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Then for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to a fixed point of T .

Takahashi and Takeuchi [24] proved this theorem without convexity by intro-
ducing the concept of attractive points [24] in a Hilbert space; see also [15]. A
nonspreading mapping in a Hilbert space was generalized in a Banach space by
Kohsaka and Takahashi [12]. Let C be a nonempty subset of a smooth Banach
space E and let J be the duality mapping from E into E∗. A mapping T : C → E
is called nonspreading if

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)

for all x, y ∈ C, where ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩ + ∥y∥2 for all x, y ∈ E. Such a
nonspreading mapping in a Banach space is deduced from a resolvent of a maximal
monotone mapping; see [12]. Kocourek, Takahashi and Yao [9] introduced a class
of nonlinear mappings in a Banach space which covers generalized hybrid mappings
in a Hilbert space and nonspreading mappings in a Banach space. A mapping
T : C → E is called generalized nonspreading if there are α, β, γ, δ ∈ R such that

(1.2) αϕ(Tx, Ty) + (1− α)ϕ(x, Ty) + γ{ϕ(Ty, Tx)− ϕ(Ty, x)}
≤ βϕ(Tx, y) + (1− β)ϕ(x, y) + δ{ϕ(y, Tx)− ϕ(y, x)}

for all x, y ∈ C. Takahashi, Wong and Yao [27] generalized the concept of generalized
nonspreading mappings as follows: A mapping T : C → E is called generic general-
ized nonspreading if there exist α, β, γ, δ, ε, ζ ∈ R such that α+β+γ+δ ≥ 0, α+β > 0
and

αϕ(Tx, Ty)+βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)(1.3)

≤ ε{ϕ(Ty, Tx)− ϕ(Ty, x)}+ ζ{ϕ(y, Tx)− ϕ(y, x)}

for all x, y ∈ C; see also [26]. Takahashi, Wong and Yao [25] also extended the
concept of generalized nonspreading mapping as follows: A mapping T : C → C is
called 2-generalized nonspreading if there exist α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such
that

α1ϕ(T
2x, Ty) + α2ϕ(Tx, Ty) + (1− α1 − α2)ϕ(x, Ty)

+ γ1
{
ϕ(Ty, T 2x)− ϕ(Ty, x)

}
+ γ2

{
ϕ(Ty, Tx)− ϕ(Ty, x)

}
(1.4)

≤ β1ϕ(T
2x, y) + β2ϕ(Tx, y) + (1− β1 − β2)ϕ(x, y)

+ δ1
{
ϕ(y, T 2x)− ϕ(y, x)

}
+ δ2

{
ϕ(y, Tx)− ϕ(y, x)

}
for all x, y ∈ C. Motivated by the definitions of generic generalized nonspreading
mappings and 2-generalized nonspreading mappings, Takahashi [23] introduced a
new class of nonlinear mappings in a Banach space which simultaneously generalizes
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these two mappings. A mapping T : C → C is called generic 2-generalized non-
spreading [23] if there exist α2, α1, α0, β2, β1, β0, γ2, γ1, γ0, δ2, δ1, δ0 ∈ R such that
α2 + α1 + α0 + β2 + β1 + β0 ≥ 0, α2 + α1 + α0 > 0 and

α2ϕ(T
2x,Ty) + α1ϕ(Tx, Ty) + α0ϕ(x, Ty)

+ β2ϕ(T
2x, y) + β1ϕ(Tx, y) + β0ϕ(x, y)

≤ γ2{ϕ(Ty, T 2x)− ϕ(Ty, Tx)}+ γ1{ϕ(Ty, Tx)− ϕ(Ty, x)}(1.5)

+ γ0{ϕ(Ty, x)− ϕ(Ty, T 2x)}+ δ2{ϕ(y, T 2x)− ϕ(y, Tx)}
+ δ1{ϕ(y, Tx)− ϕ(y, x)}+ δ0{ϕ(y, x)− ϕ(y, T 2x)}

for all x, y ∈ C.

