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In 2010, Kocourek, Takahashi and Yao [8] proposed a broad class of nonlinear
mappings containing nonexpansive mappings. A mapping T from C into H is called
a generalized hybrid mapping if there exist α, β ∈ R such that

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C, where R is the set of real numbers. Such a mapping T is also called
(α, β)-generalized hybrid. It is obvious that a (1, 0)-generalized hybrid mapping
is nonexpansive. In addition to nonexpansive mappings, the class of generalized
hybrid mappings contains other types of well-known nonlinear mappings. For ex-
ample, a (2, 1)-generalized hybrid mapping is nonspreading [9,10], and a (3/2, 1/2)-
generalized hybrid mapping is hybrid [17]. It is known that nonspreading and hybrid
mappings are not necessarily continuous (see [6] or [24]). For these types of map-
pings, see also Takahashi and Yao [22]. We also know that the class of generalized
hybrid mappings covers λ-hybrid mappings [1]. For this point, see Hojo, Takahashi
and Yao [5]. Kocourek, Takahashi and Yao [8] established a nonlinear ergodic theo-
rem, which generalized Theorem 1.1, and another type of weak convergence result.

Generalized hybrid mappings are further extended. Maruyama, Takahashi and
Yao [13] defined a wide class of nonlinear mappings containing generalized hybrid
mappings. A mapping T : C → C is called 2-generalized hybrid if there exist
α1, α2, β1, β2 ∈ R such that

α1∥T 2x− Ty∥2 + α2∥Tx− Ty∥2 + (1− α1 − α2)∥x− Ty∥2

≤ β1∥T 2x− y∥2 + β2∥Tx− y∥2 + (1− β1 − β2)∥x− y∥2

for all x, y ∈ C. If α1 = β1 = 0, the class of 2-generalized hybrid mappings
coincides with the class of generalized hybrid mappings. Kondo and Takahashi [11]
introduced the following class of nonlinear mappings which covers 2-generalized
hybrid mappings. A mapping T : C → C is called normally 2-generalized hybrid if
there exist α0, β0, α1, β1, α2, β2 ∈ R such that

∑2
n=0 (αn + βn) ≥ 0, α2+α1+α0 > 0

and

α2∥T 2x− Ty∥2 + α1∥Tx− Ty∥2 + α0∥x− Ty∥2

+ β2∥T 2x− y∥2 + β1∥Tx− y∥2 + β0∥x− y∥2 ≤ 0

for all x, y ∈ C. It is also known that the type of normally 2-generalized hybrid
mappings contains normally generalized hybrid mappings [23]. Lin and Takahashi
[12] and Kondo and Takahashi [11] proved nonlinear ergodic theorems that weakly
approximate attractive points of 2-generalized hybrid mappings and normally 2-
generalized hybrid mappings, respectively.

Very recently, Takahashi [18, 19] defined a broad class of nonlinear mappings. A
mapping T : C → H is called a demigeneric generalized hybrid mapping if there
exist α, β, γ, δ, ε, ζ ∈ R such that α+ β + γ + δ ≥ 0, α+ β + ζ > 0 and

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+ ε∥x− Tx∥2 + ζ∥y − Ty∥2 ≤ 0
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for all x, y ∈ C. Such a mapping T is also called (α, β, γ, δ, ε, ζ)-demigeneric gener-
alized hybrid. The class of mappings covers generalized hybrid mappings and strict
pseude-contractions [3].

In this paper, motivated by these researches, we propose a new class of nonlinear
mappings that includes nonexpansive mappings, generalized hybrid mappings and
normally 2-generalized hybrid mappings as special cases, and establish a nonlinear
ergodic theorem of Baillon’s type for such mappings in a Hilbert space (Theorem
5.3). The existence of attractive points is also demonstrated (Theorem 4.1). These
results are proved without supposing that the domain of the mapping is convex or
closed. A fixed point theorem is also established with additionally supposing that
the domain is closed and convex (Theorem 4.3).

2. Preliminaries

This section presents preliminary information and lemmas. Let H be a real
Hilbert space. Strong and weak convergence of a sequence {xn} in H to x ∈ H
are denoted by xn → x and xn ⇀ x, respectively. We know that for a bounded
sequence {xn} inH, {xn} is weakly convergent if and only if every weakly convergent
subsequence of {xn} has a same weak limit, that is,

(2.1) xn ⇀ v ⇐⇒ [xni ⇀ u implies that u = v],

where {xni} is a subsequence of {xn} (see Takahashi [16]). We also know that a
closed and convex subset of H is weakly closed. For a mapping T : C → H, an
attractive point u ∈ H of T is characterized as follows:

(2.2) u ∈ A (T ) ⇐⇒ ∥Ty − y∥+ 2 ⟨Ty − y, y − u⟩ ≤ 0 for all y ∈ C.

We know from Takahashi and Takeuchi [20] that the set of attractive points A (T )
is closed and convex in a Hilbert space. A mapping T : C → H with F (T ) ̸= ∅ is
called quasi-nonexpansive if

∥Tx− u∥ ≤ ∥x− u∥

for all x ∈ C and u ∈ F (T ). We know that the set of fixed points F (T ) of a
quasi-nonexpansive mapping is closed and convex (see Itoh and Takahashi [7]).

