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ATTRACTIVE POINT AND NONLINEAR ERGODIC THEOREMS
FOR GENERIC 2-GENERALIZED HYBRID MAPPINGS IN
HILBERT SPACES

ATSUMASA KONDO™ AND WATARU TAKAHASHI

ABSTRACT. In this paper, we define a new type of nonlinear mappings called
generic 2-generalized hybrid mappings, which includes nonexpansive mappings,
generalized hybrid mappings and normally 2-generalized hybrid mappings simul-
taneously. For that class of mappings, we establish a nonlinear ergodic theorem
of finding an attractive point in a Hilbert space. An averaged sequence converges
weakly to an attractive point of a generic 2-generalized hybrid mapping. The
main theorem is proved without assuming that the domain of the mapping is
closed or convex. Our results extend many existing results in the literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm ||-|| and let C
be a nonempty subset of H. For a mapping 1" : C' — H, the set of fixed points
is denoted by F(T) = {u € C:Tu=u}. The set of attractive points, which is
introduced by Takahashi and Takeuchi [20], of T" is denoted by

ATy ={uec H:|Ty—u|| <|ly—ul| forall y € C}.

A mapping T : C — H is said to be nonezpansive if |Tx — Ty| < ||z —y| for
all x,y € C. It is well-known that if C' is a bounded, closed and convex subset of
H and T : C — C is nonexpansive, then F(T') is nonempty. Furthermore, from
Baillon [2], we know the first nonlinear ergodic theorem for nonexpansive mappings
in a Hilbert space:

Theorem 1.1 ([2]). Let C' be a nonempty, closed, conver and bounded subset of a
real Hilbert space H and let T : C'— C be a nonexpansive mapping. Then, for any
x € C, the sequence

1 n—1
Spz = — k
nZ - ZT T
k=0
converges weakly to a fived point of T.
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In 2010, Kocourek, Takahashi and Yao [8] proposed a broad class of nonlinear
mappings containing nonexpansive mappings. A mapping T from C into H is called
a generalized hybrid mapping if there exist «a, 5 € R such that

ol Te = Tyl? + (1 = a)|lz = Ty|* < BTz — y|* + (1 = B) |z — y||?

for all z,y € C, where R is the set of real numbers. Such a mapping 7 is also called
(a, B)-generalized hybrid. It is obvious that a (1,0)-generalized hybrid mapping
is nonexpansive. In addition to nonexpansive mappings, the class of generalized
hybrid mappings contains other types of well-known nonlinear mappings. For ex-
ample, a (2, 1)-generalized hybrid mapping is nonspreading [9,10], and a (3/2,1/2)-
generalized hybrid mapping is hybrid [17]. It is known that nonspreading and hybrid
mappings are not necessarily continuous (see [6] or [24]). For these types of map-
pings, see also Takahashi and Yao [22]. We also know that the class of generalized
hybrid mappings covers \-hybrid mappings [1]. For this point, see Hojo, Takahashi
and Yao [5]. Kocourek, Takahashi and Yao [8] established a nonlinear ergodic theo-
rem, which generalized Theorem 1.1, and another type of weak convergence result.

Generalized hybrid mappings are further extended. Maruyama, Takahashi and
Yao [13] defined a wide class of nonlinear mappings containing generalized hybrid
mappings. A mapping T : C — C is called 2-generalized hybrid if there exist
a1, @, B1, B2 € R such that

ar||[T%x = Ty|* + aof|Te — Ty|* + (1 — a1 — az)||lz — Tyl
< BT —y|* + Bal| T =yl + (1 = B1 = Ba) [l — yl®

for all z,y € C. If ay = B1 = 0, the class of 2-generalized hybrid mappings
coincides with the class of generalized hybrid mappings. Kondo and Takahashi [11]
introduced the following class of nonlinear mappings which covers 2-generalized
hybrid mappings. A mapping T : C' — C' is called normally 2-generalized hybrid if
there exist ag, £g, a1, 81, a2, B2 € R such that Zi:o (an + Bn) >0, aa+a1+a9 >0
and

az|| Tz — Ty|* + aa||Ta — Ty|* + aollz — Tyl
+ Bol|T%x — ylI* + Bul| Tz — y||* + Bollz — yl* < 0

for all x,y € C. It is also known that the type of normally 2-generalized hybrid
mappings contains normally generalized hybrid mappings [23]. Lin and Takahashi
[12] and Kondo and Takahashi [11] proved nonlinear ergodic theorems that weakly
approximate attractive points of 2-generalized hybrid mappings and normally 2-
generalized hybrid mappings, respectively.