In this paper, we prove a nonlinear mean convergence theorem for generic 2-
generalized nonspreading mappings in a Banach space. Using this result, we prove
well-known and new nonlinear mean convergence theorems in a Banach space.
In particular, we apply this theorem to prove mean convergence theorems for
generic nonspreading mappings and 2-generalized nonspreading mappings in a Ba-
nach space, and a mean convergence theorem by Hojo [3] for nomally 2-generalized
hybrid mappings in a Hilbert space.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the topological dual
space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a
sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and
the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for all ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if δ(ϵ) > 0
for every ϵ > 0. A uniformly convex Banach space is strictly convex and reflexive.
Let E be a Banach space. The duality mapping J from E into 2E

∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for all x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. We know that E is smooth if and only if J is
a single-valued mapping of E into E∗. We also know that E is reflexive if and only
if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if
E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued
bijection. The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ U , the limit (2.1) is attained uniformly for x ∈ U . It is also said to be Fréchet
differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . A
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Banach space E is called uniformly smooth if the limit (2.1) is attained uniformly
for x, y ∈ U . It is known that if the norm of E is uniformly Gâteaux differentiable,
then J is uniformly norm-to-weak∗ continuous on each bounded subset of E, and
if the norm of E is Fréchet differentiable, then J is norm-to-norm continuous. If
E is uniformly smooth, J is uniformly norm-to-norm continuous on each bounded
subset of E. For more details, see [18, 20, 21]. The following result is well-known.

Lemma 2.1 ([20]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x − y, Jx − Jy⟩ ≥ 0 for all x, y ∈ E. Further, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let E be a smooth Banach space. The function ϕ : E ×E → (−∞,∞) is defined
by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for x, y ∈ E, where J is the duality mapping of E; see [1] and [7]. We have from
the definition of ϕ that

(2.2) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩
for all x, y, z ∈ E. From (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) for all x, y ∈ E, we can see that
ϕ(x, y) ≥ 0. Furthermore, we can obtain the following equality:

(2.3) 2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w)

for x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then

(2.4) ϕ(x, y) = 0 ⇐⇒ x = y.

The following lemmas are in Xu [28] and Kamimura and Takahashi [7].

Lemma 2.2 ([28]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,∞) → [0,∞)
such that g(0) = 0 and

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)
for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.

Lemma 2.3 ([7]). Let E be smooth and uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r] → R such that g(0) = 0 and

g(∥x− y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a smooth Banach space and let C be a nonempty subset of E. Then a
mapping T : C → E is called generalized nonexpansive [5] if F (T ) ̸= ∅ and

ϕ(Tx, y) ≤ ϕ(x, y)

for all x ∈ C and y ∈ F (T ). Let D be a nonempty subset of a Banach space E. A
mapping R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx
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for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction or a
projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth Banach
space E is said to be a generalized nonexpansive retract (resp. sunny generalized
nonexpansive retract) of E if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) R from E onto D; see [4, 5] for
more details. The following results are in Ibaraki and Takahashi [5].

Lemma 2.4 ([5]). Let C be a nonempty closed sunny generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then the sunny generalized
nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5 ([5]). Let C be a nonempty closed subset of a smooth and strictly convex
Banach space E such that there exists a sunny generalized nonexpansive retraction
R from E onto C and let (x, z) ∈ E × C. Then the following hold:

(i) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;
(ii) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

In 2007, Kohsaka and Takahashi [10] proved the following results:

Lemma 2.6 ([10]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.7 ([10]). Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let
R be the sunny generalized nonexpansive retraction from E onto C and let (x, z) ∈
E × C. Then the following are equivalent:

(i) z = Rx;
(ii) ϕ(x, z) = miny∈C ϕ(x, y).

Ibaraki and Takahashi [6] also obtained the following result concerning the set of
fixed points of a generalized nonexpansive mapping.

Lemma 2.8 ([6]). Let E be a smooth, strictly convex and reflexive Banach space
and let T be a generalized nonexpansive mapping from E into itself. Then, F (T ) is
closed and JF (T ) is closed and convex.

The following lemma by Ibaraki and Takahashi [6] is a direct consequence of
Lemmas 2.6 and 2.8.

Lemma 2.9 ([6]). Let E be a smooth, strictly convex and reflexive Banach space
and let T be a generalized nonexpansive mapping from E into itself. Then, F (T ) is
a sunny generalized nonexpansive retract of E.

Using Lemma 2.6, we have the following result.
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Lemma 2.10. Let E be a smooth, strictly convex and reflexive Banach space and
let {Ci : i ∈ I} be a family of sunny generalized nonexpansive retracts of E such
that ∩i∈ICi is nonempty. Then ∩i∈ICi is a sunny generalized nonexpansive retract
of E.

Proof. It is obvious that J ∩i∈I Ci = ∩i∈IJCi. In fact, we have that

x ∈ J ∩i∈I Ci ⇐⇒ J−1x ∈ ∩i∈ICi

⇐⇒ J−1x ∈ Ci, ∀i ∈ I

⇐⇒ x ∈ JCi, ∀i ∈ I

⇐⇒ x ∈ ∩i∈IJCi.