Let l∞ be the Banach space of bounded sequences of real numbers with the
supremum norm and let (l∞)∗ be its dual space. For µ ∈ (l∞)∗, we denote µ ({xn})
by µnxn. A linear continuous functional µ ∈ (l∞)∗ that satisfies the condition
µ ({1, 1, 1, · · · }) = ∥µ∥ = 1 is called a mean on l∞. We know that a mean µ
preserves order relations, that is,

xn ≤ yn (∀n ∈ N) =⇒ µnxn ≤ µnyn,

where N is the set of natural numbers. When a mean additionally satisfies µnxn =
µnxn+1, it is called a Banach limit on l∞. It is well-known that a Banach limit
exists, which is proved by using the Hahn–Banach theorem. For any {xn} ∈ l∞, it
holds that

(2.3) lim inf
n→∞

xn ≤ µnxn ≤ lim sup
n→∞

xn.
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As a direct result from (2.3), if xn → a (∈ R), then µnxn = a. For more details, see
Takahashi [15].

Let A be a nonempty, closed and convex subset of H. We know that for any
x ∈ H, there exists a unique nearest point z ∈ A, that is, ∥x− z∥ ≤ ∥x− u∥ for all
u ∈ A. This correspondence is called the metric projection from H onto A and is
denoted by PA. We know that if PA is the metric projection from H onto A, then
⟨x− PAx, PAx− u⟩ ≥ 0 for all x ∈ H and u ∈ A.

The following lemma is utilized to show the existence of attractive and fixed
points (Theorem 4.1 and 4.3). See Lin and Takahashi [12] and Takahashi [14].

Lemma 2.1 ([12, 14]). Let µ be a mean on l∞ and let H be a real Hilbert space.
Then, for any bounded sequence {xn} in H, there is a unique element u ∈ co {xn}
such that

µn ⟨xn, v⟩ = ⟨u, v⟩
for all v ∈ H, where co {xn} is the closure of the convex hull of {xn : n ∈ N}.

The following lemma [20] is also useful to derive convergence results to fixed
points.

Lemma 2.2 ( [20]). Let C be a nonempty subset of a real Hilbert space H and let
T be a mapping from C into H. Then, A (T ) ∩ C ⊂ F (T ).

Takahashi and Toyoda [21] proved the following lemma by using the parallelogram
law.

Lemma 2.3 ( [21]). Let A be a nonempty, closed and convex subset of a real Hilbert
space H, let PA be the metric projection from H onto A and let {xn} be a sequence
in H. If ∥xn+1 − q∥ ≤ ∥xn − q∥ for all q ∈ A and n ∈ N, then {PAxn} is convergent
in A.

3. Generic 2-generalized hybrid mappings

In this section, we define a new class of nonlinear mappings, and show that the
type of mapping is quasi-nonexpansive if it has a fixed point. Let C be a nonempty
subset of a real Hilbert spaceH. We call a mapping T : C → C generic 2-generalized
hybrid if there exist αij , βi, γi ∈ R (i, j = 0, 1, 2) such that

α00 ∥x− y∥2 + α01 ∥x− Ty∥2 + α02

∥∥x− T 2y
∥∥2(3.1)

+α10 ∥Tx− y∥2 + α11 ∥Tx− Ty∥2 + α12

∥∥Tx− T 2y
∥∥2

+α20

∥∥T 2x− y
∥∥2 + α21

∥∥T 2x− Ty
∥∥2 + α22

∥∥T 2x− T 2y
∥∥2

+β0 ∥x− Tx∥2 + β1
∥∥Tx− T 2x

∥∥2 + β2
∥∥T 2x− x

∥∥2
+γ0 ∥y − Ty∥2 + γ1

∥∥Ty − T 2y
∥∥2 + γ2

∥∥T 2y − y
∥∥2 ≤ 0

for all x, y ∈ C. We also refer such a mapping as (αij , βi, γi; i, j = 0, 1, 2)-generic
2-generalized hybrid. For the main theorem (Theorem 5.3) of this paper, we will
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assume that T satisfies one of the following conditions:

(3.2)

(1) α0• + α1• ≥ 0, α20, α21, α22 ≥ 0, α1• > 0,
β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α02, α12, α22 ≥ 0, α•1 > 0,
β0 + β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0,

where

(3.3) αi• ≡ αi0 + αi1 + αi2 and α•i ≡ α0i + α1i + α2i

for i = 0, 1, 2.
The class of generic 2-generalized hybrid mappings that satisfies (1) or (2) of

(3.2) contains nonexpansive mappings, generalized hybrid mappings and normally
2-generalized hybrid mappings as special cases. Let T be (αij , βi, γi; i, j = 0, 1, 2)-
generic 2-generalized hybrid. First, substitute α00 = −1 and α11 = 1 into (3.1) and
put the other coefficients are all 0. Then, both conditions (1) and (2) of (3.2) are
satisfied. It is obvious that T is nonexpansive in this case. Secondly, if α11 = α,
α01 = 1 − α, α10 = −β, α00 = − (1− β) and the other coefficients are all 0, then
the condition (2) of (3.2) is satisfied. In this case, T is (α, β)-generalized hybrid.
Finally, substitute (1)′ α20 = α21 = α22 = 0 (resp. (2)′ α02 = α12 = α22 = 0) and
βi = γi = 0 (i = 0, 1, 2) into (3.1). Then, it is easy to verify that the mapping T
with the condition (1) (resp. (2)) of (3.2) is normally 2-generalized hybrid.

The following theorem asserts that a generic 2-generalized hybrid mapping with
F (T ) ̸= ∅ is quasi-nonexpansive.

