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and sufficient. Moreover, in 2016, Yamamoto and Kuroiwa [21] investigated several
constraint qualifications for KKT optimality conditions in convex optimization with
locally Lipschitz inequality constraints.

Very recently, the topic of convex optimization without convexity of constraints
has also been studied in [5, 13, 19, 20]. It is worth mentioning that, among them,
Sisarat et al. [20] obtained some results on the representation of the feasible set in ro-
bust convex optimization problems; in addition, they also gave the KKT optimality
conditions for such a robust convex optimization problem.

In this paper, we mainly apply some results of Sisarat et al. [20] to study the
KKT optimality conditions for a quasi ϵ-solution to the robust convex optimization
problem.

1.1. Problem Statement. Consider the following convex optimization problem:

min f(x) s.t. gi(x) ≤ 0, i = 1, . . . ,m,(CP)

where f : Rn → R is a convex function and gi : Rn → R, i = 1, . . . ,m, are locally
Lipschitz functions such that the set Si := {x ∈ Rn : gi(x) ≤ 0} is convex, and then
the feasible set S = ∩m

i=1Si is also convex. Recently many researchers have studied
the convex programs of the above form and have obtained some interesting results;
see, for example, [11, 21].

The convex optimization problem (CP) in the face of data uncertainty in the
constraints can be written by the following problem:

min f(x) s.t. gi(x, vi) ≤ 0, i = 1, . . . ,m,(UCP)

where f : Rn → R is a convex function, gi : Rn × Rq → R, gi(·, vi) is a locally
Lipschitz function and gi(x, ·) is a concave function, and vi ∈ Rq is an uncertain
parameter which belongs to the compact convex set Vi ⊂ Rq, i = 1, . . . ,m.

In this work, we treat the robust approach for (UCP), which is the worst case
approach for (UCP); see, for example, [1, 2, 3, 4, 18]. Now, we associate with (UCP)
its robust counterpart:

min f(x) s.t. gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m.(RCP)

Denote by F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m} as the feasible set
of (RCP), and assume here the feasible set F is convex. Set F =

∩m
i=1

∩
vi∈Vi

Fi(vi),
where Fi(vi) := {x ∈ Rn : gi(x, vi) ≤ 0}, vi ∈ Vi, i = 1, . . . ,m.

Let x ∈ F, I := {1, . . . ,m} and define functions ψi : Rn → R by ψi(x) :=
max{gi(x, vi) : vi ∈ Vi}, i ∈ I. Let I(x) := {i ∈ I : ψi(x) = 0}. We put for
each i ∈ I(x),

Vi(x) := {vi ∈ Vi : gi(x, vi) = ψi(x)}.

1.2. Non-degeneracy condition.

Definition 1.1. Consider the problem (RCP). We say that the non-degeneracy
condition holds at x ∈ F if for all i ∈ I(x) and all vi ∈ Vi(x)

0 ̸∈ ∂◦gi(x, vi).
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The feasible set F is said to satisfy the non-degeneracy condition if it holds for every
x ∈ F.

Remark 1.2. This condition was introduced firstly by Lasserre [16] in the case
that gi is differentiable. Motivated by this idea, Dutta and Lalitha [11] extended
the non-degeneracy condition to the nonsmooth case.

2. Preliminaries

In this section, we recall some notations and give preliminary results for next
sections. Throughout this paper, Rn denotes the n-dimensional Euclidean space
with the inner product ⟨·, ·⟩ and the associated Euclidean norm ∥ · ∥. We say that
a set Γ in Rn is convex whenever µa1 + (1 − µ)a2 ∈ Γ for all µ ∈ [0, 1], a1, a2 ∈ Γ.
We denote the domain of f by dom f, that is, dom f := {x ∈ Rn : f(x) < +∞}. f
is said to be convex if for all λ ∈ [0, 1],

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ Rn. The function f is said to be concave whenever −f is convex. The
(convex) subdifferential of f at x ∈ Rn is defined by

∂f(x) =

{
{x∗ ∈ Rn | ⟨x∗, y − x⟩ ≤ f(y)− f(x), ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.