From Lemma 2.6, JCi is closed and convex for each i ∈ I and hence ∩i∈IJCi is
closed and convex. Thus we have that J ∩i∈I Ci is closed and convex. Therefore,
from Lemma 2.6, we have that ∩i∈ICi is a sunny generalized nonexpansive retract
of E. □

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T
be a mapping of C into E. We denote by A(T ) the set of attractive points [16] of
T , i.e.,

A(T ) = {z ∈ E : ϕ(z, Tx) ≤ ϕ(z, x), ∀x ∈ C}.

We also denote by B(T ) the set of skew-attractive points [16] of T , i.e.,

B(T ) = {z ∈ E : ϕ(Tx, z) ≤ ϕ(x, z), ∀x ∈ C}.

The following results are crucial in our paper.

Lemma 2.11 ([16]). Let E be a smooth Banach space and let C be a nonempty
subset of E. Let T be a mapping from C into E. Then A(T ) is a closed and convex
subset of E.

Lemma 2.12 ([16]). Let E be a smooth Banach space and let C be a nonempty
subset of E. Let T be a mapping from C into E. Then B(T ) is closed and JB(T )
is closed and convex.

Let E be a smooth Banach space, let C be a nonempty subset of E and let
J be the duality mapping from E into E∗. A mapping T : C → C is called
generic 2-generalized nonspreading if it satisfies (1.5). Such a mapping is called
generic (α2, α1, α0, β2, β1, β0, γ2, γ1, γ0, δ2, δ1, δ0)-2-generalized nonspreading. This
mapping T : C → C is generic generalized nonspreading in the sense of Takahashi,
Wong and Yao [27] if α2 = β2 = γ2 = δ2 = γ0 = δ0 = 0. Furthermore, putting
α1 = 1, β1 = −1, γ1 = −1 and δ1 = 0, we obtain that

ϕ(Tx, Ty) + ϕ(Ty, Tx) ≤ ϕ(Tx, y) + ϕ(Ty, x)

for all x, y ∈ C. This is nonspreading in the sense of Kohsaka and Takahashi [12].
Putting α0 = 1−α2−α1, β0 = 1−β2−β1 and γ2 = δ2 = 0 in (1.5), we can also see
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that the mapping T is 2-generalized nonspreading in the sense of Takahashi, Wong
and Yao [25]. If E is a Hilbert space, then we have that

ϕ(x, y) = ∥x− y∥2, ∀x, y ∈ E.

In a Hilbert space, we obtain the following from (1.5):

α2∥T 2x− Ty∥2 + α1∥Tx− Ty∥2 + α0∥x− Ty∥2

+ β2∥T 2x− y∥2 + β1∥Tx− y∥2 + β0∥x− y∥2

≤ γ2{∥Ty − T 2x∥2 − ∥Ty − Tx∥2}+ γ1{∥Ty − Tx∥2 − ∥Ty − x∥2}
+ γ0{∥Ty − x∥2 − ∥Ty − T 2x∥2}+ δ2{∥y − T 2x∥2 − ∥y − Tx∥2}
+ δ1{∥y − Tx∥2 − ∥y − x∥2}+ δ0{∥y − x∥2 − ∥y − T 2x∥2}

and then

(α2 − γ2 + γ0)∥T 2x− Ty∥2 + (α1 + γ2 − γ1)∥Tx− Ty∥2

+ (α0 + γ1 − γ0)∥x− Ty∥2 + (β2 − δ2 + δ0)∥T 2x− y∥2

+ (β1 + δ2 − δ1)∥Tx− y∥2 + (β0 + δ1 − δ0)∥x− y∥2 ≤ 0.

Since

(α2 − γ2 + γ0) + (α1 + γ2 − γ1) + (α0 + γ1 − γ0)

+ (β2 − δ2 + δ0) + (β1 + δ2 − δ1) + (β0 + δ1 − δ0)

= α2 + α1 + α0 + β2 + β1 + β0 ≥ 0

and (α2 − γ2 + γ0) + (α1 + γ2 − γ1) + (α0 + γ1 − γ0) = α2 + α1 + α0 > 0, this
implies that T is a normally 2-generalized hybrid mapping in the sense of Kondo
and Takahashi [13]. A mapping T : C → C is normally 2-generalized hybrid [13] if

there exist α0, β0, α1, β1, α2, β2 ∈ R such that
∑2

n=0 (αn + βn) ≥ 0, α2+α1+α0 > 0
and

α2∥T 2x−Ty∥2 + α1∥Tx− Ty∥2 + α0∥x− Ty∥2(2.5)

+ β2∥T 2x− y∥2 + β1∥Tx− y∥2 + β0∥x− y∥2 ≤ 0

for all x, y ∈ C.
Using an idea of [19], Takahashi [23] proved the following attractive and fixed

point theorem for generic 2-generalized nonspreading mappings in a Banach space.

