))

+((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨J−1y∗ − J−1T ∗y∗, x∗n − y∗⟩
≤ 0.

From (4.3) we obtain

ϕ∗(T
∗x∗n, w

∗)− ϕ∗(x
∗
n, w

∗) = 2⟨J−1w∗, x∗n − T ∗x∗n⟩+ ∥T ∗x∗n∥2 − ∥x∗n∥2,
ϕ∗(w

∗, T ∗x∗n)− ϕ∗(w
∗, x∗n) = 2⟨J−1x∗n − J−1T ∗x∗n, w

∗⟩+ ∥T ∗x∗n∥2 − ∥x∗n∥2.
Since {x∗n − T ∗x∗n} is strongly convergent to 0, we obtain

lim
n→∞

⟨J−1w∗, x∗n − T ∗x∗n⟩ = 0.

Moreover by Lemma 4.1 we obtain

lim
n→∞

⟨J−1x∗n − J−1T ∗x∗n, w
∗⟩ = 0.

Since {x∗n} is weakly convergent, {x∗n} is bounded. Moreover, since {x∗n − T ∗x∗n} is
strongly convergent to 0, {T ∗x∗n} is also bounded. Since∣∣∥T ∗x∗n∥2 − ∥x∗n∥2

∣∣ = (∥T ∗x∗n∥+ ∥x∗n∥)
∣∣∥T ∗x∗n∥ − ∥x∗n∥

∣∣
≤ (∥T ∗x∗n∥+ ∥x∗n∥)∥T ∗x∗n − x∗n∥

and {x∗n − T ∗x∗n} is strongly convergent to 0, we obtain

lim
n→∞

(∥T ∗x∗n∥2 − ∥x∗n∥2) = 0.

Therefore we obtain

((1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2))ϕ∗(y
∗, T ∗y∗)

+(λε1 + (1− λ)ζ2)ϕ∗(T
∗y∗, y∗)

+2((1− λ)(α1 + β1) + λ(α2 + γ2))⟨q∗ − y∗, J−1y∗ − J−1T ∗y∗⟩
≤ 0.

From (4.3) we obtain

((1− λ)ζ1 + λε2)ϕ∗(y
∗, T ∗y∗) + (λε1 + (1− λ)ζ2)ϕ∗(T

∗y∗, y∗)

+((1− λ)(α1 + β1) + λ(α2 + γ2))(ϕ∗(q
∗, T ∗y∗)− ϕ∗(q

∗, y∗))

≤ 0.

Since (1− λ)(α1 + β1) + λ(α2 + γ2) > 0, we obtain

ϕ∗(q
∗, T ∗y∗) ≤ ϕ∗(q

∗, y∗)− (1− λ)ζ1 + λε2
(1− λ)(α1 + β1) + λ(α2 + γ2)

ϕ∗(y
∗, T ∗y∗)

− λε1 + (1− λ)ζ2
(1− λ)(α1 + β1) + λ(α2 + γ2)

ϕ∗(T
∗y∗, y∗)

and hence

q∗ ∈ A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ).



166 TOSHIHARU KAWASAKI

□

Theorem 4.7. Let E∗ be a uniformly convex topological dual space with a uniformly
Fréchet differentiable norm, let C∗ be a nonempty convex subset of E∗ and let T ∗

be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-*-generalized pseudocontraction from
C∗ into itself. Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α1 + β1 + γ1 + δ1) + λ(α2 + β2 + γ2 + δ2) ≥ 0;

λ(α1 + γ1) + (1− λ)(α2 + β2) ≥ 0;

λ(β1 + δ1) + (1− λ)(γ2 + δ2) ≥ 0;

(1− λ)ε1 + λζ2 ≥ 0;

λζ1 + (1− λ)ε2 ≥ 0;

(1− λ)(α1 + β1) + λ(α2 + γ2) > 0,

and suppose that

A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗) ⊂ B∗
0,0(T

∗) ̸= ∅.