Let g : Rn → R be a locally Lipschitz function, that is, for each x ∈ Rn, there exist
an open neighborhood U and a constant L > 0 such that for all y and z in U,

|g(y)− g(z)| ≤ L∥y − z∥.

Definition 2.1. For each d ∈ Rn, the Clarke directional derivative of g at x ∈ Rn

in the direction d, denoted by g◦(x; d), is given by

g◦(x; d) = lim sup
h→0, t→0+

g(x+ h+ td)− g(x+ h)

t
.

We also denote the usual one-sided directional derivative of g at x by g′(x; d). Thus

g′(x; d) = lim
t→0+

g(x+ td)− g(x)

t
,

whenever this limit exists.

Definition 2.2. The Clarke subdifferential of g at x, denoted by ∂◦g(x), is the
(nonempty) set of all ξ in Rn satisfying the following condition:

g◦(x; d) ≥ ⟨ξ, d⟩, for all d ∈ Rn.

We summarize some fundamental results in the calculus of the Clarke subdiffer-
ential (for more details, see [6, 7, 8, 9, 17]):

• ∂◦g(x) is a nonempty, convex, compact subset of Rn;
• The function d 7→ g◦(x; d) is convex;
• For every d in Rn, one has

g◦(x; d) = max{⟨ξ, d⟩ : ξ ∈ ∂◦g(x)}.(2.1)
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Let V ⊂ Rq be a compact set and let g : Rn × V → R be a given function. Here
after all, we assume that the following assumptions hold:

• (A1) g(x, v) is upper semicontinuous in (x, v).
• (A2) g is locally Lipschitz in x, uniformly for v in V, that is, for each x ∈ Rn,
there exist an open neighborhood U of x and a constant L > 0 such that
for all y and z in U, and v ∈ V,

|g(y, v)− g(z, v)| ≤ L∥y − z∥.

• (A3) g◦x(x, v; ·) = g′x(x, v; ·), the derivatives being with respect to x.

We define a function ψ : Rn → R by

ψ(x) := max{g(x, v) : v ∈ V},

and observe that our assumptions (A1)-(A2) imply that ψ is defined and finite (with
the maximum defining ψ attained) on Rn. Let

V(x) := {v ∈ V : g(x, v) = ψ(x)},

then for each x ∈ Rn, V(x) is a nonempty closed set.
The following lemma, which is a nonsmooth version of Danskin’s theorem [10]

for max-functions, makes connection between the functions ψ′(x; d) and g◦x(x, v; d).

Lemma 2.3. Under the assumptions (A1)–(A3), the usual one-sided directional
derivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ◦(x; d) = max{g◦x(x, v; d) : v ∈ V(x)}
= max{⟨ξ, d⟩ : ξ ∈ ∂◦xg(x, v), v ∈ V(x)}.

Proof. See [8, Theorem 2] (see also [6, Theorem 2.1], [10]). □

The following result will be useful in the sequel.

Lemma 2.4. [18] In addition to the basic assumptions (A1)–(A3), suppose that
V is convex, and that g(x, ·) is concave on V, for each x ∈ U. Then the following
statements hold:

(i) The set V(x) is convex and compact.
(ii) The set

∂◦xg(x,V(x)) := {ξ : ∃v ∈ V(x) such that ξ ∈ ∂◦xg(x, v)}

is convex and compact.
(iii) ∂◦ψ(x) = {ξ : ∃v ∈ V(x) such that ξ ∈ ∂◦xg(x, v)}.

It is worth noting that the concavity of gi(x, ·) plays an important role, since our
main results (Theorem 3.1, 3.2 and 3.6) shall be obtained with the aid of the above
Lemma 2.4.
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3. Main results

This section presents our main results. An equivalent characterization of the
convex set F under the robust counterpart scenario is given as well as a robust KKT
optimality theorem for (RCP) with the help of the Slater constraint qualification
and the non-degeneracy condition (see also Sisarat et al. [20]). Then, we apply the
obtained result to the study of KKT optimality condition for a quasi ϵ-solution of
(RCP). Some simple examples are also provided to illustrate the results.