Theorem 2.13 ([23]). Let E be a smooth and reflexive Banach space and let C be
a nonempty subset of E. Let T be a generic 2-generalized nonspreading mapping of
C into itself. Then the following are equivalent:

(a) A(T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.

Additionally, if E is strictly convex and C is closed and convex, then the following
are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnx} is bounded for some x ∈ C.
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3. Nonlinear ergodic theorems

In this section, we first prove a nonlinear mean convergence theorem for com-
mutative generic 2-generalized nonspreading mappings in a Banach space. Before
proving the theorem, we need the following lemma.

Lemma 3.1. Let C be a nonempty subset of a smooth, strictly convex and reflexive
Banach space E and let S and T be commutative generic 2-generalized nonspreading
mappings of C into itself. Suppose that {SkT lx : k, l ∈ N ∪ {0}} for some x ∈ C is
bounded and define

Snx =
1

(1 + n)2

n∑
k=0

n∑
l=0

SkT lx

for all n ∈ N∪{0}. Then every weak cluster point of {Snx} is a point of A(S)∩A(T ).
Additionally, if C is closed and convex, then every weak cluster point of {Snx} is a
point of F (S) ∩ F (T ).

Proof. Since S is a generic 2-generalized nonspreading mapping of C into itself,
there exist α2, α1, α0, β2, β1, β0, γ2, γ1, γ0, δ2, δ1, δ0 ∈ R such that

α2ϕ(S
2x,Sy) + α1ϕ(Sx, Sy) + α0ϕ(x, Sy)

+ β2ϕ(S
2x, y) + β1ϕ(Sx, y) + β0ϕ(x, y)

≤ γ2{ϕ(Sy, S2x)− ϕ(Sy, Sx)}+ γ1{ϕ(Sy, Sx)− ϕ(Sy, x)}(3.1)

+ γ0{ϕ(Sy, x)− ϕ(Sy, S2x)}+ δ2{ϕ(y, S2x)− ϕ(y, Sx)}
+ δ1{ϕ(y, Sx)− ϕ(y, x)}+ δ0{ϕ(y, x)− ϕ(y, S2x)}

for all y ∈ C. Replacing x by SkT lx in (3.1), we have that, for any y ∈ C and
k, l ∈ N ∪ {0},

α2ϕ(S
k+2T lx, Sy) + α1ϕ(S

k+1T lx, Sy) + α0ϕ(S
kT lx, Sy)

+ β2ϕ(S
k+2T lx, y) + β1ϕ(S

k+1T lx, y) + β0ϕ(S
kT lx, y)

≤ γ2{ϕ(Sy, Sk+2T lx)− ϕ(Sy, Sk+1T lx)}

+ γ1{ϕ(Sy, Sk+1T lx)− ϕ(Sy, SkT lx)}

+ γ0{ϕ(Sy, SkT lx)− ϕ(Sy, Sk+2T lx)}

+ δ2{ϕ(y, Sk+2T lx)− ϕ(y, Sk+1T lx)}

+ δ1{ϕ(y, Sk+1T lx)− ϕ(y, SkT lx)}

+ δ0{ϕ(y, SkT lx)− ϕ(y, Sk+2T lx)}
and hence

α2{ϕ(Sk+2T lx, y) + ϕ(y, Sy) + 2⟨Sk+2T lx− y, Jy − JSy⟩}

+ α1{ϕ(Sk+1T lx, y) + ϕ(y, Sy) + 2⟨Sk+1T lx− y, Jy − JSy⟩}

+ α0{ϕ(SkT lx, y) + ϕ(y, Sy) + 2⟨SkT lx− y, Jy − JSy⟩}

+ β2ϕ(S
k+2T lx, y) + β1ϕ(S

k+1T lx, y) + β0ϕ(S
kT lx, y)
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≤ γ2{ϕ(Sy, Sk+2T lx)− ϕ(Sy, Sk+1T lx)}

+ γ1{ϕ(Sy, Sk+1T lx)− ϕ(Sy, SkT lx)}

+ γ0{ϕ(Sy, SkT lx)− ϕ(Sy, Sk+2T lx)}

+ δ2{ϕ(y, Sk+2T lx)− ϕ(y, Sk+1T lx)}

+ δ1{ϕ(y, Sk+1T lx)− ϕ(y, SkT lx}

+ δ0{ϕ(y, SkT lx)− ϕ(y, Sk+2T lx)}.

