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ABSTRACT. Sperner’s lemma is a combinatorial version of Brouwer’s fixed point
theorem. In this paper we present a discrete fixed point theorem by combining
Sperner’s lemma and a simplicial variant of the direction preserving condition.
Our claim is that at least one of the vertices of any completely labeled simplex is
a fixed point for a suitable labeling. Therefore we conclude that Sperner’s lemma
is a kind of combinatorial fixed point theorem.

1. INTRODUCTION

Let A = |a"al---a"| be an n-simplex, X be a subdivision of A, and V be the
set of vertices of 3. A labeling is a mapping from V to {0,1,...,n}. The carrier of
a vertex v € V is the lowest-dimensional face |a a’* ... a’| of A that contains v.
We denote by I(v) the corresponding index set {ig, i1, ..., is}. A labeling is said
to be proper if it assigns to each vertex v € V' one of the numbers in I(v). Given a
proper labeling of 3, an n-simplex in ¥ is said to be completely labeled if its vertices
are labeled 0,1,...,n.

Theorem 1.1 (Sperner’s lemma, [4]). Given a proper labeling of ¥, the number of
completely labeled simplices is odd.

As is well-known, Sperner’s lemma implies Brouwer’s fixed point theorem, and
vice versa, see e.g. Border [1]. Therefore Sperner’s lemma is a discrete version of
Brouwer’s fixed point theorem. Although Sperner’s lemma does not take the form
of a fixed point theorem, we make clear the aspect of Sperner’s lemma as a fixed
point theorem by a simplicial variant of the direction preserving condition in this

paper.
2. VERTICES OF COMPLETELY LABELED SIMPLICES
We first deal with the standard n-simplex
A" = |l e = {(z0,...,xn) | T+ +xp=1,2;>0(i=0,...,n)}

U denotes the set of vertices of a given simplicial subdivision ¥ of A”™. We say
u, v’ € U are adjacent if they are vertices of the same simplex in X", and denote
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FI1GURE 1. Proper labeling and completely labeled simplices.

this relation by u ~ u/. A mapping g : U — U is said to be simplicially direction
preserving b if

(2.1) u~u = (gi(u) —w)(gi(u) —u)) >0 (i=0,1,...,n).

Labeling (2.2) below was used in the proof of ”Sperner’s lemma implies Brouwer’s
fixed point theorem”, see Border [1, 6.1].

Theorem 2.1. Let g : U — U be simplicially direction preserving. Define a labeling
Ly by

(2.2) Ly(u) :=min{i € I(u) | gi(u) —u; < g;j(u) —u; Vj € I(u)}.

Then for any completely labeled n-simplex in X" one of its vertices is a fixed point
of g.

Proof. Let o = |[u’ul---u"| be a completely labeled simplex. We may assume
that Ly(u’) =i (i = 0,1,...,n) without loss of generalization by renumbering the
vertices. Put
d' = (db,di,...,d") = g(u') —u’.

Since both g(u?) and u’ belong to A", the component sum of d’ is 0 for any i.

In the case of there exists k s.t. di > 0, d* is a nonnegative vector by the
definition of Lg(uk). Hence d* is a zero-vector, that is, u* is a fixed point of g.

Otherwise d¢ < 0 for all i. Since u’ ~ u/ for any j # i, by the simplicial direction
preserving condition (g;(u?) — ut)(g;(v/) — uf) > 0, we have dg = gi(u?) — ui <0.
Since i is arbitrary, d’ is a non-trivial nonpositive vector, which contradicts that
the component sum of d’ is zero. O

For any n-simplex A = [a"a'---a"|, Theorem 2.1 holds true by modifying the
labeling and the simplicial direction preserving condition. In Theorem 2.2 below, we
assume that a?,...,a" € R"! are linearly independent, and A denotes the square
matrix of order n + 1 whose ith column is a’.

Theorem 2.2. Let V' denote the set of vertices of a given subdivision Y of A, and
f be a mapping from V into itself. For any v € V', d;(v) denotes the ith component

IThis is a simplicial variant of the direction preserving condition introduced in Timura [2]
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of A7Y(f(v) —v). If f satisfies
(2.3) v~v = di(v)di(v') >0 (i=0,1,...,n),
then there exists a proper labeling such that for any completely labeled n-simplex

in 3 one of its vertices is a fixed point of f.

Proof. Since linear transformation A~! maps vertex a’ of A to vertex e’ of A",
¥ :={A7Y0o) | ¢ € ¥} is a subdivision of the standard n-simplex A". Also for
any v € V and u := A=, I(u) coincides with I(v). Indeed, since v is uniquely
expressed as a convex combination

v = Z \ial,

i€l(v)
So is u as
U = Z )\iA_l ¢ == Z )\ZeZ
icI(v) i€l(v)
Define g(u) := A~!f(Au), then g is a bijection from U := A~1(V) into itself and
(2.4) g(u) —u=A"1f(Au) —u= A" (f(v) —v) = d(v).
Hence
(2.5) gu)=u & f(v)=w.

