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first convergence result (see Theorem 1.2) deals with the Ishikawa’s iteration [2]

while the second one (see Theorem 1.3) with the Mann’s iteration [3].

Theorem 1.2. Let C be a closed convex subset of a real Banach space E and let

T : C → C be a quasi-firmly type nonexpansive mapping. Suppose that {xn} is a

sequence in C iteratively defined as follows: x1 ∈ C is arbitrarily chosen and for

each n ≥ 1 {
yn := βnxn + (1− βn)Txn;

xn+1 := αnxn + (1− αn)Tyn;

where {αn} and {βn} are sequences in [0, 1] such that

lim sup
n→∞

αn < 1 and lim sup
n→∞

βn < 1.

Then the following statements are true.

(a) If E is a reflexive space satisfying Opial’s condition and I − T is demiclosed at

zero [1], that is, p ∈ Fix(T ) whenever {zn} is a sequence in C such that {zn}
converges weakly to p ∈ C and limn→∞ ∥zn − Tzn∥ = 0, then {xn} converges

weakly to a fixed point of T (see [7, Theorem 1]).

(b) If T is continuous and satisfies Senter–Dotson’s condition, then {xn} converges

strongly to a fixed point of T (see [7, Theorem 3]).

(c) If C is compact and T is continuous, then {xn} converges strongly to a fixed

point of T (see [7, Theorem 6]).

(d) Suppose that T is continuous. Then {xn} converges strongly to a fixed point of

T if and only if lim infn→∞ d(xn,Fix(T )) = 0 (see [7, Theorem 5]).

Theorem 1.3. Let C be a closed convex subset of a real Banach space E and let

T : C → C be a quasi-firmly type nonexpansive mapping. Suppose that {xn} is a

sequence in C iteratively defined as follows: x1 ∈ C is arbitrarily chosen and for

each n ≥ 1

xn+1 := αnxn + (1− αn)Txn;

where {αn} is a sequence in [0, 1] such that lim supn→∞ αn < 1. Then the following

statements are true.

(a) If E is a reflexive space satisfying Opial’s condition and I − T is demiclosed at

zero, then {xn} converges weakly to a fixed point of T (see [7, Theorem 2]).

(b) If T is continuous and satisfies Senter–Dotson’s condition, then {xn} converges

strongly to a fixed point of T (see [7, Theorem 4]).

(c) If C is compact and T is continuous, then {xn} converges strongly to a fixed

point of T (see [7, Theorem 7]).

(d) Suppose that T is continuous. Then {xn} converges strongly to a fixed point of

T if and only if lim infn→∞ d(xn,Fix(T )) = 0 (see [7, Theorem 5]).

We observe that the Ishikawa’s iteration includes Mann’s iteration as a special

case if βn = 1 for all n ≥ 1. However, because of the condition lim supn→∞ βn < 1,

we cannot obtain Theorem 1.3 as a special case of Theorem 1.2. It is the purpose

of this paper to present an improvement of Theorem 1.2 so that the results for
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the Mann’s iteration in Theorem 1.3 can be deduced. Moreover, we show that the

results are established with a new condition which significantly improves the one

proved by Song and Li [7]. In fact, some assumptions assumed in Song and Li’s

results are superfluous.

2. Main results

We first present the following observation which is a key result of this paper.

Lemma 2.1. Let E be a real Banach space and let C be a closed convex subset of

E. Let T : C → C be a quasi-firmly type nonexpansive mapping. Suppose that {xn}
is a sequence in C iteratively defined as follows: x1 ∈ C is arbitrarily chosen and

for each n ≥ 1 {
yn := βnxn + (1− βn)Txn;

xn+1 := αnxn + (1− αn)Tyn;

where {αn} and {βn} are sequences in [0, 1]. Then the following statements are

true.

(a) ∥yn − p∥ ≤ ∥xn − p∥ and ∥xn+1 − p∥ ≤ αn∥xn − p∥ + (1 − αn)∥yn − p∥ for all

n ≥ 1 and for all p ∈ Fix(T ).

(b)
∑∞

n=1(1− αn)∥yn − Tyn∥2 < ∞ and
∑∞

n=1(1− αn)∥xn − yn∥2 < ∞.

