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ABSTRACT. In this paper, we introduce and study a new class of split general
random variational inclusions with random fuzzy mappings in Hilbert spaces.
The sufficient conditions for the existence of solutions of such a problem are
provided. Further, by using the resolvent operator method, we construct the
iterative algorithms for solving this class of problems and its special cases. We
also consider the convergence criteria of iterative sequences generated by these
proposed algorithms. The results presented in this paperare new and extend the
previously known results in the literature.

1. INTRODUCTION

In 1965, Zadeh [32] introduced the fuzzy set theory which was applied in control
engineering and optimization problems as an attractive way. A class of variational
inequalities for fuzzy mappings was introduced and studied by Chang and Zhu [13]
in 1989. After that, several kinds of variational inequalities and complementarity
problems have been extended and generalized in various directions using techniques
of fuzzy theory. For more details on this topic, we refer the readers to [9-11,27].

The concept of random fuzzy mapping was introduced in 1998 by Huang [20] for
studying a new class of random completely generalized strongly nonlinear quasi-
complementarity problems. Huang [21] extended to the random generalized non-
linear variational inclusions for random fuzzy mappings. It is well known that the
variational inclusion problems are regarded as one of the most important and useful
generalization of the variational inequalities, which have wide applications in opti-
mization and control theory, economics and transportation equilibrium problems,
engineering science, see [15] and the references therein. In [21], Huang discussed the
existence of random solutions for a class of random fuzzy variational inclusions and
the convergence of random iterative sequences generated by the algorithm based on
the resolvent operator technique. After that, the applications of resolvent operator
technique for solving the various kinds of variational inclusions and random fuzzy
variational inclusions are considered by many authors such as Kazmi and Bhat [25],
Ahmad and Bazan [3], Lan et al. [26], (see also Ahmad and Farajzadeh [4], Lee et
al. [28], Ahmad et al. [2], Balooee and Cho [5]).

2010 Mathematics Subject Classification. 47HA40; 47TH10; 60H25; 47S40.
Key words and phrases. Split general random variational inclusion; Iterative method; Iterative
algorithms; Resolvent operator; Random fuzzy mapping.



52 N. V. HUNG, V. M. TAM, AND J. C. YAO

In 2011, Moudafi [29] introduced the following split monotone variational inclu-
sion problems (for short, (SMVIP)) stated as follows:

(1.1) finding ™ € Hy such that 0 € fi(z*) + Bi(2"),
and such that
(1.2) y* = A(z") € Hy solves 0 € fo(y*) + Ba(y").

where for each i € {1,2}, H; is a real Hilbert space, A : Hy — Hj is a bounded
linear operator, f; : H; — H; is a given operator and B; : H; — 2Hi is a multi-
valued maximal monotone mapping. Then the (SMVIP) constitutes a pair of varia-
tional inclusion problems (1.1) and (1.2) which have to be solved so that the image
y* = A(2z*) under a given bounded linear operator A, of the solution z* of the
problem (1.1) on H; is the solution of another problem (1.2) on another space Ho.

The split monotone variational inclusion problem includes as special cases: the
split variational inequality problems, split convex minimization problems, split fea-
sibility problems, split common fixed point problems, split zero problems and vari-
ational inclusion problems. In recent years, these problem models were interested
by many authors in different topics as the existence conditions and iterative al-
gorithms in Anh and Hung [1], Hung [22,23], Byrne [6], Moudafi [29], Censor et
al. [7], Kazmi [24], Tangkhawiwetkul and Petrot [30], (see also Chuang [14], Chang
et al. [12] and Hieu [16]) and well-posedness in Hu and Fang [18,19]. However, to
the best of our knowledge, up to now, there are no works on the existence conditions
and iterative algorithms for split general random variational inclusions with random
fuzzy mappings.

Motivated by the above works, the aim of this paper is to introduce and study
a new class of split general random variational inclusions with random fuzzy map-
pings in Hilbert spaces. The new iterative algorithms are proposed to compute the
approximate solutions of these problems by using the resolvent operator method.
Further, we also prove the existence of solution and convergence of iterative algo-
rithms under suitable assumptions for these problems. Our results are new and
extend the previously known results in the literature.

2. PRELIMINARIES

Throughout the paper, unless otherwise stated, for each ¢ € {1,2}, let H; be
a real Hilbert space with the inner product (-,-) and the norm || - ||, respectively;
d(xz,B) = infpep ||z — b is the distance from an element x to a subset B. We
suppose that (€2,.4) is a measurable space, where (2 is a set and A is a o-algebra
of subsets of Q. Let CB(H;) be a family of all nonempty bounded closed subsets of
H;. We denote by B(H;) the class of Borel o-fields on H;.