Let R∗ be the sunny generalized nonexpansive retraction of E∗ onto B∗
0,0(T

∗) and let

{αn} be a sequence of real numbers with αn ∈ (0, 1) and lim infn→∞ αn(1−αn) > 0.
Then a sequence {x∗n} generated by x∗1 = x∗ ∈ C∗ and

x∗n+1 = αnx
∗
n + (1− αn)T

∗x∗n

for any n ∈ N is weakly convergent to an element

q∗ ∈ A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗),

where q∗ = limn→∞R∗x∗n.
Additionally, if C∗ is closed and one of the following holds:

(1) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) > 0 and λε1 + (1− λ)ζ2 ≥ 0;
(2) (1− λ)(α1 + β1 + ζ1) + λ(α2 + γ2 + ε2) ≥ 0 and λε1 + (1− λ)ζ2 > 0,

then q∗ is a fixed point of T ∗.

Proof. By (T1) and (T12) E is a uniformly convex Banach space with a uniformly
Fréchet differentiable norm. Therefore ϕ∗ is well-defined. By the assumption E∗ is
strictly convex and smooth, and by (T1) E∗ is reflexive. By Lemma 3.2 B∗

0,0(T
∗)

is closed and by Lemma 3.5 J(B∗
0,0(T

∗)) is closed and convex. Therefore by Lem-
mas 2.4 and 2.2 there exists a unique sunny nonexpansive retraction R∗ of E∗ onto
B∗

0,0(T
∗).

Let z∗ ∈ B∗
0,0(T

∗). Then we obtain

ϕ∗(x
∗
n+1, z

∗) = ϕ∗(αnx
∗
n + (1− αn)T

∗x∗n, z
∗)

≤ αnϕ∗(x
∗
n, z

∗) + (1− αn)ϕ∗(T
∗x∗n, z

∗)

≤ αnϕ∗(x
∗
n, z

∗) + (1− αn)ϕ∗(x
∗
n, z

∗)

= ϕ∗(x
∗
n, z

∗).
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Therefore {ϕ∗(x
∗
n, z

∗)} is non-increasing and hence limn→∞ ϕ∗(x
∗
n, z

∗) exists. More-
over {x∗n} is bounded and {T ∗x∗n} is also bounded. Put r = supn∈N{∥x∗n∥, ∥T ∗x∗n∥}.
By Lemma 2.1 we obtain

ϕ∗(x
∗
n+1, z

∗)

= ϕ∗(αnx
∗
n + (1− αn)T

∗x∗n, z
∗)

= ∥αnx
∗
n + (1− αn)T

∗x∗n∥2 − 2⟨J−1z∗, αnx
∗
n + (1− αn)T

∗x∗n⟩+ ∥z∗∥2

≤ αn∥x∗n∥2 + (1− αn)∥T ∗x∗n∥2 − αn(1− αn)g(∥x∗n − T ∗x∗n∥)
−2⟨J−1z∗, αnxn + (1− αn)T

∗x∗n⟩+ ∥z∗∥2

= αn(∥x∗n∥2 − 2⟨J−1z∗, x∗n⟩+ ∥z∗∥2)
+(1− αn)(∥T ∗x∗n∥2 − 2⟨J−1z∗, T ∗x∗n⟩+ ∥z∗∥2)
−αn(1− αn)g(∥x∗n − T ∗x∗n∥)

= αnϕ∗(x
∗
n, z

∗) + (1− αn)ϕ∗(T
∗x∗n, z

∗)− αn(1− αn)g(∥x∗n − T ∗x∗n∥)
≤ ϕ∗(x

∗
n, z

∗)− αn(1− αn)g(∥x∗n − T ∗x∗n∥).

Therefore we obtain

αn(1− αn)g(∥x∗n − T ∗x∗n∥) ≤ ϕ∗(x
∗
n, z

∗)− ϕ∗(x
∗
n+1, z

∗).

Since lim infn→∞ αn(1− αn) > 0, we obtain

lim
n→∞

g(∥x∗n − T ∗x∗n∥) = 0.