3.1. KKT optimality theorem. First, the Slater constraint qualification along
with the non-degeneracy condition gives the following equivalent characterization
of the convex set F under the robust counterpart scenario.

Theorem 3.1. Let F be given in the problem (RCP). Assume that each gi satisfies
the assumptions (A1)–(A3). Moreover, assume that the non-degeneracy condition
holds at x ∈ F, and the Slater constraint qualification also holds, that is, there exists
x0 ∈ Rn such that gi(x0, vi) < 0, for all vi ∈ Vi, i = 1, . . . ,m. Then F is convex if
and only if for all i ∈ I(x), there exists v̄i ∈ Vi(x) such that

(3.1) gi
◦
x

(
x, v̄i; y − x

)
≤ 0, for all x, y ∈ F.

Proof. First, let us define ψi(x) := maxvi∈Vi gi(x, vi), i = 1, 2, . . . ,m. Since gi, i =
1, 2, . . . ,m satisfy the assumptions (A1) and (A2), ψi : Rn → R, i = 1, 2, . . . ,m, are
locally Lipschitz functions. By Lemma 2.3, we know that ψ′(x; y−x) = ψ◦(x; y−x).
Moreover, by Lemma 2.4 (iii), we have for all i ∈ I(x), 0 /∈ ∂◦ψi(x). Clearly, ψi

satisfies the Slater constraint qualification. Therefore, according to [11, Proposition
1], F is convex if and only if for all i ∈ I(x),

ψ◦
i (x; y − x) ≤ 0 for all x, y ∈ F.

In addition, by Lemma 2.3, ψ◦
i (x; y − x) = max{gi◦x(x, vi; y − x) : vi ∈ Vi(x)}. It

means that there exists v̄i ∈ Vi(x) such that ψ◦
i (x; y − x) = gi

◦
x(x, vi; y − x). Thus,

we conclude that F is convex if and only if for all i ∈ I(x), there exists v̄i ∈ Vi(x)
such that (3.1) holds. □

The following result is a robust KKT optimality theorem for (RCP), which is a
robust version of [11, Theorem 2.4].

Theorem 3.2. Let us consider the problem (RCP). Assume that each gi satisfies
the assumptions (A1)–(A3). Moreover assume that the non-degeneracy condition
holds at x̄ ∈ F, and the Slater constraint qualification also holds. Then x̄ ∈ F is
an optimal solution of f over F if and only if there exist λ̄i ≥ 0 and v̄i ∈ Vi(x̄),
i = 1, . . . ,m, such that

0 ∈ ∂f(x̄) +
m∑
i=1

λ̄i∂
◦
xgi(x̄, v̄i),(3.2)

0 = λ̄igi(x̄, v̄i), i = 1, . . . ,m.(3.3)
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Proof. Define ψi(x) := maxvi∈Vi gi(x, vi), i = 1, 2, . . . ,m. Then, based on [11, The-
orem 2.4], x̄ ∈ F is an optimal solution of (RCP) if and only if there exists λ̄i,
i = 1, . . . ,m, such that

0 ∈ ∂f(x̄) +

m∑
i=1

λ̄i∂
◦ψi(x̄),

0 = λ̄iψi(x̄), i = 1, . . . ,m.

Moreover, by Lemma 2.4 (iii), since ∂◦ψi(x̄) = {ξi : ∃v̄i ∈ Vi(x̄) such that ξi ∈
∂◦xgi(x̄, v̄i)}, we conclude that x̄ ∈ F is an optimal solution of (RCP) if and only if
there exist λ̄i ≥ 0 and v̄i ∈ Vi(x̄), i = 1, . . . ,m, such that (3.2) and (3.3) hold. □

3.2. Illustrative examples. We now give an example to show that Theorem 3.2
may not hold if the non-degeneracy condition fails.