Let H is a real Hilbert space. The following definitions and concepts are needed
in the sequel.

Definition 2.1. (See [21]) (a) A mapping x :  — H is said to be measurable if
for any B € B(H), {t € Q: z(t) € B} € A.
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(b) A mapping S : Q x H — H is said to be a random operator if for any x €

H,S(t,z) = z(t) is measurable. The mapping S is said to be Lipschitz continuous
(resp., convex, monotone, linear, bounded, surjective) if for any ¢ € Q, the mapping
S(t,-) : H— H is Lipschitz continuous (resp., convex, monotone, linear, bounded,
surjective).
Definition 2.2. (See [21]) A multi-valued mapping I' : @ — 27 is said to be
measurable if for any B € B(H), I"}(B) = {t € Q: T'(t)N B # 0} € A. A mapping
u : 2 — K is called a measurable selection of a multi-valued measurable mapping
I':Q — 27 if u is measurable and for any ¢ € Q,u(t) € T'(¢).

Definition 2.3. (See [21]) A random multi-valued mapping 7' : Q x H — 2 is
said to be measurable, if for any x € K, T(-,x) is measurable. T is said to be
‘H-continuous, if for any t € , T'(¢,-) is continuous in the Hausdorff metric.

Let F(H) be a collection of all fuzzy sets over H, i.e. F(H) = {u|p: H — [0, 1]}.
A mapping T': H — F(H) is called a fuzzy mapping on H. If T is a fuzzy mapping
on H, then T'(z) (denoted by Ty, in the sequel) is a fuzzy set on H and T,(y) is
the membership function of y in T,. Let M € F(H), a € [0,1]. Then the set
(M)y ={x € H| M(x) > a} ia called an a-cut set of M.

Definition 2.4. (See [21]) A fuzzy mapping T : Q — F(H) is called measurable,
if for any a € (0,1}, (T(-))a : © — 2 is a measurable multi-valued mapping. T
is called a random fuzzy mapping, if for any x € H, T(-,xz) : Q@ — F(H) is a
measurable fuzzy mapping.

Clearly, the random fuzzy mappings include multi-valued mappings, random
multi-valued mappings, and fuzzy mappings as special cases.

Definition 2.5. (See [31]) Let K : Hy — Hy be a linear and bounded operator. A
mapping K* : Hy — Hj is called the adjoint operator of K, if

<K(x1),x2) = <$17K*($2)>7 Vt e Q,x; € Hyyi € {172}
Lemma 2.6. (See [31]) Suppose that K : Hi — Hy is a linear and bounded operator.
Then adjoint operator K* is linear and bounded and | K| = || K*||.

Throughout the paper, given mappings ai,as : H; — [0,1], random fuzzy map-
pings S : Q x Hy — F(Hy) and T : Q x Hy — F(H>) satisty the following condition
(A):

(A): There exist mappings a; : H; — [0, 1] such that

(St,xl)m(acl) € CB(Hl), VteQ,x1 € Hy
(Tt7$2)a2(12) € CB(HQ), YVt € Q,l‘g € Hs.

By using the random fuzzy mappings S and 7', we can define the random multi-

valued mappings S and T as follows:

S:Qx Hy — CB(Hy), (t,a1) = (Stay)ar@), Y(ta1) € Qx Hy.
T:Qx Hy— CB(Ha), (t,22) = (Tray)ap(a)s V(t,22) € Q x Ha.
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S and T are called the random multi-valued mappings induced by the random
fuzzy mappings S and T, respectively.

For each i € {1,2}, let fi,g; : Q x H; — H; and R; : Q x H; — 2% be random
mappings with Im(g;) N dom(R;(¢,-)) # 0, for t € Q. Let K : Hi — Hjy be a
bounded linear operator with its adjoint operator K*. We consider the following
split general random variational inclusions with random fuzzy mappings (for short,
(SpGRVI)):

(SpGRVI) Find measurable mappings z3,w] :  — H; such that for all ¢ € Q,
g1(t,21(¢)), wi(t) € Hi satisfying St ox ) (wi(t)) > a1(27(¢)) such that

(2.1) 0 € fi(t,wi(t)) + Ru(t, g1 (t, 21(2)))

and z3(t) = K(z7(1)), w3(t) € Ha satisfying go(t,25(t)) € Ha, T p5)(w3(t)) =
as(z5(t)) solve

(2.2) 0 € fa(t,wy(t)) + Ra(t, g2(t, 25(1)))-
The set of measurable mappings {z], w]} is called a solution of (SpGRVI) (2.1)-
(2.2).

