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set functions. By using the separation theorem in the Euclidean space, we show

surrogate duality for the problem.

2. Preliminaries

Let (X,A,m) be an atomless finite measure space with L1 := L1(X,A,m) sep-

arable. For Ω ∈ A, χΩ denotes the characteristic function of Ω. For S ⊂ A, we

denote χS = {χΩ | Ω ∈ S} and define clS is the w∗-closure of χS in L∞. In [20],

Morris proved that for each Ω, Λ ∈ A and α ∈ [0, 1], there exist L∞-sequences {Ωn}
and {Λn} such that

χΩn

w∗
−→ (1− α)χΩ\Λ, χΛn

w∗
−→ αχΛ\Ω,

and

χΩn∪Λn∪(Ω∩Λ)
w∗
−→ (1− α)χΩ + αχΛ,

consequently, clχA contains the convex hull of χA. We call the sequence {Γn =

Ωn ∪ Λn ∪ (Ω ∩ Λ)} a Morris sequence associated with (α,Ω,Λ).

Definition 2.1. [20] A subfamily S ⊂ A is said to be convex if for every (α,Ω,Λ) ∈
[0, 1]×S×S and every Morris sequence {Γn} associated with (α,Ω,Λ), there exists

a subsequence {Γnk
} of {Γn} such that {Γnk

} ⊂ S.

We show an important property of convex subfamilies.

Theorem 2.2. Let S1, S2 be convex subfamilies of A. Then, S1 ∩ S2 is convex.

Proof. Let (α,Ω,Λ) ∈ [0, 1] × S × S and {Γn} a Morris sequence associated with

(α,Ω,Λ). Since S1 is convex, there exists a subsequence {Γnk
} of {Γn} such that

{Γnk
} ⊂ S1. It is clear that the subsequence {Γnk

} is also a Morris sequence {Γn}
associated with (α,Ω,Λ). Hence there exists a subsequence {Γnki

} of {Γnk
} such

that {Γnki
} ⊂ S2. Then, {Γnki

} is a subsequence of {Γn} and {Γnki
} ⊂ S1 ∩ S2.

This completes the proof. □

We introduce definitions of convex and quasiconvex set functions.

Definition 2.3. [20] Let S be a convex subfamily of A. A set function F : S → R
is said to be convex if for every (α,Ω,Λ) ∈ [0, 1]×S ×S and every Morris sequence

{Γn} associated with (α,Ω,Λ), there exists a subsequence {Γnk
} of {Γn} such that

{Γnk
} ⊂ S and

lim sup
k→∞

F (Γnk
) ≤ (1− α)F (Ω) + αF (Λ).

Definition 2.4. [18] Let S be a convex subfamily of A. A set function F : S → R
is said to be quasiconvex if for every (α,Ω,Λ) ∈ [0, 1] × S × S and every Morris

sequence {Γn} associated with (α,Ω,Λ), there exists a subsequence {Γnk
} of {Γn}

such that {Γnk
} ⊂ S and

lim sup
k→∞

F (Γnk
) ≤ max{F (Ω), F (Λ)}.
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Each convex set function is quasiconvex, but the converse is not generally true.

It is clear that the sum of convex set functions, and a scalar multiple of a convex set

function are convex. Furthermore, a scalar multiple of a quasiconvex set function

are also quasiconvex. However, the sum of quasiconvex set functions is not always

quasiconvex.

The following example is important.

Example 2.5. [18, 20] Let u be a real-valued function on Rn, and v1, . . . , vn ∈
L1(X,A,m). We define a function F on A as follows:

F (Ω) = u

(∫
Ω
v1dm, . . . ,

∫
Ω
vndm

)
Then the following statements hold:

(i) If u is convex, then F is a convex set function.

(ii) If u is upper semicontinuous quasiconvex, then F is a quasiconvex set func-

tion.

Morris introduced the above example in Example 3.1 of [20], and proved that F is

convex if u is convex. Additionally, in Proposition 3.1 of [18], Lin proved that F is

quasiconvex if u is quasiconvex.

In convex analysis, convex functions are characterized by their epigraphs. Sim-

ilarly, convex set functions are characterized by their epigraphs, see [3]. On the

other hand, quasiconvex functions are usually characterized by their level sets. We

show characterizations of quasiconvex set functions by their level sets. We define

level sets of a real-valued set function F with respect to a binary relation ⋄ on R as

L(F, ⋄, β) := {Ω ∈ A | F (Ω) ⋄ β}

for any β ∈ R.

Theorem 2.6. Let F be a real-valued set function from A. Then (i) and (ii) are

equivalent.

(i) F is quasiconvex,

(ii) for each β ∈ R, L(F,<, β) is convex.

Proof. We show that (i) implies (ii). Let β ∈ R, (α,Ω,Λ) ∈ [0, 1] × L(F,<

, β)× L(F,<, β), and {Γn} a Morris sequence associated with (α,Ω,Λ). Since F is

quasiconvex, there exists a subsequence {Γnk
} of {Γn} such that {Γnk

} ⊂ A and

lim sup
k→∞

F (Γnk
) ≤ max{F (Ω), F (Λ)} < β.