Example 3.3. Consider the following convex optimization problem with data un-
certainty:

(RCP)1 min −x
s.t. gi(x, vi) ≤ 0,∀vi ∈ Vi, i = 1, 2,

where g1 and g2 are given by

g1(x, v1) =

{
−v1x− 1, if x ≤ 0,
−1, if x > 0

and g2(x, v2) = v2x
3,

and V1 = V2 = [1, 2]. Then F 1 := {x ∈ R : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2} = [−1
2 , 0]

is the robust feasible set of (RCP)1. So, x̄ = 0 is an optimal solution of (RCP)1. We
can easily see that I(x̄) = {2}, V2(x̄) = [1, 2], ∂f(x̄) = {−1}, ∂◦xg1(x̄, v̄1) = [−v̄1, 0]
and ∂◦xg2(x̄, v̄2) = {0}. Since ∂◦xg2(x̄, v̄2) = {0} for v̄2 ∈ V2(x̄), the non-degeneracy
condition fails. Moreover, we can easily see that g1 and g2 satisfy the Slater condition
and the assumption (A1)–(A3). On the other hand, there do not exist λ̄i ≥ 0 and
v̄i ∈ Vi(x̄), i = 1, 2, such that

0 ∈ ∂f(x̄) + λ̄1∂
◦
xg1(x̄, v̄1) + λ̄2∂

◦
xg2(x̄, v̄2).

The following example examines the validness of our main results whenever non-
degeneracy condition is satisfied.

Example 3.4. Consider the following convex optimization problem with data un-
certainty:

(RCP)2 min −x
s.t. x ∈ F 2 := {x ∈ R : max{vx3, vx} − 2 ≤ 0, ∀v ∈ V},

where V := [1, 2]. Let f(x) = −x and g(x, v) = max{vx3, vx} − 2. Then we can
easily see that F 2 = (−∞, 1] is the robust feasible set of (RCP)2 and x̄ = 1 is an
optimal solution of (RCP)2. Clearly, g satisfies the assumptions (A1)–(A3), and the
Slater condition holds for (RCP)2. Moreover, V(x̄) = {2}, and so for v̄ := 2 ∈ V(x̄),
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0 ̸∈ ∂◦g(x̄, v̄) = [2, 6], i.e., the non-degeneracy condition holds. Let 0 ≤ λ̄ ≤ 1
2 .

Then we have

0 ∈ ∂f(x̄) + λ̄∂◦xg(x̄, v̄) = {−1}+ λ̄[2, 6],

0 = λ̄g(x̄, v̄).

So, Theorem 3.2 holds.

3.3. An application to quasi ϵ-solutions for (RCP). In this subsection, we
employ Theorem 3.2 to examine the KKT optimality condition for a quasi ϵ-solution
for (RCP). First of all, let us give the notion of a quasi ϵ-solution.

Definition 3.5. Given ϵ ≥ 0, a point x̄ ∈ F is said to be a quasi ϵ-solution of
problem (RCP), if

f(x̄) ≤ f(x) +
√
ϵ∥x− x̄∥, ∀x ∈ F.

It is worth mentioning that the notion of a quasi ϵ-solution is motivated by the
well-known Ekeland’s Variational Principle [12]. Recently, Lee and Jiao [15] and
Jiao and Lee [14] explored some characterizations of a quasi ϵ-solution in robust
convex optimization problems and robust semidefinite convex optimization prob-
lems, respectively.

By employing Theorem 3.2, we give the following robust KKT optimality theorem
for a quasi ϵ-solution in (RCP).