Very recently, Takahashi [18,19] defined a broad class of nonlinear mappings. A
mapping T : C — H is called a demigeneric generalized hybrid mapping if there
exist o, 3,7,60,6,{ € Rsuch that « + 8 +~v+d >0, a4+ B+ >0 and

o Tz — Ty|* + Bllz — Ty|* + 7| Tz — y|* + 8| — y|*
+ellz = Tz||> +¢lly — Ty|* <0
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for all z,y € C. Such a mapping 7T is also called («, 8,7, d, €, ()-demigeneric gener-
alized hybrid. The class of mappings covers generalized hybrid mappings and strict
pseude-contractions [3].

In this paper, motivated by these researches, we propose a new class of nonlinear
mappings that includes nonexpansive mappings, generalized hybrid mappings and
normally 2-generalized hybrid mappings as special cases, and establish a nonlinear
ergodic theorem of Baillon’s type for such mappings in a Hilbert space (Theorem
5.3). The existence of attractive points is also demonstrated (Theorem 4.1). These
results are proved without supposing that the domain of the mapping is convex or
closed. A fixed point theorem is also established with additionally supposing that
the domain is closed and convex (Theorem 4.3).

2. PRELIMINARIES

This section presents preliminary information and lemmas. Let H be a real
Hilbert space. Strong and weak convergence of a sequence {z,} in H to z € H
are denoted by x, — x and z, — z, respectively. We know that for a bounded
sequence {x,} in H, {x,} is weakly convergent if and only if every weakly convergent
subsequence of {x,} has a same weak limit, that is,

(2.1) Ty, — U <= [z, — u implies that u = v,

where {x,,} is a subsequence of {x,} (see Takahashi [16]). We also know that a
closed and convex subset of H is weakly closed. For a mapping T': C' — H, an
attractive point v € H of T is characterized as follows:

(2.2) wueAT) <= |Ty—y||+2{Ty—y, y—u) <0forall y e C.

We know from Takahashi and Takeuchi [20] that the set of attractive points A (T')
is closed and convex in a Hilbert space. A mapping T : C — H with F (T) # ) is
called quasi-nonexpansive if

1Tz —ull < [lz—ull

for all x € C and u € F(T). We know that the set of fixed points F' (T') of a
quasi-nonexpansive mapping is closed and convex (see Itoh and Takahashi [7]).

Let [*° be the Banach space of bounded sequences of real numbers with the
supremum norm and let (1°°)* be its dual space. For u € (I°°)*, we denote u ({z,})
by pnTn. A linear continuous functional p € (I°°)* that satisfies the condition
w({1,1,1,---}) = |jp|]] = 1 is called a mean on [*°. We know that a mean pu
preserves order relations, that is,

T < yn (Vn €N) = unxyn < tnyn,

where N is the set of natural numbers. When a mean additionally satisfies p,z, =
UnTnt1, it is called a Banach limit on [*°. It is well-known that a Banach limit
exists, which is proved by using the Hahn—Banach theorem. For any {x,} € [*°, it
holds that

(2.3) liminf z,, < ppz, < limsup z,.

n—00 n—0o0
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As a direct result from (2.3), if z,, — a (€ R), then u,z, = a. For more details, see
Takahashi [15].

Let A be a nonempty, closed and convex subset of H. We know that for any
x € H, there exists a unique nearest point z € A, that is, ||z — z|| < ||z — u|| for all
u € A. This correspondence is called the metric projection from H onto A and is
denoted by P4. We know that if P4 is the metric projection from H onto A, then
(x — Pax, Pax —u) >0 for all z € H and u € A.

The following lemma is utilized to show the existence of attractive and fixed
points (Theorem 4.1 and 4.3). See Lin and Takahashi [12] and Takahashi [14].

Lemma 2.1 ([12,14]). Let v be a mean on I*° and let H be a real Hilbert space.
Then, for any bounded sequence {x,} in H, there is a unique element u € ¢o{x,}
such that

Hn <:En, U> = <u> U)

for all v € H, where co{x,} is the closure of the conver hull of {z, : n € N}.

The following lemma [20] is also useful to derive convergence results to fixed
points.

Lemma 2.2 ([20]). Let C be a nonempty subset of a real Hilbert space H and let
T be a mapping from C into H. Then, A(T)NC C F(T).

Takahashi and Toyoda [21] proved the following lemma by using the parallelogram
law.

Lemma 2.3 ([21]). Let A be a nonempty, closed and convex subset of a real Hilbert
space H, let Py be the metric projection from H onto A and let {z,} be a sequence
in H. If |xn+1 — ql| < ||lzn — ¢l| for allqg € A andn € N, then {Paxzy,} is convergent
in A.