Theorem 3.1. Let C be a nonempty subset of a real Hilbert space H and let T be
an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping from C into itself
with F (T ) ̸= ∅. Suppose that T satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, βi ≥ 0;

(2) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γi ≥ 0;

for i = 0, 1, 2, where the notations αi• and α•i are defined in (3.3). Then, T is
quasi-nonexpansive.

Proof. Let x ∈ C and let u ∈ F (T )
(
⊂ F

(
T 2
))
. We will show that ∥Tx− u∥ ≤

∥x− u∥.
Case (1). Suppose that α0•+α1• ≥ 0, α2• ≥ 0, α1• > 0 and βi ≥ 0 for i = 0, 1, 2.

Since T is an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping, it holds
that

α00 ∥x− u∥2 + α01 ∥x− Tu∥2 + α02

∥∥x− T 2u
∥∥2(3.4)

+α10 ∥Tx− u∥2 + α11 ∥Tx− Tu∥2 + α12

∥∥Tx− T 2u
∥∥2

+α20

∥∥T 2x− u
∥∥2 + α21

∥∥T 2x− Tu
∥∥2 + α22

∥∥T 2x− T 2u
∥∥2

+β0 ∥x− Tx∥2 + β1
∥∥Tx− T 2x

∥∥2 + β2
∥∥T 2x− x

∥∥2
+γ0 ∥u− Tu∥2 + γ1

∥∥Tu− T 2u
∥∥2 + γ2

∥∥T 2u− u
∥∥2 ≤ 0.
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Since u = Tu = T 2u, we have that

α0• ∥x− u∥2 + α1• ∥Tx− u∥2 + α2•
∥∥T 2x− u

∥∥2
+ β0 ∥x− Tx∥2 + β1

∥∥Tx− T 2x
∥∥2 + β2

∥∥T 2x− x
∥∥2 ≤ 0.

Since βi ≥ 0 and α2• ≥ 0, we obtain that

α0• ∥x− u∥2 + α1• ∥Tx− u∥2 ≤ 0.

We have from α0• + α1• ≥ 0 that

α1• ∥Tx− u∥2 ≤ −α0• ∥x− u∥2

≤ α1• ∥x− u∥2 .

Since α1• > 0, we obtain that ∥Tx− u∥ ≤ ∥x− u∥.
Case (2). Suppose that α•0+α•1 ≥ 0, α•2 ≥ 0, α•1 > 0 and γi ≥ 0 for i = 0, 1, 2.

Replacing the variables x and u in (3.4), we can derive the desired result in much
the same way as the proof for Case (1). □

4. Attractive and fixed point theorems

This section presents attractive and fixed point theorems that guarantee the
existence of attractive and fixed points of generic 2-generalized hybrid mappings in
Hilbert spaces. Our proofs are generalization of those of many existing papers; see,
for example, [8, 12,13,20,22,23] and [11].

Theorem 4.1. Let C be a nonempty subset of a real Hilbert space H and let T : C →
C be an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping. Suppose that
T satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, β0 + β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0,

where the notations αi• and α•i are defined in (3.3). If there exists an element
x ∈ C such that the sequence {Tnx} in C is bounded, then A (T ) is nonempty.

Proof. Let µ ∈ (l∞)∗ be a Banach limit. For the bounded sequence {Tnx}, we
obtain from Lemma 2.1 that there exists a unique element u ∈ co {Tnx} (⊂ H)
such that

(4.1) µn ⟨Tnx, v⟩ = ⟨u, v⟩

for all v ∈ H. We will show that u ∈ A (T ).
Case (1). First, suppose that α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0,

γ0 + γ1 ≥ 0 and γ2 ≥ 0. Let y ∈ C. From (2.2), it is enough to prove that

∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0. Since T is (αij , βi, γi; i, j = 0, 1, 2)-generic
2-generalized hybrid, it holds that

α00 ∥y − Tnx∥2 + α01

∥∥y − Tn+1x
∥∥2 + α02

∥∥y − Tn+2x
∥∥2(4.2)

+α10 ∥Ty − Tnx∥2 + α11

∥∥Ty − Tn+1x
∥∥2 + α12

∥∥Ty − Tn+2x
∥∥2
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+α20

∥∥T 2y − Tnx
∥∥2 + α21

∥∥T 2y − Tn+1x
∥∥2 + α22

∥∥T 2y − Tn+2x
∥∥2

+β0 ∥y − Ty∥2 + β1
∥∥Ty − T 2y

∥∥2 + β2
∥∥T 2y − y

∥∥2
+γ0

∥∥Tnx− Tn+1x
∥∥2 + γ1

∥∥Tn+1x− Tn+2x
∥∥2 + γ2

∥∥Tn+2x− Tnx
∥∥2 ≤ 0

for all n ∈ N. Since β0, β1, β2, γ2 ≥ 0, we obtain that

α00 ∥y − Tnx∥2 + α01

∥∥y − Tn+1x
∥∥2 + α02

∥∥y − Tn+2x
∥∥2

+ α10 ∥Ty − Tnx∥2 + α11

∥∥Ty − Tn+1x
∥∥2 + α12

∥∥Ty − Tn+2x
∥∥2

+ α20

∥∥T 2y − Tnx
∥∥2 + α21

∥∥T 2y − Tn+1x
∥∥2 + α22

∥∥T 2y − Tn+2x
∥∥2

+ γ0
∥∥Tnx− Tn+1x

∥∥2 + γ1
∥∥Tn+1x− Tn+2x

∥∥2 ≤ 0.