Theorem 3.6. Let us consider the problem (RCP). Assume that each gi satisfies the
assumptions (A1)–(A3). Moreover assume that the non-degeneracy condition holds
at x̄ ∈ F, and the Slater constraint qualification also holds. Then x̄ ∈ F is a quasi
ϵ-solution of (RCP) if and only if there exist λ̄i ≥ 0 and v̄i ∈ Vi(x̄), i = 1, . . . ,m,
such that

0 ∈ ∂f(x̄) +
m∑
i=1

λ̄i∂
◦
xgi(x̄, v̄i) +

√
ϵB,(3.4)

0 = λ̄igi(x̄, v̄i), i = 1, . . . ,m,

where B stands for the unit ball.

Proof. A quasi ϵ-solution x̄ ∈ F of (RCP) can be considered as a minimizer of the
following problem:

min f(x) +
√
ϵ∥x− x̄∥ subject to x ∈ F.

Set ϕ(x) = f(x) +
√
ϵ∥x − x̄∥, observe that ϕ is a convex function. By the KKT

optimality conditions (see Theorem 3.2), we have

0 ∈ ∂ϕ(x̄) +
m∑
i=1

λ̄i∂
◦
xgi(x̄, v̄i),(3.5)

0 = λ̄igi(x̄, v̄i), i = 1, . . . ,m.

As dom f ∩ dom ∥ · − x̄ ∥= Rn, invoking the Sum Rule, along with the fact that
∂ ∥ · − x̄ ∥= B, the above inclusion (3.5) becomes (3.4).
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For sufficiency of the above conditions we proceed as follows. Assume on the
contrary that x̄ is not a quasi ϵ-solution, and hence there exists x̂ ∈ F such that

f(x̄) > f(x̂) +
√
ϵ ∥ x̂− x̄ ∥ .(3.6)

On the other hand, since 0 ∈ ∂f(x̄) +
∑m

i=1 λ̄i∂
◦
xgi(x̄, v̄i) +

√
ϵB, there exist ξ0 ∈

∂f(x̄), ξi ∈ ∂◦xgi(x̄, v̄i), v̄i ∈ Vi(x̄), i = 1, . . . ,m, and b ∈ B such that

0 = ξ0 +
m∑
i=1

λ̄iξi +
√
ϵb.

Furthermore, one has

0 = ⟨ξ0, x̂− x̄⟩+ ⟨
m∑
i=1

λ̄iξi, x̂− x̄⟩+ ⟨
√
ϵb, x̂− x̄⟩.(3.7)

Along with (3.6) and the convexity of f, it follows from (3.7) that

0 =⟨ ξ0, x̂− x̄⟩+
m∑
i=1

λ̄i⟨ξi, x̂− x̄⟩+
√
ϵ⟨b, x̂− x̄⟩

≤ f(x̂)− f(x̄) +

m∑
i=1

λ̄i⟨ξi, x̂− x̄⟩+
√
ϵ∥⟨b, x̂− x̄⟩∥

< −
√
ϵ∥x̂− x̄∥+

m∑
i=1

λ̄i⟨ξi, x̂− x̄⟩+
√
ϵ∥x̂− x̄∥

=

m∑
i=1

λ̄i⟨ξi, x̂− x̄⟩.

Thus, we have

0 <

m∑
i=1

λ̄i⟨ξi, x̂− x̄⟩ =
∑
i∈I

λ̄i⟨ξi, x̂− x̄⟩,

where I := {i ∈ {1, . . . ,m} : λ̄i > 0}. Note that gi(x̄, v̄i) = 0 for all i ∈ I. Since the
non-degeneracy condition holds, from (2.1) and Theorem 3.1, we see that

0 <
m∑
i=1

λ̄i⟨ξi, x̂− x̄⟩ ≤
m∑
i=1

λ̄igi
◦
x

(
x̄, v̄i; x̂− x̄

)
≤ 0,

which arrives at a contradiction. Hence, x̄ is a quasi ϵ-solution of (RCP). □

4. Conclusions

In this paper, we studied the representation of the feasible set of a robust convex
optimization problem, and a robust version of KKT optimality conditions (Theo-
rem 3.2) was explored. As an application, the robust KKT optimality conditions
(Theorem 3.6) for a quasi ϵ-solution of (RCP) were investigated.
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