3. GENERIC 2-GENERALIZED HYBRID MAPPINGS

In this section, we define a new class of nonlinear mappings, and show that the
type of mapping is quasi-nonexpansive if it has a fixed point. Let C' be a nonempty
subset of a real Hilbert space H. We call a mapping T : C' — C generic 2-generalized
hybrid if there exist aj, 8;,7: € R (i, = 0,1,2) such that

(3.1) aoo |z — yl? + a0t llz — Tyl + aee ||z — T?]|”
+aro ITz — y|* + any [Tz — Tyl + axa || T — T2y
+ago [|T%2 = y||” + a1 || 722 = Ty||" + sz | 722 — 2|
+Bo |z — Tz|* + 61 || Tx — T?||* + 6 || T2 — 2|
0 lly = Tyl* + 7 || Ty — T2y||° + 2 || T2 — o> < 0

for all z,y € C. We also refer such a mapping as (oj, 5i,vi; 4, J = 0,1, 2)-generic
2-generalized hybrid. For the main theorem (Theorem 5.3) of this paper, we will
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assume that T satisfies one of the following conditions:

(1) e+ a1e >0, @z, 21,000 >0, 14 >0,

(3.2) Bo, B1,B2 >0, v0+71 >0, 72 > 0;
(2) o0+ o1 >0, a2, 12,22 > 0, g1 >0,

Bo+B1 >0, B2>0, v0,71,72 > 0,

where
(33) Qe = jg + ;1 + o and «e; = i + 15 + Qo

fort=0,1,2.

The class of generic 2-generalized hybrid mappings that satisfies (1) or (2) of
(3.2) contains nonexpansive mappings, generalized hybrid mappings and normally
2-generalized hybrid mappings as special cases. Let T be (aj, i, vi; 4,5 = 0,1,2)-
generic 2-generalized hybrid. First, substitute agp = —1 and a1; = 1 into (3.1) and
put the other coefficients are all 0. Then, both conditions (1) and (2) of (3.2) are
satisfied. It is obvious that 7' is nonexpansive in this case. Secondly, if a1 = «,
apr =1 —a, ajg = =B, ago = — (1 — B) and the other coefficients are all 0, then
the condition (2) of (3.2) is satisfied. In this case, T is («, /3)-generalized hybrid.
Finally, substitute (1) agg = a1 = age = 0 (resp. (2)" ap2 = @12 = agy = 0) and
Bi = =0 (i =0,1,2) into (3.1). Then, it is easy to verify that the mapping T’
with the condition (1) (resp. (2)) of (3.2) is normally 2-generalized hybrid.

The following theorem asserts that a generic 2-generalized hybrid mapping with
F (T) # 0 is quasi-nonexpansive.

Theorem 3.1. Let C be a nonempty subset of a real Hilbert space H and let T be
an (auj, Bi, vi; 4, § = 0,1, 2)-generic 2-generalized hybrid mapping from C into itself
with F (T) # 0. Suppose that T satisfies one of the following conditions:

(]-) aOO + OZl. Z 07 OZ2. Z 07 al. > 07 61 Z 07
(2) tep + o1 > 0, o2 >0, o1 >0, v; > 0;

for i = 0,1,2, where the notations ce and «e; are defined in (3.3). Then, T is
qUas-noneTpansive.

Proof. Let € C and let w € F(T) (C F (T?%)). We will show that [Tz — u| <
o — ull.

Case (1). Suppose that age + 16 > 0, @26 > 0, ;¢ > 0 and §; > 0 fori =0,1,2.
Since T'is an (v, B, Vi; 4, § = 0,1, 2)-generic 2-generalized hybrid mapping, it holds
that

(3.4) aoo |z — ul|® + ao1 | — Tull® + agz ||« — T?u||”
+ato [Tz — ul® + o1 | Tz — Tul* + a1z || Tz — Tl
tag || T2 — ) + azy || T2 — Tul|* + aze || T2 — T2ul|?
8o ||z — Ta|® + 61 || Te — T2z + B2 | T2z — 2|
0 [Ju = Tl + 3 || Tu = T2 + 7 || T2u - u||* < 0.
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Since u = Tw = T?u, we have that

e ||z — ul* + ate | T2 — u|® + a2e HTQI' - uH2
+ Bo ||z — Ta|® + 1 ||Te — T?x||* + B2 | T2z — =||* < 0.
Since 8; > 0 and e > 0, we obtain that
age ||z — ul|* + ate || Tz — ul|* < 0.
We have from «ge + cv14 > 0 that
e [Tz —ul* < —age |z — ul®
< age |l —ul?.

Since e > 0, we obtain that | T — u|| < ||z — ul|.

Case (2). Suppose that aeg+ae1 > 0, ez > 0, ae; > 0 and ; > 0 fori =0,1,2.
Replacing the variables x and w in (3.4), we can derive the desired result in much
the same way as the proof for Case (1). O

4. ATTRACTIVE AND FIXED POINT THEOREMS

This section presents attractive and fixed point theorems that guarantee the
existence of attractive and fixed points of generic 2-generalized hybrid mappings in
Hilbert spaces. Our proofs are generalization of those of many existing papers; see,
for example, [8,12,13,20,22,23] and [11].