It holds that

α0• ∥y − Tnx∥2 + α01

(∥∥y − Tn+1x
∥∥2 − ∥y − Tnx∥2

)
+ α02

(∥∥y − Tn+2x
∥∥2 − ∥y − Tnx∥2

)
+ α1• ∥Ty − Tnx∥2 + α11

(∥∥Ty − Tn+1x
∥∥2 − ∥Ty − Tnx∥2

)
+ α12

(∥∥Ty − Tn+2x
∥∥2 − ∥Ty − Tnx∥2

)
+ α2•

∥∥T 2y − Tnx
∥∥2 + α21

(∥∥T 2y − Tn+1x
∥∥2 − ∥∥T 2y − Tnx

∥∥2)
+ α22

(∥∥T 2y − Tn+2x
∥∥2 − ∥∥T 2y − Tnx

∥∥2)
+ γ0

∥∥Tnx− Tn+1x
∥∥2 + γ1

∥∥Tn+1x− Tn+2x
∥∥2 ≤ 0.

Applying the Banach limit µ, we obtain that

α0•µn ∥y − Tnx∥2 + α1•µn ∥Ty − Tnx∥2 + α2•µn

∥∥T 2y − Tnx
∥∥2

+ (γ0 + γ1)µn

∥∥Tnx− Tn+1x
∥∥2 ≤ 0.

It holds from α2• ≥ 0 and γ0 + γ1 ≥ 0 that

(4.3) α0•µn ∥y − Tnx∥2 + α1•µn ∥Ty − Tnx∥2 ≤ 0.

Using α0• + α1• ≥ 0, we obtain that

α1•µn ∥Ty − Tnx∥2 ≤ −α0•µn ∥y − Tnx∥2

≤ α1•µn ∥y − Tnx∥2 .

Since α1• > 0, we have that

µn ∥Ty − Tnx∥2 ≤ µn ∥y − Tnx∥2 ,

and thus,

µn

(
∥Ty − y∥2 + 2 ⟨Ty − y, y − Tnx⟩+ ∥y − Tnx∥2

)
≤ µn ∥y − Tnx∥2 .
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This means that

µn

(
∥Ty − y∥2 + 2 ⟨Ty − y, y − Tnx⟩

)
≤ 0.

From (4.1), it holds that

(4.4) ∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩ ≤ 0

for all y ∈ C. This implies from (2.2) that u ∈ A (T ).
Case (2). Suppose that α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, β0 + β1 ≥ 0, β2 ≥ 0

and γ0, γ1, γ2 ≥ 0. We can obtain the desired result by replacing the variables y
and Tnx in (4.2). □

The following corollary can be easily derived from the previous theorem.

Corollary 4.2. Let C be a nonempty subset of a real Hilbert space H and let
T : C → C be an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping.
Suppose that T satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, β0 + β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0,

where the notations αi• and α•i are defined in (3.3). Then, the following three
statements are equivalent:

(a) for any x ∈ C, {Tnx} is a bounded sequence in C;
(b) there exists an element z ∈ C such that the sequence {Tnz} in C is bounded;
(c) A (T ) is nonempty.

Proof. (a) =⇒ (b) obviously holds. (b) =⇒ (c) has already been demonstrated as
Theorem 4.1. We will prove that (c) =⇒ (a). Let x ∈ C and u ∈ A (T ). Then, it
holds that

∥Tnx− u∥ ≤
∥∥Tn−1x− u

∥∥ ≤ · · · ≤ ∥x− u∥
for all n ∈ N, which implies that {Tnx} is bounded. □

We can also obtain a fixed point theorem for generic 2-generalized hybrid map-
pings if C is closed and convex. For that aim, the conditions on the parameters
αij , βi, γi ∈ R (i, j = 0, 1, 2) can be slightly relaxed.

Theorem 4.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let T : C → C be (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid.
Suppose that T satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α2• ≥ 0, α1• + β0 > 0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 + γ0 > 0, β0 + β1 ≥ 0, β2 ≥ 0, γ1, γ2 ≥ 0,

where the notations αi• and α•i are defined in (3.3). If there exists an element
x ∈ C such that the sequence {Tnx} in C is bounded, then F (T ) is nonempty.
Furthermore, a generic 2-generalized hybrid mapping T has at most one fixed point
if α•• > 0, where α•• ≡

∑
i,j=0,1,2 αij.
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Proof. First, we will prove the existence of a fixed point of T . Let µ ∈ (l∞)∗ be
a Banach limit. From Lemma 2.1, it holds that for the bounded sequence {Tnx},
there exists a unique element u ∈ co {Tnx} such that

(4.5) µn ⟨Tnx, v⟩ = ⟨u, v⟩

for all v ∈ H. Note that since C is closed and convex, we have that co {Tnx} ⊂ C.
Thus, u ∈ C. It suffices to show that u ∈ F (T ).