If g; = I;, where I; is an identity operator on H;, then (SpGRVI) (2.1)—(2.2)
reduces to the following split random variational inclusions with random fuzzy map-
pings (for short, (SpRVI)):

(SpRVI) Find measurable mappings x7,w] : @ — H;p such that for all ¢t € Q,

wi(t) € Hy satistying Sy () (wi(t)) > a1(27(t)), for t € €2 such that
(2.3) 0 € fu(t,wi(t)) + Ra(t, 21(t))
and such that z3(t) = K(z7(t)), w3(t) € Ha satistying T} 4z (1) (w3(t)) > az(x5(t))
solve
(2.4 0€ faltsws(t)) + Ralt, a5(0)
Remark 2.7. g; = [;, a;i(z;(t)) = 1 and w;(t) = z;(¢), for all t € Q, z;(¢t), w;(t) € H;,
x;(+) = x; is a element of H; and fi(-,x;(+)) = fi(x;), Ri(-,xi(+)) = Ri(x;), then the
(SpRVI) (2.3)—(2.4) is reduced to the (SpVI) in the determined environment consider
in Chuang [14] and Moudafi [29].

3. RANDOM ITERATIVE ALGORITHMS

In this section, by using the fuzzy resolvent operator method associated with
A-monotone operator, we construct the iterative algorithms for solving (SpGRVI)
(2.1)—(2.2) and its special cases.

Definition 3.1. (See [21]) Let ¢ : Q@ x H — H be a random mapping, G : Q@ x H —
CB(H) be a multi-valued measurable mapping. Then

(a) ¢ is said to be Lipschitz continuous with constant [,(t), if there exists a
measurable function I, : @ — (0,+00) such that, for any ¢t € Q and
x(t),y(t) € H,

la(t, z(8)) = gt y(O)I] < (@) [[x(t) = y@)];
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(b) G is said to be H-Lipschitz continuous with constant Iz (), if there exists
a measurable function Ig : @ — (0,+00) such that for any ¢ € Q and
(t),y(t) € H,

HT (1, 2(), T(t,y(1))) < la®)z(t) - y(®)l,
where H(+,) is the Hausdorff metric on CB(H) defined as follows: for any
given A, B € CB(H),

H(A, B) = max < sup inf ||« — y||, sup inf || — .
(4.3 {x€3y63| vl sup int | yn}

Lemma 3.2. (See [8]) Let T : Q x H — CB(H) be an H-continuous random multi-
valued mapping. Then for any measurable mapping x :  — H, the multi-valued
mapping T(-,z) : Q@ — CB(H) is measurable.

Lemma 3.3. (See [8]) Let T, Q) : @ x H — CB(H) be two measurable multi-valued
mappings, let € > 0 be a constant and let u : 0 — H be a measurable selection of
T. Then there exists a measurable selection v : Q — H of G such that

Hu(t) - ’U(t)” < (1 + 6)H(T<t7 ')7 Q(tv ))7 vt € Q.

Definition 3.4. (See [26]) A single-valued mapping A : @ x H — H is said to
be strongly monotone with constant m(t), if there exists a measurable function
m : Q — (0,+00) such that

(A(t, (1)) — At y(1)), 2(t) — y(t)) = m(t)l|z(t) —y@)I*, Va(t),y(t) € H,t e Q.

Definition 3.5. (See [26]) A multi-valued mapping R : Q x H — 2 is said to be
relaxed monotone with constant r(t), if there exists a measurable function r : Q —
(0, +00) such that

(u(t) = v(t), z(t) —y(t)) = —r(t)l|z(t) —y(t)|

Vu(t) € R(t,z(t)),v(t) € R(t,y(t)),x(t),y(t) € H,t € Q.
Definition 3.6. (See [26]) Let A: Q x H — H be a single-valued mapping. Then
a random multi-valued mapping R : Q x H — 2 is said to be A-monotone if:

(a) R is relaxed monotone with constant r(t);

(b) [A¢(x) + p(t)Re(x)](H) = H,Vx(t) € H, t € Q and p(t) > 0 is a real valued

random variable,

where A;(x) = A(t,z(t)) and Ri(x) = R(t, z(t)).
Definition 3.7. (See [26]) Let A : Q x H — H be a strongly monotone mapping
with constant m(t) and R : Q x H — 2 be A-monotone. The A-resolvent operator
Jg(tt)’At : H — H associated with A and R is defined by

ng(:)’At(w) = (Ay+ p()Ry) "N (x), Vax(t) € H,p(t) > 0,t € Q.