Theorem 4.1. Let C be a nonempty subset of a real Hilbert space H and letT : C —
C be an (ayj, Bi,vi; 1,7 = 0, 1,2)-generic 2-generalized hybrid mapping. Suppose that
T satisfies one of the following conditions:

(1) Qe + (le Z 07 O2e Z 07 Ole > 07 ﬁOuﬁhBZ Z 07 Yo +’Yl Z O) 72 Z Oa

(2) Qo) +Oé.1 2 07 (g2 Z 07 Qo1 > 07 60 + 61 Z 07 52 2 07 Y0, 71,72 2 07

where the notations e and ae; are defined in (3.3). If there exists an element
x € C such that the sequence {T™zx} in C is bounded, then A (T) is nonempty.

Proof. Let p € (I°°)* be a Banach limit. For the bounded sequence {T"x}, we
obtain from Lemma 2.1 that there exists a unique element u € co{T"x} (C H)
such that

(4.1) pn (T, v) = (u, v)

for all v € H. We will show that u € A (T).

Case (1). First, suppose that age + avje > 0, 2e > 0, 16 > 0, 5o, 51,52 > 0,
Y% + 7 > 0 and y2 > 0. Let y € C. From (2.2), it is enough to prove that
HTy—yH2 +2(Ty—y, y—u) < 0. Since T is (aj, Bi,vi; i,j = 0,1,2)-generic
2-generalized hybrid, it holds that

(4.2) aoo |ly — T"z||* + aor ||y — Tn+1‘”H2 + oo ly - Tn+2l"H2
+aro || Ty — T"x||* + oy HTy B TanCHQ +am HT?J _ T"“a:“z
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“+avp HTQy — T”azH2 + ag HTQy — T”+1x}|2 + ag HTQy — T2

+B80lly — Tyl* + 61 | Ty — T?y||” + B2 | Ty — o)*
o [T — T e |? 4 [T — T2+ 3 |72 — T < 0

I

for all n € N. Since (5, 81, 82,72 > 0, we obtain that

aoo |y — T"|* + a1 [ly — T a||* + a2 |ly — T2
+ a0 [Ty — T2 + an | Ty — T a||* + ans | Ty — T2
+ag | T2y — T||” + a1 | T2 — T 'a| + ags || T2y — T 22|
+0 |17 — T || 4y || T e — T2 < 0.
It holds that
e lly = T"|2 + aor ([ly = T |[* — 1y — T2
+ a0 ([ly = 7% = lly - 72|
+ a1 [Ty = T"2|* + any (| Ty = T |* ~ Ty — T")?)
+ o (HTy — T2 — ||y - T”:r||2>
+aze [ 1% = Tl + az (|| 7% — |~ ||7% - T72|*)
+an (|| T2 = T2 |* — || 1% - T"a||*)
T 0| — T | 4 T — T2 <0,

Applying the Banach limit y, we obtain that

avefin Iy = T"|* + areptn [Ty — T"2||* + coupin | T2y — T
+ (Yo +71) i || T2 — T"HxH2 <0.

It holds from aoe > 0 and g 4+ 71 > 0 that
(4.3) aoepin [[y = T2l + arepi [Ty = T"al|* < 0.
Using age + 16 > 0, we obtain that

Qretin [Ty = T"a|*> < —agepn |y — T"x|?
< atepin |ly — T
Since ae > 0, we have that

pn | Ty = T2 < o [ly = T,

and thus,

i (ITy = ylI> +2(Ty =y, y— T"2) + |y = T"[]*) < p ly — T"a]”.
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This means that

i (ITy =yl +2(Ty —y, y - T"2)) <0,
From (4.1), it holds that
(4.4) 1Ty —yl* +2(Ty -y, y—u) <0

for all y € C. This implies from (2.2) that u € A(T).

Case (2). Suppose that ceg + o1 > 0, a2 > 0, g1 >0, fop+ 51 >0, 2 > 0
and 79,71,72 > 0. We can obtain the desired result by replacing the variables y
and Tz in (4.2). O

The following corollary can be easily derived from the previous theorem.

Corollary 4.2. Let C' be a nonempty subset of a real Hilbert space H and let
T :C — C be an (ouj, Bi,vi; 1,5 = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that T satisfies one of the following conditions:

(1) Qe + e Z 07 Q2e Z 07 Qe > 07 ﬁOuﬁhBZ Z 07 Y0 +71 Z O) 72 Z Oa
(2) (le() +Oé.1 2 07 Qg2 Z 07 Qo1 > 07 60 + 61 Z 07 52 2 07 Y0, 71,72 2 07

where the notations aie and ce; are defined in (3.3). Then, the following three
statements are equivalent:
(a) for any x € C, {T™z} is a bounded sequence in C;
(b) there exists an element z € C' such that the sequence {T"z} in C is bounded;
(c) A(T) is nonempty.