Case (1). Suppose that α0• + α1• ≥ 0, α2• ≥ 0, α1• + β0 > 0, β1, β2 ≥ 0,
γ0 + γ1 ≥ 0 and γ2 ≥ 0. Let y ∈ C. Since T is (αij , βi, γi; i, j = 0, 1, 2)-generic
2-generalized hybrid, we have that

α00 ∥y − Tnx∥2 + α01

∥∥y − Tn+1x
∥∥2 + α02

∥∥y − Tn+2x
∥∥2(4.6)

+α10 ∥Ty − Tnx∥2 + α11

∥∥Ty − Tn+1x
∥∥2 + α12

∥∥Ty − Tn+2x
∥∥2

+α20

∥∥T 2y − Tnx
∥∥2 + α21

∥∥T 2y − Tn+1x
∥∥2 + α22

∥∥T 2y − Tn+2x
∥∥2

+β0 ∥y − Ty∥2 + β1
∥∥Ty − T 2y

∥∥2 + β2
∥∥T 2y − y

∥∥2
+γ0

∥∥Tnx− Tn+1x
∥∥2 + γ1

∥∥Tn+1x− Tn+2x
∥∥2 + γ2

∥∥Tn+2x− Tnx
∥∥2 ≤ 0

for all n ∈ N. Since β1, β2, γ2 ≥ 0, we obtain that

α00 ∥y − Tnx∥2 + α01

∥∥y − Tn+1x
∥∥2 + α02

∥∥y − Tn+2x
∥∥2

+ α10 ∥Ty − Tnx∥2 + α11

∥∥Ty − Tn+1x
∥∥2 + α12

∥∥Ty − Tn+2x
∥∥2

+ α20

∥∥T 2y − Tnx
∥∥2 + α21

∥∥T 2y − Tn+1x
∥∥2 + α22

∥∥T 2y − Tn+2x
∥∥2

+ β0 ∥y − Ty∥2 + γ0
∥∥Tnx− Tn+1x

∥∥2 + γ1
∥∥Tn+1x− Tn+2x

∥∥2 ≤ 0.

It holds that

α0• ∥y − Tnx∥2 + α01

(∥∥y − Tn+1x
∥∥2 − ∥y − Tnx∥2

)
+ α02

(∥∥y − Tn+2x
∥∥2 − ∥y − Tnx∥2

)
+ α1• ∥Ty − Tnx∥2 + α11

(∥∥Ty − Tn+1x
∥∥2 − ∥Ty − Tnx∥2

)
+ α12

(∥∥Ty − Tn+2x
∥∥2 − ∥Ty − Tnx∥2

)
+ α2•

∥∥T 2y − Tnx
∥∥2 + α21

(∥∥T 2y − Tn+1x
∥∥2 − ∥∥T 2y − Tnx

∥∥2)
+ α22

(∥∥T 2y − Tn+2x
∥∥2 − ∥∥T 2y − Tnx

∥∥2)
+ β0 ∥y − Ty∥2 + γ0

∥∥Tnx− Tn+1x
∥∥2 + γ1

∥∥Tn+1x− Tn+2x
∥∥2 ≤ 0.

Applying the Banach limit µ, we obtain that

α0•µn ∥y − Tnx∥2 + α1•µn ∥Ty − Tnx∥2 + α2•µn

∥∥T 2y − Tnx
∥∥2

+ β0 ∥y − Ty∥2 + (γ0 + γ1)µn

∥∥Tnx− Tn+1x
∥∥2 ≤ 0.
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Since α2• ≥ 0 and γ0 + γ1 ≥ 0, we have that

α0•µn ∥y − Tnx∥2 + α1•µn ∥Ty − Tnx∥2 + β0 ∥y − Ty∥2 ≤ 0.

Hence,

α0•µn ∥y − Tnx∥2 + α1•µn

(
∥Ty − y∥2 + 2 ⟨Ty − y, y − Tnx⟩+ ∥y − Tnx∥2

)
+ β0 ∥y − Ty∥2 ≤ 0.

Since α0• + α1• ≥ 0, it holds that

α1•µn

(
∥Ty − y∥2 + 2 ⟨Ty − y, y − Tnx⟩

)
+ β0 ∥y − Ty∥2 ≤ 0.

Using (4.5), we have that

α1•

(
∥Ty − y∥2 + 2 ⟨Ty − y, y − u⟩

)
+ β0 ∥y − Ty∥2 ≤ 0

for all y ∈ C. Substituting y = u ∈ C,

(α1• + β0) ∥Tu− u∥2 ≤ 0

Since α1• + β0 > 0, we obtain that u ∈ F (T ).
Case (2). Suppose that α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 + γ0 > 0, β0 + β1 ≥ 0,

β2 ≥ 0 and γ1, γ2 ≥ 0. We can obtain the desired result by replacing the variables
y and Tnx in (4.6).

Next, we will prove the uniqueness of a fixed point of T . Let u, v ∈ F (T ). Since
T is an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping, we have that

α00 ∥u− v∥2 + α01 ∥u− Tv∥2 + α02

∥∥u− T 2v
∥∥2

+ α10 ∥Tu− v∥2 + α11 ∥Tu− Tv∥2 + α12

∥∥Tu− T 2v
∥∥2

+ α20

∥∥T 2u− v
∥∥2 + α21

∥∥T 2u− Tv
∥∥2 + α22

∥∥T 2u− T 2v
∥∥2

+ β0 ∥u− Tu∥2 + β1
∥∥Tu− T 2u

∥∥2 + β2
∥∥T 2u− u

∥∥2
+ γ0 ∥v − Tv∥2 + γ1

∥∥Tv − T 2v
∥∥2 + γ2

∥∥T 2v − v
∥∥2 ≤ 0.