Lemma 3.8. (See [26]) Let A : Q x H — H be strongly monotone with constant
m(t) and R: Q x H — 2 be A-monotone. Then the A-resolvent operator Jg(tt)’At :
QO x H— H is (m(t) — p(t)r(t))~t-Lipschitz continuous for p(t) € (0,m(t)/r(t)).
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Lemma 3.9. The set of measurable mappings {zi,wi : Q@ — Hi} is a random
solution of the (RVI) (2.1) if and only if for all t € Q, g1(t, 25 (t)) € Hi,wi(t) €
S(t,zi(t)) and

A * *
g (t, () = T ) (Ar(t g (6,25 (8) — pr(8) (e, wi(2)
where py : 2 — (0,400) is a measurable function.

Proof. Suppose that the set of measurable mappings {z],wj : @ — H;} is a
random solution of problem (RVI) (2.1). Then for all t € Q, g1 ((z]) € Hi,wi(t) €
S(t,z%(t)) and

0 € fi(t,wi(t)) + Ru(t, 91(t, 21(1)))-
This implies
0. € pu) i (1, wi (1) + pr (DRt 1 (1,25(1)))
0 — (Ay(t, g1 (6, 23(1))) — pr(8)fr(t wi(6))) + A (t, gu (8, 25 (1))
+ p1(t)Ra(t, 91(t, 1(2)))
=0 — (At g1(t, 21(1)) = pr(8) fi(t, wi (1))
+ (Aw(t ) + ()R (E, ) (91 (8, 21 (2)))

where p; : Q@ — (0, +00) is a measurable function. Hence
t),A * *
Q(t (1) = R ) (i it 21 (1) = pr (D) f (2, wi (1))
Conversely, suppose that for all t € Q, g1 +(27) € Hy,wi(t) € S(t,2%(t)) and

A * *
gt (8) = T ) (Ar(t g (6,5 (8) — pr(®) At wi (1),
where p; : Q — (0,400) is a measurable function, i.e.,

gi(t21(8) = (Au(t,) + pr () Ra(t, ) ™" (At g (t, 27 (1) — pa(8) fr(t, wi(t))

SO

Ar(t, g1(t, 21(t))) — pr () f1(t, wi(t)) € (Ar(t,-) + pr(t)Ru(Z, -)) (g1(t, 21 (2))).
Hence,
0 € fi(t,wi(t)) + Ra(t, g1(t, 21(1)))-
Thus, the set of measurable mappings {z},w] : Q@ — H;} is a random solution of

problem (RVI) (2.1). O

Remark 3.10. From the result of Lemma 3.9, the problem (SpGRVI) (2.1)-(2.2)
can be reformulated as follows: Finding the measurable mappings x],wj : @ — H;
with z3(t) = K(xj(t)), wi(t) € Hp such that for all ¢ € Q, g;(t,z;(t)) € H;,
wi(t) € S(t, 23 (), wi(t) € T(t,z%(t)) and

Gilt, @ (1) = TR ) (Aslt, it 27 (1)) = pil) filt, i (1)

where p; : © — (0, +00) is measurable function, for all i € {1, 2}.
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Based on the above discussion, an iterative algorithm for solving (SpGRVI) (2.1)-
(2.2) is proposed as follows:

Algorithm 3.1. Suppose that S : Qx Hy — F(Hy)and T : Qx Hy — F(Hz) be two
random fuzzy mappings satisfying the condition (A). Let S:QxH; — CB (H;) and
T : Q x Hy — CB(Hy) be H-continuous random multi-valued mappings induced by
S and T, respectively. Assume that o : Q© — (0, 1] is a measurable step size function.
For each i € {1,2}, we assume that g; is surjective. Let A;, f;, g; : Qx H; — H; be the
single-valued random mappings and R; : Q x H — 2% be a multi-valued random
mapping such that for each fixed t € Q, R;(t,-) : H; — 2 is an A;-monotone
mapping with Im(g;) N dom(R; (¢, )) 7& 0.