This implies that

(α2 + α1 + α0 + β2 + β1 + β0)ϕ(S
k+2T lx, y)

+ α1{ϕ(Sk+1T lx, y)− ϕ(Sk+2T lx, y)}

+ α0{ϕ(SkT lx, y)− ϕ(Sk+2T lx, y)}

+ β1{ϕ(Sk+1T lx, y)− ϕ(Sk+2T lx, y)}

+ β0{ϕ(SkT lx, y)− ϕ(Sk+2T lx, y)}+ (α2 + α1 + α0)ϕ(y, Sy)

+ 2
⟨
α2S

k+2T lx+ α1S
k+1T lx+ α0S

kT lx

− (α2 + α1 + α0)y, Jy − JSy
⟩

≤ γ2{ϕ(Sy, Sk+2T lx)− ϕ(Sy, Sk+1T lx)}

+ γ1{ϕ(Sy, Sk+1T lx)− ϕ(Ty, SkT lx)}

+ γ0{ϕ(Sy, SkT lx)− ϕ(Sy, Sk+2T lx)}

+ δ2{ϕ(y, Sk+2T lx)− ϕ(y, Sk+1T lx)}

+ δ1{ϕ(y, Sk+1T lxn)− ϕ(y, SkT lxn)}

+ δ0{ϕ(y, SkT lx)− ϕ(y, Sk+2T lx)}.

Since α2 + α1 + α0 + β2 + β1 + β0 ≥ 0, we have that

α1{ϕ(Sk+1T lx, y)− ϕ(Sk+2T lx, y)}

+ α0{ϕ(SkT lx, y)− ϕ(Sk+2T lx, y)}

+ β1{ϕ(Sk+1T lx, y)− ϕ(Sk+2T lx, y)}

+ β0{ϕ(SkT lx, y)− ϕ(Sk+2T lx, y)}+ (α2 + α1 + α0)ϕ(y, Sy)

+ 2
⟨
α2S

k+2T lx+ α1S
k+1T lx+ α0S

kT lx

− (α2 + α1 + α0)y, Jy − JSy
⟩

≤ γ2{ϕ(Sy, Sk+2T lx)− ϕ(Sy, Sk+1T lx)}

+ γ1{ϕ(Sy, Sk+1T lx)− ϕ(Sy, SkT lx)}

+ γ0{ϕ(Sy, SkT lx)− ϕ(Sy, Sk+2T lx)}
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+ δ2{ϕ(y, Sk+2T lx)− ϕ(y, Sk+1T lx)}

+ δ1{ϕ(y, Sk+1T lx)− ϕ(y, SkT lx)}

+ δ0{ϕ(y, SkT lx)− ϕ(y, Sk+2T lx)}.

Summing up these inequalities with respect to k = 0, 1, . . . , n, we have

α1{ϕ(ST lx, y)− ϕ(Sn+2T lx, y)}

+ α0{ϕ(T lx, y) + ϕ(ST lx, y)− ϕ(Sn+1T lx, y)− ϕ(Sn+2T lx, y)}

+ β1{ϕ(ST lx, y)− ϕ(Sn+2T lx, y)}

+ β0{ϕ(T lx, y) + ϕ(ST lx, y)− ϕ(Sn+1T lx, y)− ϕ(Sn+2T lx, y)}
+ (α2 + α1 + α0)(n+ 1)ϕ(y, Sy)

+ 2
⟨
(α2 + α1 + α0)

n∑
k=0

SkT lx

+ Sn+2T lx+ Sn+1T lx− ST lx− T lx+ Sn+1T lx− T lx

− (α2 + α1 + α0)(n+ 1)y, Jy − JSy
⟩

≤ γ2{ϕ(Sy, Sn+2T lx)− ϕ(Sy, ST lx)}+ γ1{ϕ(Sy, Sn+1T lx)− ϕ(Sy, T lx)}

+ γ0{ϕ(Sy, T lx) + ϕ(Sy, ST lx)− ϕ(Sy, Sn+1T lx)− ϕ(Sy, Sn+2T lx)}

+ δ2{ϕ(y, Sn+2T lx)− ϕ(y, ST lx)}

+ δ1{ϕ(y, Sn+1T lx)− ϕ(y, T lx)}

+ δ0{ϕ(y, T lxn) + ϕ(y, ST lx)− ϕ(y, Sn+1T lx)− ϕ(y, Sn+2T lx)}.