Since u, v ∈ F (T ) ⊂ F
(
T 2
)
, we have that α•• ∥u− v∥2 ≤ 0. Since α•• > 0, we

obtain that u = v. This completes the proof. □

Theorem 4.3 generalizes Theorem 3.3 of Takahashi [18], which asserts that there
exists a fixed point of demigeneric generalized hybrid mappings in a Hilbert space.
Indeed, let T : C → C be an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid
mapping. Put α11 = α, α01 = β, α10 = γ, α00 = δ, β0 = ε, γ0 = ζ and the
other coefficients are all 0. Then, T with the condition (2) of Theorem 4.3 is
(α, β, γ, δ, ε, ζ)-demigeneric generalized hybrid that satisfies α + β + γ + δ ≥ 0,
α+ β + ζ > 0 and ε ≥ 0. Thus, Theorem 4.3 is a generalization of Theorem 3.3 of
Takahashi [18].
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Corollary 4.4. Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let T : C → C be an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized
hybrid mapping. Suppose that T satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, β0 + β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0,

where the notations αi• and α•i are defined in (3.3). Then, the following four
statements are equivalent:

(a) for any x ∈ C, {Tnx} is a bounded sequence in C;
(b) there exists an element z ∈ C such that the sequence {Tnz} in C is bounded;
(c) A (T ) is nonempty;
(d) F (T ) is nonempty.

Proof. (a) ⇐⇒ (b) ⇐⇒ (c) can be proved in much the same way as the proof of
Corollary 4.2. Also, (b) =⇒ (d) has already been established as Theorem 4.3. We
will demonstrate that (d) =⇒ (b). Let z ∈ F (T ). Then, we have that

Tnz = Tn−1z = · · · = z

for all n ∈ N, which implies that {Tnz} is bounded. □

5. Nonlinear ergodic theorems

In this section, we prove a nonlinear ergodic theorem, which is the main result
of this paper. The baseline of the proof was established by Takahashi [14]. See
also [4, 8, 12, 13, 20, 22, 23] and [11]. We start with demonstrating the following two
lemmas.

Lemma 5.1. Let α, β ∈ R such that α+β ≥ 0, and let {an} and {bn} be sequences
of nonnegative real numbers such that an − bn → 0. Then, lim infn→∞ (αan + βbn)
≥ 0.

Proof. If α = β = 0, the desired result follows. Assume, without loss of generality,
that α > 0. We will prove that

∀ε > 0, ∃n0 ∈ N such that n ≥ n0 =⇒ αan + βbn > −ε.

Let ε > 0. Since an − bn → 0, we have that for a positive real number ε/α > 0,

∃n0 ∈ N such that n ≥ n0 =⇒ bn − ε

α
< an

(
< bn +

ε

α

)
.

Let n ≥ n0. Using α > 0, α+ β ≥ 0 and bn ≥ 0, we obtain that

αan + βbn > α
(
bn − ε

α

)
+ βbn

= (α+ β) bn − ε ≥ −ε.

This completes the proof. □
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Lemma 5.2. Let C be a nonempty subset of a real Hilbert space H and let T : C →
C be an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping. Suppose
that T satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α20, α21, α22 ≥ 0, α1• > 0,
β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α02, α12, α22 ≥ 0, α•1 > 0,
β0 + β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0,

where the notations αi• and α•i are defined in (3.3). Let x ∈ C such that {Tnx}
is a bounded sequence in C. Define Snx ≡ 1

n

∑n−1
k=0 T

kx (∈ H) and assume that
Snix ⇀ u, where {Snix} is a subsequence of {Snx}. Then, u ∈ A (T ). Additionally,
if C is closed and convex, then u ∈ F (T ).

Proof. Case (1). Suppose that α0•+α1• ≥ 0, α20, α21, α22 ≥ 0, α1• > 0, β0, β1, β2 ≥
0, γ0 + γ1 ≥ 0 and γ2 ≥ 0. Let y ∈ C. We will prove that ∥Ty − y∥2 +
2 ⟨Ty − y, y − u⟩ ≤ 0. Since T is (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized
hybrid, the following holds:

α00

∥∥∥y − T kx
∥∥∥2 + α01

∥∥∥y − T k+1x
∥∥∥2 + α02

∥∥∥y − T k+2x
∥∥∥2(5.1)

+α10

∥∥∥Ty − T kx
∥∥∥2 + α11

∥∥∥Ty − T k+1x
∥∥∥2 + α12

∥∥∥Ty − T k+2x
∥∥∥2

+α20

∥∥∥T 2y − T kx
∥∥∥2 + α21

∥∥∥T 2y − T k+1x
∥∥∥2 + α22

∥∥∥T 2y − T k+2x
∥∥∥2

+β0 ∥y − Ty∥2 + β1
∥∥Ty − T 2y

∥∥2 + β2
∥∥T 2y − y

∥∥2
+γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 + γ2

∥∥∥T k+2x− T kx
∥∥∥2 ≤ 0

for all k ∈ N∪{0}. Since α20, α21, α22 ≥ 0 and β0, β1, β2, γ2 ≥ 0, we have that

α00

∥∥∥y − T kx
∥∥∥2 + α01

∥∥∥y − T k+1x
∥∥∥2 + α02

∥∥∥y − T k+2x
∥∥∥2

+ α10

∥∥∥Ty − T kx
∥∥∥2 + α11

∥∥∥Ty − T k+1x
∥∥∥2 + α12

∥∥∥Ty − T k+2x
∥∥∥2

+ γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0,

and hence,

α00

∥∥∥y − T kx
∥∥∥2 + α01

∥∥∥y − T k+1x
∥∥∥2 + α02

∥∥∥y − T k+2x
∥∥∥2

+ α10

(
∥Ty − y∥2 + 2

⟨
Ty − y, y − T kx

⟩
+
∥∥∥y − T kx

∥∥∥2)
+ α11

(
∥Ty − y∥2 + 2

⟨
Ty − y, y − T k+1x

⟩
+
∥∥∥y − T k+1x

∥∥∥2)
+ α12

(
∥Ty − y∥2 ++2

⟨
Ty − y, y − T k+2x

⟩
+
∥∥∥y − T k+2x

∥∥∥2)