Proof. (a) = (b) obviously holds. (b) = (c) has already been demonstrated as
Theorem 4.1. We will prove that (¢) = (a). Let € C' and u € A(T). Then, it
holds that

1T ) < [T —uf] < - < [l —u]

for all n € N, which implies that {T"x} is bounded. O

We can also obtain a fixed point theorem for generic 2-generalized hybrid map-
pings if C' is closed and convex. For that aim, the conditions on the parameters
aij, Bi,vi € R (4,5 = 0,1,2) can be slightly relaxed.

Theorem 4.3. Let C' be a nonempty, closed and convex subset of a real Hilbert
space H and let T : C — C be (aij, Bi,vi; 1,5 = 0,1, 2)-generic 2-generalized hybrid.
Suppose that T satisfies one of the following conditions:

(1) Qe + 16 Z 07 Q2e Z Oa Oél."i‘ﬁ() > 07 61a62 Z Oa Y0 +71 Z 07 Y2 Z 07

(2) a0+ @1 >0, 2>0, a1 +7% >0, Bo+ 61 >0, B2 >0, v1,72 >0,
where the notations e and ae; are defined in (3.3). If there exists an element
x € C such that the sequence {T"x} in C is bounded, then F (T) is nonempty.

Furthermore, a generic 2-generalized hybrid mapping T has at most one fixed point
if Qee > 0, where (lege = Zi,j:O,l,Q Q-
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Proof. First, we will prove the existence of a fixed point of T. Let u € (I°°)* be
a Banach limit. From Lemma 2.1, it holds that for the bounded sequence {T"x},
there exists a unique element u € ¢ {T"x} such that

(4.5) tn (T"x, v) = (u, v)

for all v € H. Note that since C is closed and convex, we have that co {T"z} C C.
Thus, u € C. It suffices to show that u € F (T).

Case (1). Suppose that age + @16 > 0, a2e > 0, @16 + B0 > 0, f1,52 > 0,
Yo+ > 0and y2 > 0. Let y € C. Since T is (aj, i, Vi3 4,5 = 0,1, 2)-generic
2-generalized hybrid, we have that

(4.6) ago |ly — Tz ||* + aor ||y — T"H:JEH2 + ooz ||y — T””tz

+an [Ty — Tz |)* + an ||Ty - T"“acH2 + anz || Ty — T"*QQJH2

o | T2y — T2 + ao || T2 — T a||” + g | T2y — T2
+60 [y = Tyl* + 81 [Ty — T||" + Bo || 7%y — o|”
+0 HT":B — T”H:UH2 + 7 ||T”+1:L' — T”+2xH2 + ¥ HT”+2$ — T”a:H2 <0
for all n € N. Since (1, 82,72 > 0, we obtain that

aoo ly = T"||* + ao ||y — T"+156H2 +age [jy — T"”gc“2

+ 10 HTy — TanQ + a1 HTy _ Tn+l:[jH2 T+ as HTy _ Tn+2xH2

+ag || Ty — T||” + aor | T2 — T 2| + ags || Ty — T 22 ||
+Bolly = Tyll® + 0 | Tz — T"a||* + 7 | T+ — T 22|* < 0.
It holds that
e lly = T2 + aor (|ly = T |* — 1y — 7]
+ a0 ([ly = 7" = lly - 77|
+an||Ty = T|* + an (||Ty - 7" al| = Ty - T"2|?)
¥ o <||Ty — T - ||y - T”x|]2>
+ an | 1% = T |* 4+ o1 (| 7% = 7 a|* - [ 7% — 7 *)
+ag (|| T2 - T2 |* — || T2 - T3
+ Bolly — Tyl + 70 | T — T || + 4 |77 — T2z |* < 0.
Applying the Banach limit p, we obtain that
Q0attn [y = T"2|* + rapin [Ty = T"2|* + capn | T2y — T"||”
+ 6o lly = Tyll® + (0 + ) an [T = T[> < 0.
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Since age > 0 and g + 1 > 0, we have that
aoetin [y — T"|* + arepin || Ty — T"2||* + Bo ||y — Ty||* < 0.

Hence,

outtn [y = "> + aropn (ITy =yl +2(Ty =y, y = T"2) + lly = ")
+Bolly — Ty|* < 0.

Since e + @16 = 0, it holds that
1efin (IITy —yl*+2(Ty -y, y- T"w>> +Bolly — TylI” < 0.
Using (4.5), we have that

are (IITy—y||2+2<Ty—y, y—u>) +Bolly—Ty|* <0
for all y € C. Substituting y = u € C,
(a1e + Bo) | Tu — uH2 <0

Since aje + fo > 0, we obtain that u € F'(T).

Case (2). Suppose that qeg + e1 > 0, ae2 > 0, ae1 +7 > 0, o + 1 > 0,
B2 > 0 and 71,72 > 0. We can obtain the desired result by replacing the variables
y and 7"z in (4.6).