By (T1) E∗ is reflexive. Since {x∗n} is bounded, there exists a subsequence {x∗ni
}

of {x∗n} such that {x∗ni
} is weakly convergent to an element p∗ ∈ E∗. Let {x∗nj

}
be an another subsequence of {x∗n} and suppose that {x∗nj

} is weakly convergent to

p∗1 ∈ E∗. By Theorem 4.6

p∗, p∗1 ∈ A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ).

Since

A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗) ⊂ B∗
0,0(T

∗),

limn→∞ ϕ∗(x
∗
n, p

∗) and limn→∞ ϕ∗(x
∗
n, p

∗
1) exist. Put a = limn→∞(ϕ∗(x

∗
n, p

∗) −
ϕ∗(x

∗
n, p

∗
1)). Since

ϕ∗(x
∗
n, p

∗)− ϕ∗(x
∗
n, p

∗
1) = 2⟨J−1p∗1 − J−1p∗, x∗n⟩+ ∥p∗∥2 − ∥p∗1∥2,

we obtain

a = 2⟨J−1p∗1 − J−1p∗, p∗⟩+ ∥p∗∥2 − ∥p∗1∥2,
a = 2⟨J−1p∗1 − J−1p∗, p∗1⟩+ ∥p∗∥2 − ∥p∗1∥2.

Therefore we obtain

⟨J−1p∗1 − J−1p∗, p∗ − p∗1⟩ = 0.

From (4.3) we obtain

−ϕ∗(p
∗, p∗1)− ϕ∗(p

∗
1, p

∗) = 0.
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By (T13)∗ we obtain p∗1 = p∗ and hence {x∗n} is weakly convergent to

p∗ ∈ A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗).

On the other hand, by Lemma 2.6 {R∗x∗n} is strongly convergent to an element
q∗ ∈ B∗

0,0(T
∗). By Lemma 2.3 we obtain

⟨J−1R∗x∗n − J−1u∗, x∗n −R∗x∗n⟩ ≥ 0

for any u∗ ∈ B∗
0,0(T

∗). Since by (T7) J−1 is norm-to-norm continuous and

p∗ ∈ A ∗
− (1−λ)ζ1+λε2

(1−λ)(α1+β1)+λ(α2+γ2)
,− λε1+(1−λ)ζ2

(1−λ)(α1+β1)+λ(α2+γ2)

(T ∗) ⊂ B∗
0,0(T

∗),

we obtain

⟨J−1q∗ − J−1p∗, p∗ − q∗⟩ ≥ 0.

From (4.3) we obtain

−ϕ∗(p
∗, q∗)− ϕ∗(q

∗, p∗) ≥ 0.

By (T13) we obtain p∗ = q∗.
Additionally, if C∗ is closed and (1) or (2) holds, then p∗ ∈ C∗. By Lemma 3.7

q∗ = p∗ is a fixed point of T ∗. □
By Theorem 4.7 we obtain the following.

Theorem 4.8. Let E be a uniformly convex Banach space with a uniformly Fréchet
differentiable norm, let C be a nonempty subset of E satisfying J(C) is convex
and let T be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2)-generalized pseudocontrac-
tion from C into itself. Suppose that there exists λ ∈ [0, 1] such that

(1− λ)(α2 + β2 + γ2 + δ2) + λ(α1 + β1 + γ1 + δ1) ≥ 0;

λ(α2 + γ2) + (1− λ)(α1 + β1) ≥ 0;

λ(β2 + δ2) + (1− λ)(γ1 + δ1) ≥ 0;

(1− λ)ε2 + λζ1 ≥ 0;

λζ2 + (1− λ)ε1 ≥ 0;

(1− λ)(α2 + β2) + λ(α1 + γ1) > 0,

suppose that

B− λε2+(1−λ)ζ1
(1−λ)(α2+β2)+λ(α1+γ1)

,− (1−λ)ζ2+λε1
(1−λ)(α2+β2)+λ(α1+γ1)