NONLINEAR ERGODIC THEOREM 99

+ γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

We obtain that

(α00 + α10)
∥∥∥y − T kx

∥∥∥2 + (α01 + α11)
∥∥∥y − T k+1x

∥∥∥2 + (α02 + α12)
∥∥∥y − T k+2x

∥∥∥2
+ α10

(
∥Ty − y∥2 + 2

⟨
Ty − y, y − T kx

⟩)
+ α11

(
∥Ty − y∥2 + 2

⟨
Ty − y, y − T k+1x

⟩)
+ α12

(
∥Ty − y∥2 + 2

⟨
Ty − y, y − T k+2x

⟩)
+ γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

This yields that

(α00 + α10)
∥∥∥y − T kx

∥∥∥2 + (α01 + α11)
∥∥∥y − T k+1x

∥∥∥2 + (α02 + α12)
∥∥∥y − T k+2x

∥∥∥2
+ α1• ∥Ty − y∥2 + 2α10

⟨
Ty − y, y − T kx

⟩
+ 2α11

⟨
Ty − y, y − T k+1x

⟩
+ 2α12

⟨
Ty − y, y − T k+2x

⟩
+ γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

It holds that

(α0• + α1•)
∥∥∥y − T kx

∥∥∥2 + (α01 + α11)

(∥∥∥y − T k+1x
∥∥∥2 − ∥∥∥y − T kx

∥∥∥2)
+ (α02 + α12)

(∥∥∥y − T k+2x
∥∥∥2 − ∥∥∥y − T kx

∥∥∥2)
+ α1• ∥Ty − y∥2 + 2

⟨
Ty − y, α1•y −

(
α10T

kx+ α11T
k+1x+ α12T

k+2x
)⟩

+ γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

Since α0• + α1• ≥ 0, we have that

(α01 + α11)

(∥∥∥y − T k+1x
∥∥∥2 − ∥∥∥y − T kx

∥∥∥2)
+ (α02 + α12)

(∥∥∥y − T k+2x
∥∥∥2 − ∥∥∥y − T kx

∥∥∥2)+ α1• ∥Ty − y∥2

+ 2
⟨
Ty − y, α1•y −

{
α1•T

kx+ α11

(
T k+1x− T kx

)
+ α12

(
T k+2x− T kx

)}⟩
+ γ0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

Summing these inequalities with respect to k from 0 to n− 1, we obtain that

nα1• ∥Ty − y∥2 + (α01 + α11)
(
∥y − Tnx∥2 − ∥y − x∥2

)
+ (α02 + α12)

(∥∥y − Tn+1x
∥∥2 + ∥y − Tnx∥2 − ∥y − Tx∥2 − ∥y − x∥2

)
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+ 2⟨Ty − y, nα1•y − {α1•

n−1∑
k=0

T kx+ α11 (T
nx− x)

+ α12

(
Tn+1x+ Tnx− Tx− x

)
}⟩

+ γ0

n−1∑
k=0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

n−1∑
k=0

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

Dividing it by n, we have that

α1• ∥Ty − y∥2 + 1

n
(α01 + α11)

(
∥y − Tnx∥2 − ∥y − x∥2

)
(5.2)

+
1

n
(α02 + α12)

(∥∥y − Tn+1x
∥∥2 + ∥y − Tnx∥2 − ∥y − Tx∥2 − ∥y − x∥2

)
+2⟨Ty − y, α1•y − {α1•Snx+

1

n
α11 (T

nx− x)

+
1

n
α12

(
Tn+1x+ Tnx− Tx− x

)
}⟩

+γ0
1

n

n−1∑
k=0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

1

n

n−1∑
k=0

∥∥∥T k+1x− T k+2x
∥∥∥2 ≤ 0.

Since γ0 + γ1 ≥ 0, it holds that

(5.3) lim inf
n→∞

(
γ0

1

n

n−1∑
k=0

∥∥∥T kx− T k+1x
∥∥∥2 + γ1

1

n

n−1∑
k=0

∥∥∥T k+1x− T k+2x
∥∥∥2) ≥ 0.

Indeed, since {Tnx} is bounded, we obtain that

1

n

n−1∑
k=0

∥∥∥T kx− T k+1x
∥∥∥2 − 1

n

n−1∑
k=0

∥∥∥T k+1x− T k+2x
∥∥∥2

=
1

n

(
n−1∑
k=0

∥∥∥T kx− T k+1x
∥∥∥2 − n−1∑

k=0

∥∥∥T k+1x− T k+2x
∥∥∥2)

=
1

n

(
∥x− Tx∥2 −

∥∥Tnx− Tn+1x
∥∥2)→ 0 as n → ∞.