Next, we will prove the uniqueness of a fixed point of T'. Let u,v € F (T). Since
T is an (ayj, Bi, Vi3 4,7 = 0,1, 2)-generic 2-generalized hybrid mapping, we have that

ago |lu — || + ao1 lu — Tol|* + e [|u — TQUH2
+aig ||Tu — of? + a1y | Tu — To|® + arg | Tu — T
+ asg ||T%u — o||* + g || T?u — To||* + ass || T2u — T
+ Bo llu = Tu|® + B ||Tu — T?u||* + 82 | T?u — ul|?
+ 50 [v = To||? + 71 | Tv = T20||* + 42 || T2 — ||* < 0.

Since u,v € F(T) C F (T?), we have that cee ||u— v||> < 0. Since aee > 0, we
obtain that v = v. This completes the proof. (|

Theorem 4.3 generalizes Theorem 3.3 of Takahashi [18], which asserts that there
exists a fixed point of demigeneric generalized hybrid mappings in a Hilbert space.
Indeed, let T': C — C be an (ayj, Bi, vi; i,j = 0,1, 2)-generic 2-generalized hybrid
mapping. Put a11 = a, agr = B, a9 = 7, agg = 6, fo = €, o = ( and the
other coefficients are all 0. Then, T with the condition (2) of Theorem 4.3 is
(a, B,7,0,¢,()-demigeneric generalized hybrid that satisfies a + 5+ v+ > 0,
a+ B4+ ¢ >0and e > 0. Thus, Theorem 4.3 is a generalization of Theorem 3.3 of
Takahashi [18].
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Corollary 4.4. Let C' be a nonempty, closed and convex subset of a real Hilbert
space H and let T : C — C be an (ouj, Bi,vi; ©,5 = 0,1,2)-generic 2-generalized
hybrid mapping. Suppose that T satisfies one of the following conditions:

(1) e +O[]_. 2 07 Q2e Z Oa Ole > O; 50,B1752 Z 07 Y0 +’71 Z 07 Y2 Z 07
(2) (e +a.1 Z 07 (o2 Z 07 Qg1 > 07 ﬁﬂ +Bl 2 Oa /82 Z O) Y0, Y1, Y2 Z O)

where the notations e and ae; are defined in (3.3). Then, the following four
statements are equivalent:

(a) for any x € C, {T"x} is a bounded sequence in C;
(b) there exists an element z € C such that the sequence {T"z} in C is bounded;
(c) A(T) is nonempty;
(d) F(T) is nonempty.

Proof. (a) <= (b) <= (¢) can be proved in much the same way as the proof of
Corollary 4.2. Also, (b) = (d) has already been established as Theorem 4.3. We
will demonstrate that (d) = (b). Let z € F'(T'). Then, we have that

Tz =T"1lz=...= 2

for all n € N, which implies that {7z} is bounded. O

5. NONLINEAR ERGODIC THEOREMS

In this section, we prove a nonlinear ergodic theorem, which is the main result
of this paper. The baseline of the proof was established by Takahashi [14]. See
also [4,8,12,13,20,22,23] and [11]. We start with demonstrating the following two

lemmas.

Lemma 5.1. Let o, 8 € R such that a+ 3 > 0, and let {an} and {b,} be sequences
of nonnegative real numbers such that a, — b, — 0. Then, liminf,,_, (aa, + Bby,)
> 0.

Proof. If a = 8 =0, the desired result follows. Assume, without loss of generality,
that a > 0. We will prove that

Ve > 0, dng € N such that n > ny = aa, + Bb, > —¢.
Let € > 0. Since a,, — b, — 0, we have that for a positive real number ¢/a > 0,
ElnoeNsuchthathnO:bn—i<an<<bn+§).
Let n > ng. Using a > 0, « + 8 > 0 and b,, > 0, we obtain that
aan + Bb, > « (bn — g) + Bb,
= (a+B)b, —e> —¢.

This completes the proof. O
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Lemma 5.2. Let C' be a nonempty subset of a real Hilbert space H and letT : C —
C be an (cuj, Bisvi; 1,7 = 0,1,2)-generic 2-generalized hybrid mapping. Suppose
that T satisfies one of the following conditions:

(1) e+ a1e >0, agp, 21,02 >0, aye >0,
Bo, 1,02 =0, vo+71 =0, 72 >0;

(2) o0+ o1 >0, ag2, 12,02 > 0, 1 > 0,
Bo+ 1 >0, B2 >0, v0,71,72 >0,

where the notations ae and ae; are defined in (3.3). Let x € C such that {T"x}
is a bounded sequence in C. Define Spx = %ZZ;& TFz (€ H) and assume that
Sn,x — u, where {Sp,x} is a subsequence of {Spx}. Then, u € A(T). Additionally,
if C is closed and convex, then u € F (T).