Proof. Since T is a quasi-firmly type nonexpansive mapping, there exists a constant

k > 0 such that the following inequality holds for all (x, p) ∈ C × Fix(T ):

∥Tx− p∥2 ≤ ∥x− p∥2 − k∥x− Tx∥2.

Let p ∈ Fix(T ). Then

∥yn − p∥2 ≤ βn∥xn − p∥2 + (1− βn)∥Txn − p∥2

≤ ∥xn − p∥2 − k(1− βn)∥xn − Txn∥2

and hence

∥xn+1 − p∥2 ≤ αn∥xn − p∥2 + (1− αn)∥Tyn − p∥2

≤ αn∥xn − p∥2 + (1− αn)∥yn − p∥2 − k(1− αn)∥yn − Tyn∥2

≤ ∥xn − p∥2 − k(1− αn)(1− βn)∥xn − Txn∥2 − k(1− αn)∥yn − Tyn∥2.

It follows that (a) holds. In particular, {∥xn−p∥2} is a nonincreasing sequence and

hence it is convergent. Moreover, we have

k(1− αn)(1− βn)∥xn − Txn∥2 + k(1− αn)∥yn − Tyn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2.

For each m ≥ 1 , we have

k

m∑
n=1

(1− αn)(1− βn)∥xn − Txn∥2 + k

m∑
n=1

(1− αn)∥yn − Tyn∥2

≤ ∥x1 − p∥2 − ∥xm+1 − p∥2 ≤ ∥x1 − p∥2.
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In particular,
∑∞

n=1(1−αn)(1−βn)∥xn−Txn∥2 < ∞ and
∑∞

n=1(1−αn)∥yn−Tyn∥2 <
∞. Finally, we observe that

∥xn − yn∥2 =
(
(1− βn)∥xn − Txn∥

)2

=
(
βn · 0 + (1− βn)∥xn − Txn∥

)2

≤ (1− βn)∥xn − Txn∥2.

This implies that
∞∑
n=1

(1− αn)∥xn − yn∥2 =
∞∑
n=1

(1− αn)(1− βn)∥xn − Txn∥2 < ∞.

Hence (b) holds and the proof is completed. □

2.1. Weak convergence theorems. We observe the following lemma which plays

an important role in this subsection.

Lemma 2.2. Suppose that {sn} and {tn} are two sequences of nonnegative real

numbers and {αn} is a sequence in [0, 1] such that limn→∞ sn = s and

lim supn→∞ αn < 1. If sn+1 ≤ αnsn+(1−αn)tn for all n ≥ 1, then lim infn→∞ tn ≥
s.

Proof. Let α := 1
2(1 + lim supn→∞ αn) and let ε > 0 be given. Since limn→∞ sn =

s ≥ 0 and lim supn→∞ αn < 1, there exists a natural number N such that

• s− ε < sn < s+ ε;

• αn < α < 1;

for all n ≥ N . In particular, if n ≥ N , then 1− αn > 1− α > 0 and

s− ε < sn+1 ≤ αnsn + (1− αn)tn < αn(s+ ε) + (1− αn)tn.

This implies that

tn > s− (1 + αn)ε

1− αn
> s− 2ε

1− α
.

Hence lim infn→∞ tn ≥ s. □
We now present the following improvement of Theorem 1.2. It is worth mention-

ing that no assumption on {βn} is required. In particular, we immediately obtain

the result for the Mann’s iteration.

Theorem 2.3. Let E be a reflexive real Banach space satisfying Opial’s condition.

Let C be a closed convex subset of E and T : C → C be a quasi-firmly type non-

expansive mapping such that I − T is demiclosed at zero. Suppose that {xn} is a

sequence in C iteratively defined as follows: x1 ∈ C is arbitrarily chosen and for

each n ≥ 1 {
yn := βnxn + (1− βn)Txn;

xn+1 := αnxn + (1− αn)Tyn;

where {αn} and {βn} are sequences in [0, 1] such that lim supn→∞ αn < 1. Then

{xn} converges weakly to a fixed point of T .
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Proof. The proof is divided into three steps.