From Lemma 5.1, the inequality (5.3) holds under the condition γ0 + γ1 ≥ 0. Re-
placing n by ni and taking the lim inf as i → ∞ in (5.2), we obtain that

α1• ∥Ty − y∥2 + 2α1•⟨Ty − y, y − u⟩ ≤ 0.

Since α1• > 0, it holds that

∥Ty − y∥2 + 2⟨Ty − y, y − u⟩ ≤ 0

for all y ∈ C. From (2.2), we obtain that u ∈ A (T ).
Additionally, suppose that C is closed and convex. Then, {Snx} is a sequence

in C. Since C is weakly closed, we have that u ∈ A (T ) ∩ C. From Lemma 2.2, we
obtain that u ∈ F (T ).
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Case (2). Suppose that α•0 + α•1 ≥ 0, α02, α12, α22 ≥ 0, α•1 > 0, β0 + β1 ≥ 0,
β2 ≥ 0 and γ0, γ1, γ2 ≥ 0. We can derive the desired result by replacing y and T kx
in (5.1). □

Using Lemma 5.2, we can demonstrate our main theorem of this paper.

Theorem 5.3. Let C be an nonempty subset of a real Hilbert space H and let
T : C → C be a (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping with
A (T ) ̸= ∅. Let PA(T ) be the metric projection from H onto A (T ). Suppose that T
satisfies one of the following conditions:

(1) α0• + α1• ≥ 0, α20, α21, α22 ≥ 0, α1• > 0,
β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;

(2) α•0 + α•1 ≥ 0, α02, α12, α22 ≥ 0, α•1 > 0,
β0 + β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0;

where the notations αi• and α•i are defined in (3.3). Then, for any x ∈ C,

the sequence
{
Snx ≡ 1

n

∑n−1
k=0 T

kx
}

converges weakly to v ∈ A (T ), where v ≡
limn→∞ PA(T )T

nx. Additionally, suppose that C is closed and convex. Then, for
any x ∈ C, the sequence {Snx} converges weakly to a fixed point v of T .

Proof. We know that A (T ) is closed and convex in H. Since A (T ) ̸= ∅ is assumed,
there exists the metric projection PA(T ) from H onto A (T ). Let x ∈ C and define

Snx ≡ 1
n

∑n−1
k=0 T

kx ∈ H for all n ∈ N. From Corollary 4.2, {Tnx} is a bounded
sequence in C. Thus, the sequence {Snx} is also bounded in H. It is obvious that

(5.4)
∥∥Tn+1x− q

∥∥ ≤ ∥Tnx− q∥

for any q ∈ A (T ) and n ∈ N∪{0}. From Lemma 2.3, the sequence
{
PA(T )T

nx
}
is

convergent in A (T ). Define v ≡ limn→∞ PA(T )T
nx ∈ A (T ). Our aim is to prove

that Snx ⇀ v. Let {Snix} be a subsequence of {Snx} such that Snix ⇀ u. Since
{Snx} is bounded, from (2.1), it is enough to show that u = v. We have from
Lemma 5.2 that u ∈ A (T ). It is easy to verify that the sequence of real numbers{∥∥Tnx− PA(T )T

nx
∥∥} is monotone decreasing. Indeed, it holds from PA(T )T

nx ∈
A (T ) and (5.4) that∥∥Tn+1x− PA(T )T

n+1x
∥∥ ≤

∥∥Tn+1x− PA(T )T
nx
∥∥(5.5)

≤
∥∥Tnx− PA(T )T

nx
∥∥

for any n ∈ N∪{0}. This means that the sequence
{∥∥Tnx− PA(T )T

nx
∥∥} is mono-

tone decreasing. Since u ∈ A (T ), we have⟨
T kx− PA(T )T

kx, PA(T )T
kx− u

⟩
≥ 0

for all k ∈ N∪{0}. Thus,⟨
T kx− PA(T )T

kx, PA(T )T
kx− v + v − u

⟩
≥ 0.

Using Schwarz’s inequality and (5.5), we have that⟨
T kx− PA(T )T

kx, − (v − u)
⟩
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≤
⟨
T kx− PA(T )T

kx, PA(T )T
kx− v

⟩
≤

∥∥∥T kx− PA(T )T
kx
∥∥∥∥∥∥PA(T )T

kx− v
∥∥∥

≤
∥∥x− PA(T )x

∥∥∥∥∥PA(T )T
kx− v

∥∥∥ .
Summing these inequalities with respect to k from 0 to n− 1, we obtain that⟨

n−1∑
k=0

T kx−
n−1∑
k=0

PA(T )T
kx, − (v − u)

⟩
≤
∥∥x− PA(T )x

∥∥ n−1∑
k=0

∥∥∥PA(T )T
kx− v

∥∥∥ .
Dividing it by n, we have that⟨

Snx− 1

n

n−1∑
k=0

PA(T )T
kx, − (v − u)

⟩
≤
∥∥x− PA(T )x

∥∥ 1

n

n−1∑
k=0

∥∥∥PA(T )T
kx− v

∥∥∥ .
Replacing n by ni and taking the limit as i → ∞, we obtain that

⟨u− v, − (v − u)⟩ ≤ 0

since PA(T )T
nx → v and Snix ⇀ u. Hence, we have that u = v.

Additionally, suppose that C is closed and convex. Then, {Snx} is a sequence
in C. Since C is weakly closed and Snx ⇀ v, we have that v ∈ C ∩ A (T ). From
Lemma 2.2, we obtain that v ∈ F (T ). This completes the proof. □
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[2] J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace
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