Proof. Case (1). Suppose that age+ai1e > 0, 29, o1, 22 > 0, a1e > 0, Po, B1, B2 >
0, %+7 > 0and 4 > 0. Let y € C. We will prove that |[Ty—y|* +
2(Ty—vy, y—u) < 0. Since T is (ayj,Bi,v; i,J = 0,1,2)-generic 2-generalized
hybrid, the following holds:

2 2 2
(5.1) 0o Hy —Tkyg ’ + ap1 ‘y — TkH:cH + a2 Hy — T’”%H
2

2 2
-I—aloHTy—Tkx +oan ‘Ty—TkaH +oz12HTy—Tk+2xH

2 2 2
“+a0 Hsz — Tkac‘ + a9 ‘ T2y — Tk+1£UH + (o9 HT2y — Tk+2$H
2 2
+Bolly — Tyl* + B1 || Ty — T?y||” + B2 | Ty — o
2 2 2
v HT% _ TkaH e HTka _ Tk+2xH NPV HTkJrzx _ Tka <0
for all £ € NU{0}. Since agp, a1, 22 > 0 and fo, 81, f2, 72 > 0, we have that
k. ||? k1, || k2, ||
cwa |y = 7a]|"+ an [y = ]|+ aon [y - 742
2 2 2
+ aqg HTy — TkﬂcH + a1 HTy — Tk'Ha:H + a2 HTy — Tk+2xH
2 2
+’YOHT]€5L‘—TH133H N HTkJrlx_TkaH <0,
and hence,
k|12 k1|2 k2 |2
o144 s -7
2 k e
+aw | [Ty -yl +2(Ty -y, y—T"2) + ||y — Tz
2
s (ITy ol +2(Ty =y y=-150) + o - 1)

2
+ o <|!Ty—y|!2 ++2 <Ty —y, Y- T’“+2a:> + Hy—T’“”xH >
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2 2
+ HTk;m _ Tk+1xH T HTkHa: _ Tk+2xH <.
We obtain that
e ||? k1 |2 k2 ||
(o + o) Hy -T UCH + (o1 + a11) Hy -T xH + (2 + a2) Hy =T 33”
+ aig (HTy —y|* +2 <Ty -y, Y- T’“m>)
+ o (IITy —yl*+2 <Ty —y, Y- T’“+1x>)
+ g (IITy —yl*+2 <Ty —y, Y- Tk+2x>)
2 2
+ HT% _ TkaH T HTHI”T _ Tk—i-sz <.
This yields that
Ik k1 ||? k2 |12
(o + o) Hy -T UCH + (o1 + a11) Hy -T UCH + (2 + a12) Hy =T 33”
+ate [Ty — ylI” + 2010 <Ty —y, y— T’“w> + 2011 <Ty —y, Y- T’““x>
2 2
+ 2a12 <Ty -y, Yy— Tk+2z> + Y HTka: — Tk+193H + HT]H_lx — Tk+2xH <0.
It holds that

k 2 k 2 k 2
Qe + (e —T"z|| 4+ (o1 + a11 —ThH | — —T"z
( ) ||y Y y
k+2 ||? k||

+one | Ty — yl|* + 2 <Ty — Y, el — (aloTkx +ap TFH e + O£12Tk+2l‘>>

2 2
+ ‘Tkx—TkaH T HTk+1x_Tk+2xH <.
Since e + 16 > 0, we have that

Y (e T

2 2
(-t ang) (=772 = [y = ) + ez -
+ 2 <Ty — Y, Q1Y — {ozl.Tk:c + o1 (T]‘H'lx — Tkx) + a9 (Tk+2a: — Tkaz) }>

2 2
+ HTI% _ TkaH T HTka _ Tk+2xH <.

Summing these inequalities with respect to & from 0 to n — 1, we obtain that
2 n12 2
nane [Ty = yl? + (o1 + an) (ly — Tl = lly - 2I1?)

2
+ (a2 +ana) ([ly = T+ lly = Tl = lly = Tl |}y o)
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n—1
+ 2<Ty — Y, N1eY — {alo Z Tkx + a1 (Tnl‘ — l’)
k=0
+ a9 (T"‘Hx +T"s — Tz —x) })

n—1 n—1
2 2
+ Z HT% _ TkaH NI Z HTka _ Tk+2xH <.
k=0 k=0
Dividing it by n, we have that
2, 1 no2 2
(5.2) ate [Ty = ylI" + — (a0 + an) (ly = T"z]" ~ |ly — «|
1 2
b (o aro) ([ly = 2+ lly = Tl g = Tl ~ o)
1
+2(Ty — y, a1ey — {1eSnT + EO[H (T"x — )

1
+—aq9 (T"Hx + T —Tx — ZL‘) H
n

M L o] L e L
n n -

k=0 k=0
Since g + 71 > 0, it holds that

1 n—1 . " 9 1 n—1 i . 9
o L _ k1 L 1., pk+2
(5.3) hnnilogf ’yonZHT x—T J;H +’yanHT x—T JJH > 0.
k=0 k=0