Step 1: limn→∞ ∥yn − p∥ exists for all p ∈ Fix(T ). To see this, let p ∈ Fix(T )

and let sn := ∥xn − p∥ and tn := ∥yn − p∥ for all n ≥ 1. It follows from Lemma 2.1

that s := limn→∞ sn exists, lim supn→∞ tn ≤ s, and sn+1 ≤ αnsn+(1−αn)tn for all

n ≥ 1. It follows from Lemma 2.2 that lim infn→∞ tn ≥ s and hence limn→∞ tn = s.

Step 2: The weak cluster point set of the sequence {yn} is a singleton. To

see this, it follows from Step 1 that {yn} is bounded. Moreover, it follows from

lim supn→∞ αn < 1 and Lemma 2.1(b) that limn→∞ ∥yn − Tyn∥ = 0. Since E is

reflexive, {yn} has a weakly convergent subsequence. We now suppose that {ynk
}

and {ymj} are two subsequences of {yn} such that they converge weakly to p and to

q, respectively. Since I − T is demiclosed at zero, we have p, q ∈ Fix(T ). It follows

from Step 1 that limn→∞ ∥yn − p∥ and limn→∞ ∥yn − q∥ both exist. We show that

p = q. Otherwise, it follows from Opial’s condition that

lim
n→∞

∥yn − p∥ = lim
k→∞

∥ynk
− p∥ < lim

k→∞
∥ynk

− q∥ = lim
n→∞

∥yn − q∥

= lim
j→∞

∥ymj − q∥ < lim
j→∞

∥ymj − p∥ = lim
n→∞

∥yn − p∥.

This is a contradiction.

Step 3: The sequence {xn} converges weakly to a fixed point of T . To see this,

we note from Step 2 that {yn} converges weakly to a fixed point of T . It follows

from Lemma 2.1(b) and lim supn→∞ αn < 1 that limn→∞ ∥xn− yn∥ = 0. Hence the

statement follows. □

Remark 2.4. Our Theorem 2.3 improves Theorem 1 of [7] (see Theorem 1.2(a) in

this paper) because the assumption lim supn→∞ βn < 1 is dropped. If we let βn = 1

for all n ≥ 1, then our Theorem 2.3 is the same as Theorem 2 of [7] (see Theorem

1.3(a) of this paper).

2.2. Strong convergence theorems. First, we note that the continuity of the

mapping T is superfluous for the closedness of Fix(T ) when T is a quasi-firmly type

nonexpansive mapping. In fact, we have the following result.

Proposition 2.5. Let C be a closed subset of a real Banach space E. If T : C → C

is a quasi-firmly type nonexpansive mapping, then Fix(T ) is closed.

Proof. Suppose that {pn} is a sequence in Fix(T ) such that limn→∞ pn = p for some

p ∈ E. Since C is closed, we have p ∈ C. Moreover, since T is quasi-firmly type

nonexpansive, there exists a constant k > 0 such that

∥Tp− pn∥2 ≤ ∥p− pn∥2 − k∥p− Tp∥2

for all n ≥ 1. In particular, since limn→∞ ∥Tp−pn∥2 = ∥Tp−p∥2 and limn→∞ ∥p−
pn∥2 = 0, we have ∥p− Tp∥2 = 0, that is, p ∈ Fix(T ). Hence Fix(T ) is closed. □

The following lemma is known in the literature (for example, see [9]).

Lemma 2.6. Suppose that {sn} and {tn} are two sequences of nonnegative real

numbers. If
∑∞

n=1 sntn < ∞ and
∑∞

n=1 sn = ∞, then lim infn→∞ tn = 0.
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Proof. We give the proof for the sake of completeness. Let t := lim infn→∞ tn ≥ 0

and let ε > 0 be given. Then there exists a natural number N such that tn ≥ t− ε

for all n ≥ N . This implies that
∑m

n=N sntn ≥ (t − ε)
∑m

n=N sn for all m ≥ N .

Note that limm→∞
∑m

n=N sntn < ∞ and limm→∞
∑m

n=N sn = ∞. This implies that

t− ε ≤ 0, that is, t ≤ ε. Since ε > 0 is arbitrary, we have t = 0. This completes the

proof. □

We now present the following improvement of strong convergence theorem of

Song and Li. It is worth mentioning that no assumption on {βn} is required. In

particular, we immediately obtain the result for the Mann’s iteration.