Given a measurable mapping 371 : 2 — Hp, then the multi-valued mapping
S(,290) : Q — CB(Hl) is measurable by Lemma 3.2. Hence there exists a
measurable selection w? : Q — Hy of S(-,29(-)), by Himmelberg [17]. Since g is
surjective, there exists a measurable mapping 3° : Q — H; such that

g1(t5°(0) = T A (A1 (6 2900) — o1 (91 (1 (1))

where p; : Q — (0, +00) is a measurable function. Let K : H] — Hjy be a bounded

linear operator and let K* be its adjoint operator. Then, z9(t) = K(x?(t)) is mea-

surable. Hence there exists a measurable selection w9 : Q — Hj of T(, K(z 2.
Since g9 is surjective, there exists a measurable mapping z° : 0 — Hy such that

A
g, 20(1)) = St (As(tga(t K (50(8)) = pa(t) folt wd(1)))
where py : Q — (0,4+00) is a measurable function. We consider
zi(t) = (1 = a(t)a](t) + a(t) [1°(t) + 1) K" (°(t) = K(y°(1)]
where v : Q — (0, +00) is a measurable function. It is easy to see that 21 : Q — H;

is measurable. By Lemma 3.3, there exist measurable selections w} : Q — H; of
S(-,z1(-)) and wh : Q@ — Hy of T(-, K(21(-))) such that Vt € Q,

Jwd(t) = wh@)ll < (1+ 1) Ha (St 29®). St 21(1)
Jed(t) — wh(®)ll < (1+ 1) Ho (Tt K (23(1))), Tt K (2(1))))
Let
gty (6) = TR ) (At g2t (1) — s ik wi (1)
92(t, 2 ( ) = ng((t);:?tt[(( 1(1))))) (A2(t792(t7K(yl(t)))) — p2(t) f2(t, w%(t))) )
(1) = (1 — )z (1) + at) [y (1) + () K* (2 (8) — K(y'(1))] .
where v : Q — (0,400) is a measurable function. Then 331 Q) — H; is measurable.

Then, there exist measurable selections w? :  — Hj of S(,x 2()) and w3 : Q — Ho
of T(-, K (22(-))) such that V¢ € €,

b~ wt < (1+ 5 ) 0 (Ste. ok, Se.at0).
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b~ wdt) < 1+ ) 7 (T Klad)), Tee. K at0)).

Continuing the above process inductively, we can propose the following random
iterative sequences {z7(t)}, and {w(¢)} for solving (SpGRVI) (2.1)—(2.2) as follows:

(3:1) g1t y"(5) = Jpt ot vn ) (A1 (b g1 (1,27 () = pr(8) fa(t w (1))

(32) galt, 2"(1)) = T2y (Aa(t, g2t K (" (1)) = pa(t) falt, wh (1))

(3.3) a7H(8) = (1 — a(®)a"(t) + a(t) [y (t) + A0} K* (2" () — K" (1))
Wit (t) € S(t, e (2)), wy (1) € T(t, K (a7 (1)),

(3.4) ot (t) = W (B < (1 + (1 +n) ) (S 25 0), St 21T (1))

t)
(1
(8:5) lwg(t) = w0 < (1 + (14 n) e (T, K (@7 0), T(t K (@7 (1))
for any t € Q and n =0, 1,2...

Next, we propose an iterative algorithm for solving (SpRVI) (2.3)—(2.4) as a
special case of Algorithm 3.1.

Algorithm 3.2. For each i € {1,2}, let f;, R; be the same as in the (SpRVI);
(2.3)-(2.4). Suppose that S : Q x Hy — F(Hy) and T : Q x Hy — F(Hz) be two
random fuzzy mappings satisfying the condition (A). Let S : Q x H; — CB(H;)
and T : QOx Hy — CB (Hz2) be H-continuous random multi-valued mappings induced
by S and T, respectively. Let A; : Q x H; — H; be a single-valued random mapping
and for each fixed t € Q, R;(t,-) : H; — 2Hi be an A;-monotone mapping. Further,
let a: Q — (0,1] be a measurable step size function. In similar to Algorithm 3.1,
for any measurable mapping 2! : Q — Hj, we can define sequences {x7(t)} and

{w](t)} for solving the (SpRVI); (2.3)—(2.4) as follows:

g () = TR (Aa(t 22 (8) = pr(0) Al wi (1),
n(t) = TR0 (Aot K (5 0)) — pat) falt wB(0)

)
x?“(t) (1 —a(t)a™(t) + at) [y" (1) + (O K (2" () — K(y" ()],
witl(t) € St it (2), wi T (t) € Tt K (a5 (¢)

) )7
) = wi )] < (14 (L+n) ") Ha (S(t, 27 (1), S(¢, ”H(t))),
g (t) = wi (O] < (14 (L+n) " )He (Tt K (27(2)), T(t, (ﬂ“(ﬂ))) ,

where v, p; : Q@ — (0, +00) are measurable functions, for all t € Q and n =0,1,2....