Indeed, since {T™z} is bounded, we obtain that

1 n—1 9 1 n—1 9
k k+1 k+1 k+2
PO A D Wl (s et
k=0 k=0

1 n—1 9 n—1 9
_ 2t (Z HTkx_TkaH _ Z HTIC+1$_T1¢+2$H )
" \i=o k=0
1
= = (Ha: — Tx|* - |7z — T"H:I:HQ) — 0 as n — oo.
n

From Lemma 5.1, the inequality (5.3) holds under the condition v9 + 1 > 0. Re-
placing n by n; and taking the liminf as i — oo in (5.2), we obtain that

are [Ty — yl* + 2010 (Ty —y, y —u) < 0.
Since e > 0, it holds that
1Ty —ylI> +2(Ty —y, y—u) <0

for all y € C. From (2.2), we obtain that u € A(T).
Additionally, suppose that C' is closed and convex. Then, {S,z} is a sequence

in C. Since C' is weakly closed, we have that u € A(T) N C. From Lemma 2.2, we
obtain that u € F'(T).
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Case (2). Suppose that aep + e1 > 0, a2, 12, @22 > 0, ae1 > 0, Sy + B1 > 0,
B2 > 0 and g, v1,72 > 0. We can derive the desired result by replacing y and Tz
in (5.1). O

Using Lemma 5.2, we can demonstrate our main theorem of this paper.

Theorem 5.3. Let C' be an nonempty subset of a real Hilbert space H and let
T:C — C bea(aj,Bi,vi; 1,J =0,1,2)-generic 2-generalized hybrid mapping with
A(T) # 0. Let Pacpy be the metric projection from H onto A(T). Suppose that T
satisfies one of the following conditions:
(1) age +a1e >0, az, 1,022 >0, aie >0,
Bo,B1,B2 >0, 0 +71 >0, 722> 0;
(2) o0+ ae1 >0, apz, 12,022 >0, aer >0,
Bo+B1 >0, B2>0, v0,71,72 > 0;
where the notations «e and ce; are defined in (3.3). Then, for any z € C,
the sequence {Snx = %Zz;(l) Tkx} converges weakly to v € A(T), where v =
limy, 00 Py(ryT™x. Additionally, suppose that C' is closed and convex. Then, for
any x € C, the sequence {S,x} converges weakly to a fixed point v of T.

Proof. We know that A (T) is closed and convex in H. Since A (T') # () is assumed,
there exists the metric projection Py(7) from H onto A(T). Let x € C and define
Spr = %ZZ;& TFz € H for all n € N. From Corollary 4.2, {T"x} is a bounded
sequence in C. Thus, the sequence {S,x} is also bounded in H. It is obvious that

(5.4) |77z — q|| < | T2 —q||

for any ¢ € A(T) and n € NU{0}. From Lemma 2.3, the sequence { Py "z} is
convergent in A (7). Define v = limy, 00 PogryT"z € A(T). Our aim is to prove
that S,z — v. Let {Sy,z} be a subsequence of {S,x} such that S,,x — u. Since
{Spz} is bounded, from (2.1), it is enough to show that v = v. We have from
Lemma 5.2 that u € A(T). It is easy to verify that the sequence of real numbers
{HT”x — PA(T)T”J:H} is monotone decreasing. Indeed, it holds from PyT"x €

A(T) and (5.4) that
(5.5) | T 2 — Pypy T | | T e — ParyT 2|

|7 — ParyT"=|

IN N

for any n € NU{0}. This means that the sequence {HT”:J; — PA(T)T"xH} is mono-
tone decreasing. Since u € A (T), we have

(The — PagyTre, PagryThz —u) > 0
for all kK € NU{0}. Thus,
<Tkzc — PapyT*a, PagryT e —v + v — u> > 0.
Using Schwarz’s inequality and (5.5), we have that

<Tkx — PA(T)Tkx, —(v— u)>
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< (T2 = Py Tz, PayThe —v)
< |7 - Py T¥a|| | Pay T2 — o
< o= Payal| | Pacny T¥a = o

Summing these inequalities with respect to k from 0 to n — 1, we obtain that

n—1 n—1 n—1
ZTkQJ — Z PA(T)Tkx, —(v—u)) < Hx — PA(T).%'H Z HPA(T)Tkx — vH .
k=0 k=0 k=0

Dividing it by n, we have that

n—1 n—1
Spx — %ZPA(T)T’%, —(v—u)) < Hx—PA(T)xH %Z HPA(T)T]C.%—UH .
k=0 k=0

Replacing n by n; and taking the limit as ¢ — oo, we obtain that

(u—v, —(v—u)) <0

since Py)T"z — v and Sp;x — u. Hence, we have that u = v.

Additionally, suppose that C' is closed and convex. Then, {S,x} is a sequence
in C. Since C is weakly closed and S,z — v, we have that v € C N A(T). From
Lemma 2.2, we obtain that v € F'(T"). This completes the proof. O
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