Theorem 2.7. Let E be a real Banach space. Let C be a closed convex subset of

E and T : C → C be a quasi-firmly type nonexpansive mapping. Suppose that {xn}
is a sequence in C iteratively defined as follows: x1 ∈ C is arbitrarily chosen and

for each n ≥ 1 {
yn := βnxn + (1− βn)Txn;

xn+1 := αnxn + (1− αn)Tyn;

where {αn} and {βn} are sequences in [0, 1]. The following statements are true.

(a) The sequence {xn} converges strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn,Fix(T )) = 0.

(b) If
∑∞

n=1(1 − αn) = ∞ and T satisfies Senter–Dotson’s condition, then {xn}
converges strongly to a fixed point of T .

Proof. (a) (⇒) is trivial. We prove (⇐). The proof method given below is

modified from [5]. We assume that lim infn→∞ d(xn,Fix(T )) = 0. It follows

from Lemma 2.1(a) that d(xn+1,Fix(T )) ≤ d(xn,Fix(T )) for all n ≥ 1 and hence

limn→∞ d(xn,Fix(T )) exists. This implies that limn→∞ d(xn Fix(T )) = 0. We now

prove that {xn} is a Cauchy sequence. To see this, let p ∈ Fix(T ). It follows that

∥xn − xn+k∥ ≤ ∥xn − p∥+ ∥xn+k − p∥ ≤ 2∥xn − p∥.

Since p ∈ Fix(T ) is arbitrary, we have

∥xn − xn+k∥ ≤ 2d(xn,Fix(T )).

It follows from limn→∞ d(xn Fix(T )) = 0 that {xn} is a Cauchy sequence. It follows

from the closedness of C that limn→∞ xn = q for some q ∈ C. In particular,

d(q,Fix(T )) = 0. Since Fix(T ) is closed by Proposition 2.5, we have q ∈ Fix(T ).

Hence the statement (a) is proved.

(b) We assume that
∑∞

n=1(1−αn) = ∞ and T satisfies Senter–Dotson’s condition.

To prove the statement, it suffices to prove that lim infn→∞ d(xn,Fix(T )) = 0. Since

T satisfies Senter–Dotson’s condition, there is a nondecreasing function f : [0,∞) →
[0,∞) with f(0) = 0, f(r) > 0 for all r > 0, such that

f(d(yn,Fix(T ))) ≤ ∥yn − Tyn∥
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for all n ≥ 1. It follows from Lemma 2.1(b) that

∞∑
n=1

(1− αn)(∥yn − Tyn∥2 + ∥xn − yn∥2) < ∞.

It follows from Lemma 2.6 that

lim inf
n→∞

(∥yn − Tyn∥2 + ∥xn − yn∥2) = 0.

In particular, there exist a strictly increasing sequence {nk} of natural numbers

such that

lim
k→∞

(∥ynk
− Tynk

∥+ ∥xnk
− ynk

∥) = 0.

This implies that

lim
k→∞

f(d(ynk
,Fix(T ))) ≤ lim

k→∞
∥ynk

− Tynk
∥ = 0.

Since f is nondecreasing, we have

lim
k→∞

d(ynk
,Fix(T )) = 0.

Since limk→∞ ∥xnk
− ynk

∥ = 0, we have

lim inf
n→∞

d(xn,Fix(T )) ≤ lim
k→∞

d(xnk
,Fix(T )) = 0.

This completes the proof. □

Remark 2.8. Our Theorem 2.7 improves the strong convergence results of Song

and Li in the following ways.

(a) The assumptions lim supn→∞ αn < 1 and lim supn→∞ βn < 1 in Theorem 3 and

Theorem 5 of [7] (see Theorem 1.2(b) and (c) of this paper) are replaced by the

more general assumption
∑∞

n=1(1− αn) = ∞.

(b) The continuity of the mapping is not assumed as were the cases in Theorem 3

and Theorem 5 of [7] (see Theorem 1.2(b) and (c) of this paper).