4. EXISTENCE AND CONVERGENCE RESULTS

In this section, using the sufficient conditions, we now establish the existence
and convergence of iterative Algorithm 3.1 for (SpGRVI) (2.1)—(2.2). Further, the
existence of solution and convergences of iterative Algorithm 3.2 is also proposed
for (SpRVI) (2.3)—(2.4).
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Theorem 4.1. For each i € {1,2}, let H; be a real Hilbert space, R; : Q x H; — 2Hi
be a random multi-valued mapping such that for each fized t € Q, R;(t,-) : H; —
2Hi pe an A;-monotone mapping and A; : Q x H; — H; be strongly monotone
with constant m;(t) and Lipschitz continuous with constant l4,(t). Let fi, g; : Q X
H; — H; be Lipschitz continuous random mappings with constants ly, (t) and ly,(t),
respectively. Suppose that g; is strongly monotone with constant k;(t). Let S :
OxHy — F(Hy) and T : Qx Hy — F(Hz) be two random fuzzy mappings satisfying
the condition (A). Let S : Qx Hy — CB(Hy) and T : Qx Hy — CB(Hz) be random
multi-valued mappings induced by S and T, respectively. Suppose that S and T are
H-continuous with constants l5(t) and Iz(t), respectively. Let K : Hy — Ha be
bounded linear operator with K* be its adjoint operator. If there exist measurable
functions i, pi,y : @ — (0,400) with pi(t) € (0,m;(t)/ri(t)), for all t € Q, such
that

) |7t o)) — T ()| < i ®)att) = (o)),

Vii(t), y (t) i(t) € Hi;
(i) ~(t) € (o, ”;”2) and a(t) (1= A (t) — v(£) ()| KI2) € (0,1),

where
1 1
Al(t) = Hl(t) |:m1(t) —,01(t)7“1(t) (lAl(t)lgl(t) +p1( )lfl( )Z (t)) +:U‘1( )l (t):| )
1 1
2l0) = i [ (Ol (OM O + O OEO) + 12O (O (0]

then the random iterative sequences {x](t)}, {y™(t)}, {z" ()}, {wi(t)} and {wh(t)}
constructed by Algorithm 3.1 are convergent sequences.

Proof. From Algorithm 3.1 (3.3), we have
[EROEEHO]
= [[(1 = a()a"(t) + at) [y"(£) + V() (2"(t) — K (y"(t))]
— [ =a@)a" (@) + o) [y" 16 + (O K ("1 0) - K" @)]]]]
<(1—a®)]af () - 27 @) + a@r(@) | K* (") — 2" @)
A1) +ally ) -y ) — O (K@ (1) — K" ()]
It follows from iterative Algorithm 3.1 (3.1), Assumption (i) and Lemma 3.8 that
lgr(t, 4™ (8)) = g1(t, 4" (1))
= |t oy (Ar(t a7 () = a0 (8, 0 (1))
I sy (Arlt g1 (2T (0) = O At w7 ) |
<[ apts ) (At gi (28 (0) = pr (D it wi (1))
Tty (st (b2t (0) = pr ()t w7 ) |

+ HJpl(t’g?(lttxl(t))) (Al(tagl(t Ty l(t)>) p1(t) fr(t, wi™ (t)))
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IOy (a4 0) — Ol )]

Hence,
g1 (£, 9™ (8)=g1(t, 5"~ (1)
1 n n—
Sml (t) — pl(t)rl(t) (HAl(t? 91 (t7 L1 (t))) - Al(tv g1 (t’ Ty 1(t)))||
+ 1O A1, wi (2)) = fult, wi ™ (@)]])
(4.2) +pa(®)llg(t, 27 (1) — g1, 277 (1)].
Since A; is Lipschitz continuous with constant [4,(¢), we have
(4.3)

1AL (t, g1t 27(1))) — Av(t, g1, 27 (O] < Lay (D)llor(t, 27 (1)) — g1t 27~ (D).