Furthermore, summing up these inequalities with respect to l = 0, 1, . . . , n, we have

α1

n∑
l=0

{ϕ(ST lx, y)− ϕ(Sn+2T lx, y)}

+ α0

n∑
l=0

{ϕ(T lx, y) + ϕ(ST lx, y)− ϕ(Sn+1T lx, y)− ϕ(Sn+2T lx, y)}

+ β1

n∑
l=0

{ϕ(ST lx, y)− ϕ(Sn+2T lx, y)}

+ β0

n∑
l=0

{ϕ(T lx, y) + ϕ(ST lx, y)− ϕ(Sn+1T lxn, y)− ϕ(Sn+2T lx, y)}

+ (α2 + α1 + α0)(n+ 1)2ϕ(y, Sy)

+ 2
⟨
(α2 + α1 + α0)

n∑
l=0

n∑
k=0

SkT lx

+
n∑

l=0

(Sn+2T lx+ Sn+1T lx− ST lx− T lx+ Sn+1T lx− T lx)
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− (α2 + α1 + α0)(n+ 1)2y, Jy − JSy
⟩

≤ γ2

n∑
l=0

{ϕ(Sy, Sn+2T lx)− ϕ(Sy, ST lx)}

+ γ1

n∑
l=0

{ϕ(Sy, Sn+1T lx)− ϕ(Sy, T lx)}

+ γ0

n∑
l=0

{ϕ(Sy, T lx) + ϕ(Sy, ST lx)− ϕ(Sy, Sn+1T lx)− ϕ(Sy, Sn+2T lx)}

+ δ2

n∑
l=0

{ϕ(y, Sn+2T lx)− ϕ(y, ST lx)}

+ δ1

n∑
l=0

{ϕ(y, Sn+1T lx)− ϕ(y, T lx)}

+ δ0

n∑
l=0

{ϕ(y, T lx) + ϕ(y, ST lx)− ϕ(y, Sn+1T lx)− ϕ(y, Sn+2T lx)}.

Dividing by (n+ 1)2, we have

α1
1

(n+ 1)2

n∑
l=0

{ϕ(ST lx, y)− ϕ(Sn+2T lx, y)}

+ α0
1

(n+ 1)2

n∑
l=0

{ϕ(T lx, y) + ϕ(ST lx, y)

− ϕ(Sn+1T lx, y)− ϕ(Sn+2T lx, y)}

+ β1
1

(n+ 1)2

n∑
l=0

{ϕ(ST lx, y)− ϕ(Sn+2T lx, y)}

+ β0
1

(n+ 1)2

n∑
l=0

{ϕ(T lx, y) + ϕ(ST lx, y)

− ϕ(Sn+1T lx, y)− ϕ(Sn+2T lx, y)}

+ (α2 + α1 + α0)ϕ(y, Sy) + 2
⟨
(α2 + α1 + α0)Snx

+
1

(n+ 1)2

n∑
l=0

(
Sn+2T lx+ 2Sn+1T lx− ST lx− 2T lx

)
− (α2 + α1 + α0)y, Jy − JSy

⟩
≤ γ2

1

(n+ 1)2

n∑
l=0

{ϕ(Sy, Sn+2T lx)− ϕ(Sy, ST lx)}
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+ γ1
1

(n+ 1)2

n∑
l=0

{ϕ(Sy, Sn+1T lx)− ϕ(Sy, T lx)}

+ γ0
1

(n+ 1)2

n∑
l=0

{ϕ(Sy, T lx) + ϕ(Sy, ST lx)

− ϕ(Sy, Sn+1T lx)− ϕ(Sy, Sn+2T lx)}

+ δ2
1

(n+ 1)2

n∑
l=0

{ϕ(y, Sn+2T lx)− ϕ(y, ST lx)}

+ δ1
1

(n+ 1)2

n∑
l=0

{ϕ(y, Sn+1T lx)− ϕ(y, T lx)}

+ δ0
1

(n+ 1)2

n∑
l=0

{ϕ(y, T lx) + ϕ(y, ST lx)

− ϕ(y, Sn+1T lx)− ϕ(y, Sn+2T lx)}.

where Snxn = 1
(n+1)2

∑n
k=0

∑n
l=0 S

kT lx. Since {SkT lx : k, l ∈ N ∪ {0}} is bounded

by assumption, there exists a subsequence {Snix} of {Snx} such that {Snix} con-
verges weakly to a point u ∈ E. Letting ni → ∞ in the above inequality, we
obtain

(α2 + α1 + α0)
(
ϕ(y, Sy) + 2⟨u− y, Jy − JSy⟩

)
≤ 0

and hence

(α2 + α1 + α0)
(
ϕ(y, Sy) + ϕ(u, Sy) + ϕ(y, y)− ϕ(u, y)− ϕ(y, Sy)

)
≤ 0.