Since u ~ v’ is equivalent to v ~ Aw’, the simplicial direction preserving condition
on g:
u~u = (gi(u) —w)(gi(u) —ul) >0 (i=0,1,...,n)
reduces to
v~ = di(v)di(v)) >0 (i =0,1,...,n).
Applying Theorem 2.2 to g, we see that for any completely labeled n-simplex in %"
one of its vertices is a fixed point of g. Desired proper labeling is given by

Ly(v) i= min{i € 1(0) | di(v) < dy(0) ¥j € I(0)} = Ly(u),
where the last equality follows from (2.4). We get the conclusion by (2.5). O

Finally we remove the assumption that a, ..., a" are linearly independent. When
a,...,a" are linearly dependent, we take a vector b independent to them, and
denote by B the square matrix of order n 4 1 whose ith column is a® — b. Then B
is nonsingular.

0

Theorem 2.3. Let V denote the set of vertices of a given subdivision ¥ of A, and
f be a mapping from V into itself. For any v € V', d;(v) denotes the ith component
of BY(f(v) —v). If f satisfies

(2.6) v~v = di(v)d;(v') >0 (i=0,1,...,n),

then there exists a proper labeling such that for any completely labeled n-simplex
in ¥ one of its vertices is a fixed point of f.
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Proof. Define an affine mapping by ¢(u) := Bu+b, then ¢~!(v) = B~!(v—b) maps
vertex a’ of A to vertex e’ of A", and X" := {p~1(0) | ¢ € X} is a subdivision of
A™. Also for any v € V and u := ¢! (v), I(u) coincides with I(v). Define

g(u) = (¢ o fop)(u) = BT (f(Bu+0b) —b),
then g is a bijection from U := ¢~ }(V) = {B~1(v — b) | v € V} into itself and
(2.7) g(u) —u =B (f(Bu+b) —b— Bu) = B~} (f(v) —v) = d(v).
Hence g(u) = u is equivalent to f(v) = v. Since u ~ v is equivalent to v ~ @(u'),
the simplicial direction preserving condition on g reduces to
v~v = di(v)di (V) >0 (i=0,1,...,n).
Desired proper labeling is given by
Ly(v) :=min{i € I(v) | d;(v) < dj(v) Vj € I(v)} = Lg(u).
The rest of the proof is same with that of Theorem 2.2. O

We note that Kawasaki-Hashiyama [3] gave a characterization of simplicial direc-
tion preserving condition (2.1) for any subdivision of an integral interval

{z1,21+1,...,z1+wi} X X {zn,2n+ 1,... 20 + wp}.

3. WEAK SIMPLICIAL DIRECTION PRESERVING CONDITION

Yang [5] presented a discrete fixed point theorem below under the assumption

(3.1) vt = (f(0) = v)- (f() — ) > 0,

where u - v stands for the inner product of v and v. It is evident that (3.1) is weaker
than the simplicial direction preserving condition (2.1).

Theorem 3.1 (Yang [5, Theorem 5.2]). Let V be a finite set in R"™ and f be a
mapping from V into itself. Given a simplicial subdivision for the convex hull of V.

If f satisfies (3.1), then f has a fixed point.

In this section we show that theorems in Section 2 hold true under assumption
(3.1) in two-dimensional case. First we deal with the standard 2-simple A? =
le¥ el e?|. Next we consider arbitrary 2-simplices as well as in Section 2.

Proposition 3.2. Given a subdivision X2 of A2, Let U? denote the set of vertices
of ¥2 and g : U2 — U? be a mapping. Let L, be defined by (2.2). If g satisfies
(3.1), then for any completely labeled 2-simplex in X2 one of its vertices is a fixed
point of g.

Proof. Let |[u® u! u?| be a completely labeled 2-simplex in ¥?. We may assume that
Ly(u’) =i (i = 0,1,2) without loss of generalization. Put d’ := g(u’) — v’ and
d' = (d, di, db). Then (3.1) implies

(3.2) di-d’ >0 (i #j).

2Such a function f is said to be simplicially local gross direction preserving by —z in [5].
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Since both g(u’) and u' belong to A2, the component sum of d’ is 0. Suppose
that none of u?, !, u? is a fixed point, then by definition of Ly, d8, d% and d% are

negative. Since (3.2) holds true by positive scaling, we may put
(3.3) = (-1,a,1—a), d =1 —-p,—1,p), d*=(s,1 —5,—1)
for some a,p,s € R. Then by (3.2) and a, p, s > —1,

0<d - d®=2s—(sp+p+1)=3s—(s+1)(p+1) <3s
(3.4) 0<d’-d>=2a—(as+s+1)=3a—(a+1)(s+1) < 3a

0<d’ d*=2p—(pa+a+1)=3p—(p+1)(a+1)<3p,
we have a,p,s > 0. Here if s = 0, then p+ 1 = 0, which contradicts p > 0. Hence s
is positive. Similarly, p and a are positive. Hence we have from the first inequality
of (3.4) that

0<2s—1—(ps+p) <2s—1,
so that s > 1/2.
By puttingb=1—a,qg=1—p,and t =1 — s in (3.3), (3.4) reduces to

0<d -d>=3b—(b+1)(g+1)<3b
(3.5) 0<d-d?>=3¢g—(¢g+1)(t+1)<3q
0<d-dt=3t—(t+1)(b+1) <3t

As well as a,p and s, we see from (3.5) that b, g and t are positive. Similarly we get
from the third inequality of (3.5) that ¢ > 1/2, which contradicts that s+t =1. O
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