Since fy is Lipschitz continuous with constant Iy, (t), S is H-continuous with con-
stant [z(t) and by Algorithm 3.1 (3.4), we have

118, wi (1) = fr(t, wi ™ )] < L (O]lwd (8) = wi™ (0]

(4.4) < U (05O +n7Yl2f (1) — 27 ).
As g is Lipschitz continuous with constant [y, (%),
(4.5) g1 (t, 27 (1)) = g1 (t, af M) < Ly (D) |27 (1) — 277 (D))
From (4.2)-(4.5), we obtain
(4.6)
g1 (t, y7 (1) = g1.(t, 57 ()]

1
mi(t) — pr () (D) (L, (D)1, (8) + pr (), (Dlg(E) (1 + 7)) + pa ()l (2)

x [lzi (1) — 27 (@)

By Cauchy-Schwartz inequality and g¢; is strongly monotone with constant r;(t),
we have

lgr(t 5™ () =g (t, 5" O™ (1) = y" (D]
> (q1(t,y" (1) — 91(75 y"TH0), 5" () — y (D)
> rsa(®)lly™ (1) =y (@),
which implies that
(4.7) ly" (8) =y (B < p )||91(t (1) = ity @)
So, it follows from (4.6) and (4.7) that
(4.8) ly™ () = "D < XL @)ll27(8) — 277 @),
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where

1 1
AL(t) =
i r1(t) [ml(t) — p1(t)r1
Similarly, from Algorithm 3.1 (3.2) and (3.5), Assumption (i) and Lemma 3.2 and using
the facts that As, fo and go are Lipschitz continuous with constants 14, (t),{f,(t) and 4, (¢),

respectively, T is H-continuous with constan /(%) and g is strongly monotone with constant
Ka(t), we get

e (0) — = ()] <— [ Lay (Dl (DIE (5" (1) = K(y" ' ()]
)

2
+o2 (Ol (D7) (1 + 17 YK (27 () — K (27 (1))
)

1K [ 1
T ka(t) [ma(t) — pa(t)r2(t)

+p2(B)l, (70 (1 + 0727 (1) — 277 (#)]])
(4.9) +h(8)lg, (O)]ly™ (1) =y O] -
From (4.8) and (4.9), we have
(4.10) 12" (1) = 2" < A @OIK 2 (8) — 27 (@),
where
Ay (t) =

1 1

i | (1Ol OX O+ OO0+ 1)) + a0l N 0]
It should be noted that K* is an adjoint operator of the bounded linear operator K with
K] = [[K=]. So

ly™(8) —y" () = () K (K (y" (1)) = K" @ON* = ly™ () —y" " (O

—27 (" (t) —y" (1), K (K (y" (1) — K(y" (1))
21K (K(y" () — Ky @)l
< ly™ (@) —y" " @O = 702 = O IE DK (y" (1) — Ky~ (@)
"THH)|P (since (1) € (0,2/]1K7))

MOt () =i ) (by (A7),
which implies that
(411)  [ly"(t) =" 71 () =YK (K (y" (1) — K" O] < AT @)l (1) — 27~ @)
From (4.1), (4.8), (4.10) and (4.11), we get
(4.12) 2 (t) = 2T @) <A (@)l (t) — 27 @),

where

/\/\

AM(t) =1 —a(t) (L= X[ () —v()AF (1) K|?) vt € Q.
Letting

M) =1—a(t) (1 - () —yO)r@OIK]?),
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1 1
)‘1 (t) = K1 (t) |:m1 (t) — (t)Tl (t) (lAl (t)lgl (t) +p (t)lfl (t)lg(t)) + Nl(t)lgl (t):| )
1 1
elt) = s | (O (OO + O OIF0) + el (0]
vt € Q.

It follows from Assumption (ii) that 0 < A(t) < 1, for all ¢ € Q. Moreover, it is easily
seen that for any ¢ € Q, A" (t) — A(¢). Hence, for any ¢t € Q, 0 < A"(t) < 1, for n sufficiently
large. Therefore, it follows from (4.12) that {z7(¢)} is a Cauchy sequence in H;. By the
completeness of Hy, we get that {z7(¢)} is a convergent sequence. By the convergence of
the sequence {z7(¢)} and from (4.8) and (4.10), we also obtain that {y™(¢)} and {z"(¢)}
are convergent sequences.

From (3.4) and (3.5), we have
lwi (8) = wi T @I < (1 + 1 +n) " )ig®)ll2(t) — 27 @),
lwg (8) = wy T I < (14 (1 + ) Dia@) K l27(2) — 27 (@), vt € Q.
So {wi(t)} and {wi(t)} are also the convergent sequences. This completes the proof. [