Hence, there exists a subsequence {Γnkj
} of {Γnk

} such that {Γnkj
} ⊂ L(F,<, β).

This shows that L(F,<, β) is convex.

Next, we show that (ii) implies (i). Let (α,Ω,Λ) ∈ [0, 1] × A × A, {Γn} a

Morris sequence associated with (α,Ω,Λ) and β = max{F (Ω), F (Λ)}. Then, for

each k ∈ N, Ω,Λ ∈ L(F,<, β + 1
k ). Since L(F,<, β + 1

k ) is convex, there exists a

subsequence {Γk
nm

} of {Γn} such that {Γk
nm

} ⊂ L(F,<, β + 1
k ).
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Let Γn1 = Γ1
n1
. For each k ≥ 2, there exists k̄ ∈ N such that Γnk−1

= Γk̄. Put

Γnk
= Γk

nk0
satisfying k̂ > k̄ where Γk

nk0
= Γk̂. Then, Γnk

is a subsequence of Γn

and for each k ∈ N, F (Γnk
) < β + 1

k . Hence,

lim sup
k→∞

F (Γnk
) ≤ β = max{F (Ω), F (Λ)}.

This shows that F is quasiconvex. □

Remark 2.7. We consider the following statement (iii):

(iii) for each β ∈ R, L(F,≤, β) is convex.

In [18], Lin proved that (iii) implies (i) in Theorem 2.6. In [16], Lee proved that

(i) implies (ii), and (iii) implies (i). However, the other implications have not been

investigated yet. The following conjecture is important.

(iv) If Sk be a convex subfamily of A for each k ∈ N, then
∩
k∈N

Sk is convex.

If the conjecture (iv) is true, then (i), (ii), and (iii) are equivalent since

L(F,≤, β) =
∩
k∈N

L

(
F,<, β +

1

k

)
.

Definition 2.8. [11] Let S be a convex subfamily of A. A set function F : S → R is

said to be w∗-upper semicontinuous (w∗-usc) if for every Ω ∈ S, and a net {Ωα} ⊂ S
satisfying χΩα

w∗
−→ χΩ,

F (Ω) ≥ lim sup
α

F (Ωα).

Remark 2.9. In [11], Hsia and Lee defined a w∗-usc function as follows: F is said

to be w∗-usc if for each Ω ∈ S,

F (Ω) = inf
U∈N(Ω)

sup
Ω0∈U∩S

F (Ω0),

where N(Ω0) is the family of all w∗-neighborhoods of Ω. This condition is equivalent

to w∗-upper semicontinuity in this paper. On the other hand, in [14, 15], Lai and

Lin defined a w∗-usc function by a sequence {Ωn} ⊂ S, they did not define w∗-usc

by a net. This type of semicontinuity is not equivalent to w∗-upper semicontinuity

in this paper.

3. Surrogate duality

In this section, we consider the following optimization problem involving set

functions: {
minimize F (x),

subject to Gi(x) ≤ 0,∀i ∈ I,

where I = {1, . . . ,m}, F is a real-valued w∗-usc quasiconvex set function from A,

and Gi is a real-valued convex set function from A for each i ∈ I. Let S = {Ω ∈
A | Gi(Ω) ≤ 0, ∀i ∈ I}, and assume that there exists Ω1 ∈ A such that Gi(Ω1) < 0

for each i ∈ I.
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Surrogate duality has been studied for various types of optimization problems, for

example, zero-one integer programming problem, quasiconvex optimization, robust

optimization, and so on. For more details, see [5, 7–9, 19, 25, 30] and references

therein.

We show the following surrogate duality theorem for optimization problems in-

volving quasiconvex and convex set functions.

Theorem 3.1. Let I = {1, . . . ,m}, F a real-valued w∗-usc quasiconvex set function

on A, Gi a real-valued convex set function on A for each i ∈ I, and S = {Ω ∈ A |
Gi(Ω) ≤ 0,∀i ∈ I}. Assume that there exists Ω1 ∈ A such that Gi(Ω1) < 0 for each

i ∈ I.

Then,

inf
Ω∈S

F (Ω) = max
λ∈Rm

+

inf

{
F (Ω)

∣∣∣∣∣
m∑
i=1

λiGi(Ω) ≤ 0

}
.

Proof. Let µ = infΩ∈S F (Ω). At first, we show surrogate weak duality. Let λ ∈ Rm
+ .

We can easily see that S ⊂ {Ω ∈ A |
∑m

i=1 λiGi(Ω) ≤ 0}. This shows that

µ ≥ sup
λ∈Rm

+

inf

{
F (Ω)

∣∣∣∣∣
m∑
i=1

λiGi(Ω) ≤ 0

}
,

that is, surrogate weak duality holds.

If µ = −∞, then putting λ = 0, the equality holds.