(c) If we let βn = 1 for all n ≥ 1, then our Theorem 2.7 improves Theorem 4 and

Theorem 5 of [7] (see Theorem 1.3(b) and (c) of this paper).

3. A further generalized form of quasi-firmly type nonexpansive

mappings

In this section, we use Xu’s characterization of uniform convexity in terms of an

inequality [10]. Recall that a real Banach space X is uniformly convex (see [8, 11])

if

δX(ε) := inf

{
1− 1

2
∥x+ y∥ : ∥x∥ = ∥y∥ = 1 and ∥x− y∥ = ε

}
> 0

for all 0 < ε ≤ 2. The following result is Theorem 2 of [10].
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Lemma 3.1. Let r be a positive real number. A Banach space X is uniformly convex

if and only if there exists a continuous, strictly increasing, and convex function

g : [0, 2r] → [0,∞) such that g(0) = 0 and

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)

for all x, y ∈ X with ∥x∥, ∥y∥ ≤ r and for all λ ∈ [0, 1].

Inspired by the preceding result, we now introduce the following mappings.

Definition 3.2. Let C be a subset of a Banach space E. A mapping T : C → C is

called generalized quasi-firmly type nonexpansive if Fix(T ) ̸= ∅ and for each r > 0

there exists a continuous, strictly increasing, and convex function g : [0, 2r] → [0,∞)

such that g(0) = 0 and

∥Tx− p∥2 ≤ ∥x− p∥2 − g(∥x− Tx∥)

for all (x, p) ∈ C × Fix(T ) with ∥x∥ ≤ r and ∥p∥ ≤ r.

Remark 3.3. If T : C → C is quasi-firmly type nonexpansive, then it is generalized

quasi-firmly type nonexpansive.

The following result shows that every averaged mapping in a uniformly convex

Banach space is generalized quasi-firmly type nonexpansive.

Theorem 3.4. Let X be a uniformly convex Banach space and C be a convex

subset of X. Suppose that T : C → C is a quasi-nonexpansive mapping and S :=

λI + (1− λ)T where I is an identity mapping and λ ∈ (0, 1). Then S is generalized

quasi-firmly type nonexpansive and Fix(S) = Fix(T ).

Proof. Obviously, Fix(S) = Fix(T ) and hence Fix(S) ̸= ∅. To show that S is

generalized quasi-firmly type nonexpansive, let r > 0. It follows from Lemma 3.1

that there exists a continuous, strictly increasing, and convex function g : [0, 2r] →
[0,∞) such that g(0) = 0 and

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)

for all x, y ∈ X with ∥x∥, ∥y∥ ≤ r and for all λ ∈ [0, 1]. Let (x, p) ∈ C × Fix(T )

such that ∥x∥ ≤ r and ∥p∥ ≤ r. Then

∥Sx− p∥2 = ∥λ(x− p) + (1− λ)(Tx− p)∥2

≤ λ∥x− p∥2 + (1− λ)∥Tx− p∥2 − λ(1− λ)g(∥x− Tx∥)

≤ ∥x− p∥2 − h(∥x− Tx∥)

where h(t) := λ(1 − λ)g(t). It is clear that h is a continuous, strictly increasing,

and convex function such that h(0) = 0. This completes the proof. □

We obtain the following convergence result whose proof follows exactly the same

as the proof of the corresponding results in the preceding section.
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Theorem 3.5. Let C be a closed convex subset of a Banach space X and T : C → C

be a generalized quasi-firmly type nonexpansive mapping. Suppose that {xn} is a

sequence in C iteratively defined as follows: x1 ∈ C is arbitrarily chosen and for

each n ≥ 1 {
yn := βnxn + (1− βn)Txn;

xn+1 := αnxn + (1− αn)Tyn;

where {αn} and {βn} are sequences in [0, 1]. The following statements are true.

(1) If E is reflexive and satisfies Opial’s condition; I−T is demiclosed at zero; and

lim supn→∞ αn < 1, then {xn} converges weakly to a fixed point of T

(2) If
∑∞

n=1(1 − αn) = ∞ and T satisfies Senter–Dotson’s condition, then {xn}
converges strongly to a fixed point of T .
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