(T ) ⊂ A(T ) ̸= ∅

and suppose that J−1 is weakly sequentially continuous. Let R∗ be the sunny gen-
eralized nonexpansive retraction of E∗ onto J(A(T )) and let {αn} be a sequence of
real numbers with αn ∈ (0, 1) and lim infn→∞ αn(1 − αn) > 0. Then a sequence
{xn} generated by x1 = x ∈ C and

xn+1 = J−1(αnJxn + (1− αn)JTxn)

for any n ∈ N is weakly convergent to an element

q ∈ B− λε2+(1−λ)ζ1
(1−λ)(α2+β2)+λ(α1+γ1)

,− (1−λ)ζ2+λε1
(1−λ)(α2+β2)+λ(α1+γ1)

(T ),
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where q = limn→∞ J−1R∗Jxn.
Additionally, if J(C) is closed and one of the following holds:

(1) (1− λ)(α2 + β2 + ζ2) + λ(α1 + γ1 + ε1) > 0 and λε2 + (1− λ)ζ1 ≥ 0;
(2) (1− λ)(α2 + β2 + ζ2) + λ(α1 + γ1 + ε1) ≥ 0 and λε2 + (1− λ)ζ1 > 0,

then q is a fixed point of T .

Proof. By (T1) and (T12) E∗ is uniformly convex with a uniformly Fréchet differ-
entiable norm. Let T ∗ = JTJ−1. Then T ∗ is a mapping from J(C) into itself.
Putting x∗ = Jx and y∗ = Jy, (4.1) is equivalent to

α2ϕ∗(T
∗x∗, T ∗y∗) + α1ϕ∗(T

∗y∗, T ∗x∗) + β2ϕ∗(x
∗, T ∗y∗) + β1ϕ∗(T

∗y∗, x∗)
+γ2ϕ∗(T

∗x∗, y∗) + γ1ϕ∗(y
∗, T ∗x∗)) + δ2ϕ∗(x

∗, y∗) + δ1ϕ∗(y
∗, x∗

+ε2ϕ∗(T
∗x∗, x∗) + ε1ϕ∗(x

∗, T ∗x∗) + ζ2ϕ∗(y
∗, T ∗y∗) + ζ1ϕ∗(T

∗y∗, y∗)
≤ 0

from (2.1). Therefore T ∗ is an (α2, α1, β2, β1, γ2, γ1, δ2, δ1, ε2, ε1, ζ2, ζ1)-*-generalized
pseudocontraction from J(C) into itself. Since (T ∗)nx∗ = JTnx, ∥(T ∗)nx∗∥ =
∥JTnx∥ = ∥Tnx∥ and hence {(T ∗)nx∗ | n ∈ N ∪ {0}} is bounded. By Lemma 3.5

A ∗
− (1−λ)ζ2+λε1

(1−λ)(α2+β2)+λ(α1+γ1)
,− λε2+(1−λ)ζ1

(1−λ)(α2+β2)+λ(α2+γ2)

(T ∗)

= J

(
B− λε2+(1−λ)ζ1

(1−λ)(α2+β2)+λ(α2+γ2)
,− (1−λ)ζ2+λε1

(1−λ)(α2+β2)+λ(α1+γ1)

(T )

)
,

B∗
0,0(T

∗) = J(A(T )).

By Theorem 4.7 for any x ∈ C, {Jxn} is weakly convergent to an element

q∗ ∈ J

(
B− λε2+(1−λ)ζ1

(1−λ)(α2+β2)+λ(α2+γ2)
,− (1−λ)ζ2+λε1

(1−λ)(α2+β2)+λ(α1+γ1)

(T )

)
,

where q∗ = limn→∞R∗Jxn. Since J−1 is weakly sequentially continuous and by
(T7) J−1 is norm-to-norm continuous, {xn} is weakly convergent to the element

q = J−1q∗ ∈ B− λε2+(1−λ)ζ1
(1−λ)(α2+β2)+λ(α2+γ2)

,− (1−λ)ζ2+λε1
(1−λ)(α2+β2)+λ(α1+γ1)

(T ),

where q = limn→∞ J−1R∗Jxn.
Additionally, if J(C) is closed and (1) or (2) holds, then q∗ is a fixed point of T ∗

and hence q = J−1q∗ is a fixed point of T . □
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