Since α2 + α1 + α0 > 0, we have

(3.2) ϕ(u, Sy) ≤ ϕ(u, y).

Similarly, replacing S and T by T and S, respectively, we have

(3.3) ϕ(u, Ty) ≤ ϕ(u, y).

Every weak cluster point of {xn} is a point of A(S) ∩ A(T ). Additionally, if C
is closed and convex, then u ∈ C. Putting y = u in (3.2) and (3.3), we have
ϕ(u, Su) ≤ ϕ(u, u) = 0 and ϕ(u, Tu) ≤ ϕ(u, u) = 0. Thus we get u ∈ F (S) ∩ F (T ).
Then every weak cluster point of {xn} is a point of F (S) ∩ F (T ). □

Let D = {(k, l) : k, l ∈ N∪{0}}. Then D is a directed set by the binary relation:

(k, l) ≤ (i, j) if k ≤ i and l ≤ j.

Now, we can prove the following nonlinear ergodic theorem for generic 2-generalized
nonspreading mappings in a Banach space.

Theorem 3.2. Let E be a uniformly convex Banach space with a Fréchet differ-
entiable norm and let C be a nonempty subset of E. Let S and T be commutative
generic 2-generalized nonspreading mappings of C into itself with A(S)∩A(T ) ̸= ∅
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such that A(S) = B(S) and A(T ) = B(T ). Let R be the sunny generalized nonex-
pansive retraction of E onto B(S) ∩B(T ). Then, for any x ∈ C,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converges weakly to an element q of A(S) ∩ A(T ), where q = lim(k,l)∈D RSkT lx.
Additionally, if C is closed and convex, then {Snx} converges weakly to a point of
F (S) ∩ F (T ).

Proof. Since A(S)∩A(T ) ̸= ∅, we have that from Theorem 2.13 that for any x ∈ C,
k, l ∈ N and z ∈ A(S) ∩A(T ),

ϕ(z, SiT lx) ≤ ϕ(z, x).

Thus {SiT lx} is bounded for all x ∈ C and then Snx is bounded.
We have from Lemma 2.10 that B(S)∩B(T ) is a sunny generalized nonexpansive

retract. Then there exists the sunny generalized nonexpansive retraction R of E
onto B(S) ∩B(T ). From Lemma 2.7, this retraction R is characterized by

Rx = arg min
u∈B(S)∩B(T )

ϕ(x, u)

for all x ∈ E. We also know from Lemma 2.5 that

0 ≤ ⟨v −Rv, JRv − Ju⟩ , ∀u ∈ B(S) ∩B(T ), v ∈ C.

Adding up ϕ(Rv, u) to both sides of this inequality, we have

ϕ(Rv, u) ≤ ϕ(Rv, u) + 2 ⟨v −Rv, JRv − Ju⟩
= ϕ(Rv, u) + ϕ(v, u) + ϕ(Rv,Rv)− ϕ(v,Rv)− ϕ(Rv, u)(3.4)

= ϕ(v, u)− ϕ(v,Rv).

Since ϕ(Sz, u) ≤ ϕ(z, u) and ϕ(Tz, u) ≤ ϕ(z, u) for any u ∈ B(S)∩B(T ) and z ∈ C,
it follows that for any (k, l), (i, j) ∈ D with (k, l) ≤ (i, j),

ϕ(SiT jx,RSiT jx) ≤ ϕ(SiT jx,RSkT lx)

≤ ϕ(SkT lx,RSkT lx).

Hence the net ϕ(SkT lx,RSkT lx) is nonincreasing. Putting u = RSkT lx and v =
SiT jx with (k, l) ≤ (i, j) in (3.4), we have from Lemma 2.3 that

g(∥RSiT jx−RSkT lx∥) ≤ ϕ(RSiT jx,RSkT lx)

≤ ϕ(SiT jx,RSkT lx)− ϕ(SiT jx,RSiT jx)

≤ ϕ(SkT lx,RSkT lx)− ϕ(SiT jx,RSiT jx),

where g is a strictly increasing, continuous and convex real-valued function with
g(0) = 0. From the properties of g, {RSkT lx} is a Cauchy net; see [14]. Therefore
{RSkT lx} converges strongly to a point q ∈ B(S) ∩ B(T ) since B(S) ∩ B(T ) is
closed from Lemma 2.12.