Theorem 4.2. Impose the assumptions of Theorem 4.1 and the following additional con-
dition:
(©) ILm xt(t) = 1Lm y"(t) and ILm K(xb(t)) = ILm 2"(t), for allt € Q.
Then, the problem (SpGRVI) (2.1)~(2.2) has a solution.
Proof. From Theorem 4.1, we obtain that {z7(¢)}, {y"(t)}, {z" (@)}, {w](¢)} and {wh(t)}
constructed by Algorithm 3.1 are convergent sequences. Then, let lim z7(t) = hm Yy (t) =
n—oo

x3(t) and lim wl}(t) = wi(t). Now, we prove that {z7(t), wy(t)} is a solution of (SpGRVI)
n—oo
(2.1)—(2.2). In fact, for any t € Q, since wi(t) € S(¢,27(¢)), we get

d(wi (¢), S(t, 27(1))) = inf{[lwi (8) = s(t)|| = s(t) € S(¢,27(2))}
< Jwi(t) = wi ()] + d(wi (1), S(t, 75 (1))
< Jlwi(t) = wi(0)] + Ha (St 21 (0), S(t, 21 (1))
(4.13) < Jwi(8) = wi' ()] + L5 (@) |27 (¢) — 21 (B)]] = 0.
S(t,x}(t)), for all t € Q. Moreover, using the continuity of K, let
Jim K(xz3(t)) = a3(t). Then, nl;ngo 2"(t) = x3(t). Let nlgr;o wh(t) = wi(t).

)
Similarly to (4.13), we can also show that w3 (t) € Ty(x3), for all t € Q. Noted that {z7(¢)},
{y" ()}, {z"(t)}, {wP(t)} and {wk(t)} are the sequences of measurable mappings, we know
that z3(t), z3(t), wi(t) and w3 (¢t) are also measurable.
Since g; is continuous, g¢1(¢,y"(t)) — g1(t,25(t)), g2(t, 2" (t)) — g2(t,25(t)). Then as
gi, A;, fi and Jﬁi’;’Ai’t are continuous, it follows from (3.1) and (3.2) that, for each i € {1, 2},

Hm

Hence, wi(t)
lim K(z}(t)

i(t),Ase * *
gi(t, T () = TR e ) (Ailt gilt 21 () = pi®) filt, w] (1)), for all £ € Q.
Thus by Remark 3.10, the set of measurable mappings {7 (t), wi(¢)} is a solution of (Sp-
GRVI) (2.1)—(2.2). This completes the proof. O
If g; = I;, then the results of Theorems 4.1 and 4.2 reduce to the following result for the
existence of solution and convergence of Algorithm 3.2 for (SpRVI) (2.3)—(2.4).
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Corollary 4.3. For each i € {1,2}, let H; be a real Hilbert space, R; : Q@ x H — 2Hi be
a random multi-valued mapping such that for each fired t € Q, R;(t,-) : H; — 2Hi be an
A;-monotone mapping and A; : Q@ x H; — H; be strongly monotone with constant m;(t) and
Lipschitz continuous with constant la,(t). Let f; : Q x H; — H; be a Lipschitz continuous
random mapping with constant Iy, (t). Let S : Q x Hy — F(Hy) and T : Q x Hy — F(H>)
be two random fuzzy mappings satisfying the condition (A). Let S:Qx Hy — CB(Hy) and
T:Qx Hy — CB(Hs) be random multi-valued mappings induced by S and T, respectively.
Suppose that S and T are H-continuous with constants l5(t) and 15(t), respectively. Let K :
H, — Hj be a bounded linear operator with K* be its adjoint operator. Moreover, suppose
that the condition (©) holds. If there exist measurable functions p;, p;,7y : & — (0,400)
with p;(t) € (0,m;(t)/ri(t)), for allt € Q, such that

|78 e a0 = T Do) )| < sl (8) = @), Yra(0), ie), =a(0) € H,

R;(t,x;(t) Ri(t,y:(t))
and
alt) (1= M (1) — 7O 2) € (0,1), ~(t) € (o, ”;”)
where
1
M) = | (04 (01, (00150) + )]
1

Aalt) = [ (Las(OM (1) + 2Dy, (DL(1)) + m(tma)} ,

ma(t) — p2(t)ra(t)
then there exists the set of measurable mappings {7}, w? : Q@ — H;} be a solution of (SpRVI)
(2.3)-(2.4). Moreover, z7(t) — x7(t) and w}(t) — wi(t), where {z7(t)} and {wi(t)} are
random iterative sequences obtained by Algorithm 3.2.

Remark 4.4. Corollary 4.3 improves and extends Theorem 3.1 in [29], Theorems 3.1, 3.2
and 3.4 in [14] in the following aspects:

(a) The problem (SpRVI) is a generalization of the problems in [29] and [14].

(b) The problem (SpRVI) is established in random and fuzzy environments.

(¢) The assumptions and our proof methods are very different from Theorem 3.1 in [29],
Theorems 3.1, 3.2 and 3.4 in [14].
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