Next, consider a fixed x ∈ C and an arbitrary subsequence {Snix} of {Snx}
convergent weakly to a point v. From Lemma 3.1, we know that v ∈ A(S) ∩A(T ).
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Rewriting the characterization of the retraction R, we have that for any u ∈ B(S)∩
B(T ),

0 ≤
⟨
SkT lx−RSkT lx, JRSkT lx− Ju

⟩
and hence⟨

SkT lx−RSkT lx, Ju− Jq
⟩
≤

⟨
SkT lx−RSkT lx, JRSkT lx− Jq

⟩
≤ ∥SkT lx−RSkT lx∥ · ∥JRSkT lx− Jq∥

≤ K∥JRSkT lx− Jq∥,

where K is an upper bound for ∥SkT lx−RSkT lx∥. Summing up these inequalities
for k = 0, 1, . . . , n and l = 0, 1, . . . , n and dividing by (n+ 1)2, we arrive to⟨
Snx− 1

(n+ 1)2

n∑
k=0

n∑
l=0

RSkT lx, Ju− Jq

⟩
≤ K

1

(n+ 1)2

n∑
k=0

n∑
l=0

∥JRSkT lx−Jq∥,

where Snx = 1
(n+1)2

∑n
k=0

∑n
l=0 S

kT lx. Letting ni → ∞ and remembering that J

is continuous, we get

⟨v − q, Ju− Jq⟩ ≤ 0.

This inequality holds for any u ∈ B(S) ∩ B(T ). Therefore, we have Rv = q. But
because v ∈ B(S) ∩ B(T ), we have v = q. Thus the sequence {Snx} converges
weakly to the point q. Additionally, if C is closed and convex, then q ∈ C and
hence z0 ∈ F (S) ∩ F (T ). {Snx} converges weakly to a point of F (S) ∩ F (T ). □

Using Theorem 3.2, we obtain the following theorem.

Theorem 3.3. Let E be a uniformly convex Banach space with a Fréchet differ-
entiable norm and let C be a nonempty subset of E. Let S and T be commutative
generic generalized nonspreading mappings of C into itself such that A(S)∩A(T ) ̸=
∅, A(S) = B(S) and A(T ) = B(T ). Let R be the sunny generalized nonexpansive
retraction of E onto B(S) ∩B(T ). Then, for any x ∈ C,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converges weakly to an element q of A(S) ∩ A(T ), where q = lim(k,l)∈D RSkT lx.
Additionally, if C is closed and convex, then {Snx} converges weakly to a point of
F (S) ∩ F (T ).

Proof. If S and T are generic generalized nonspreading, then the mappings are
generic 2-generalized nonspreading. Therefore, we have the desired result from
Theorem 3.2. □

We also heve the following nonlinear mean convergence theorem; see [17].

Theorem 3.4. Let E be a uniformly convex Banach space with a Fréchet differ-
entiable norm and let C be a nonempty subset of E. Let S and T be commutative
2-generalized nonspreading mappings of C into itself such that A(S) ∩ A(T ) ̸= ∅,
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A(S) = B(S) and A(T ) = B(T ). Let R be the sunny generalized nonexpansive
retraction of E onto B(S) ∩B(T ). Then, for any x ∈ C,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converges weakly to an element q of A(S) ∩ A(T ), where q = lim(k,l)∈D RSkT lx.
Additionally, if C is closed and convex, then {Snx} converges weakly to a point of
F (S) ∩ F (T ).

Proof. If S and T are 2-generalized nonspreading, then the mappings are generic
2-generalized nonspreading. Therefore, we have the desired result from Theorem
3.2. □

Using Theorem 3.2, we have the following nonlinear mean convergence theorem
by Hojo [3] in a Hilbert space.

Theorem 3.5 ([3]). Let H be a Hilbert space and let C be a nonempty subset of
H. Let S, T be commutative normally 2-generalized hybrid mappings of C into itself
such that {SkT lz : k, l ∈ N ∪ {0}} for some z ∈ C is bounded. Let P be the metric
projection of H onto A(S) ∩A(T ). Then, for any x ∈ C,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converges weakly to an element q of A(S) ∩ A(T ), where q = lim(k,l)∈D PSkT lx.
Additionally, if C is closed and convex, then {Snx} converges weakly to a point of
F (S) ∩ F (T ).

Proof. It is obvious that normally 2-generalized nonspreading mappings in a Hilbert
space are generic 2-generalized nonspreading mappings. Since {SkT lz : k, l ∈ N ∪
{0}} for some z ∈ C is bounded, we have from Theorem 2.13 that A(S)∩A(T ) ̸= ∅.
In a Hilbert space, the metric projection of H onto A(S)∩A(T ) is equivalent to the
sunny generalized nonexpansive retraction of H onto A(S) ∩ A(T ). Furthermore,
we have A(S) = B(S) and A(T ) = B(T ). Thus, we have the desired result from
Theorem 3.2. □
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