Assume that µ > −∞. Let

A =

{
z ∈ Rm

∣∣∣∣∃Ω ∈ A s.t.
Gi(Ω) ≤ zi, ∀i ∈ {1, . . . ,m},
F (Ω) < µ

}
,

N = {z ∈ Rm | zi ≤ 0, ∀i ∈ {1, . . . ,m}} ,

where Rm is the m-dimensional Euclidean space. It is clear that N is a closed

convex cone in Rm.

We show that clA is a convex subset of Rm. Let x, y ∈ clA, and α ∈ [0, 1]. For

each ε > 0, there exist xε, yε ∈ A such that ∥x − xε∥ < ε and ∥y − yε∥ < ε. Also,

there exist Ωxε , Ωyε ∈ A such that F (Ωxε) < µ, F (Ωyε) < µ, Gi(Ωxε) ≤ xε,i for

each i ∈ I, and Gi(Ωyε) ≤ yε,i for each i ∈ I. Hence

Gi(Ωxε)− ε < xi, and Gi(Ωyε)− ε < yi.

Then, there exists a Morris sequence {Γn} associated with (α,Ωxε ,Ωyε) such that

for each i ∈ I,

lim sup
n→∞

Gi(Γn) ≤ (1− α)Gi(Ωxε) + αGi(Ωyε),

and

lim sup
n→∞

F (Γn) ≤ max{F (Ωxε), F (Ωyε)} < µ

since F is quasiconvex, and Gi is convex. Also,

lim sup
n→∞

Gi(Γn) ≤ (1− α)Gi(Ωxε) + αGi(Ωyε)
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< (1− α) (xi + ε) + α (yi + ε)

= (1− α)xi + αyi + ε.

Hence, there exists n0 ∈ N such that for each i ∈ I,

Gi(Γn0) < (1− α)xi + αyi + ε,

and

F (Γn0) ≤ max{F (Ωxε), F (Ωyε)} < µ.

This shows that

(1− α)x+ αy + (ε, ε, . . . , ε) ∈ A,

that is, (1− α)x+ αy ∈ clA. Hence, clA is convex.

Also, we can prove that (clA)∩ (intN) = ∅ since µ = infΩ∈S F (Ω). Hence, by the

separation theorem between clA and N , there exist w ∈ Rm \ {0} and β ∈ R such

that for each z ∈ A and y ∈ N ,

⟨w, z⟩ ≥ β ≥ ⟨w, y⟩ .

By the definition of the cone N , we can show that β = 0 and w ∈ Rm
+ \ {0}.

Next, we show that for each z ∈ A, ⟨w, z⟩ > 0.

Assume that there exists z0 ∈ A such that ⟨w, z0⟩ = 0. Then, there exists Ω0 ∈ A
such that Gi(Ω0) ≤ z0,i for each i ∈ {1, . . . ,m}, and F (Ω0) < µ. Let

z1 = (G1(Ω1), G2(Ω1), . . . , Gm(Ω1)) ∈ Rm,

ε =
min{|z1,i| | i ∈ I}

2
, and e = (ε, ε, . . . , ε) ∈ Rm

+ . Then, we can check that z1,i+ε <

0 for each i ∈ I, and z1 + e /∈ A. For each α ∈ (0, 1], let

zα := (1− α)z0 + α(z1 + e).

Since w ∈ Rm
+ \ {0}, z1,i + ε < 0, and ⟨w, z0⟩ = 0,

⟨w, zα⟩ = (1− α) ⟨w, z0⟩+ α ⟨w, z1 + e⟩ = α ⟨w, z1 + e⟩ < 0.

This shows that zα /∈ A for each α ∈ (0, 1]. Let U ∈ D := {U : w∗-nbd. of χΩ0}.
Then, there exists α0 ∈ (0, 1] such that

(1− α0)χΩ0 + α0χΩ1 ∈ U.

Also, there exists a neighborhood Uα0 of (1− α0)χΩ0 + α0χΩ1 such that Uα0 ⊂ U .

Since Gi is convex, there exists a Morris sequence {Ωn} associated with (α0,Ω0,Ω1)

such that

χΩn

w∗
−→ (1− α0)χΩ0 + α0χΩ1 ,

and for each i ∈ I,

lim sup
n→∞

Gi(Ωn) ≤ (1− α0)Gi(Ω0) + α0Gi(Ω1).

Then,

lim sup
n→∞

Gi(Ωn) ≤ (1− α0)Gi(Ω0) + α0Gi(Ω1)

≤ (1− α0)z0,i + α0z1,i
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< (1− α0)z0,i + α0(z1,i + ε).

Hence, there exists n0 ∈ N such that χΩn0
∈ Uα0 ⊂ U , and for each i ∈ I,

Gi(Ωn0) < (1− α0)z0,i + α0(z1,i + ε).

Since zα0 /∈ A, F (Ωn0) ≥ µ. Put ΩU = Ωn0 . Then, we can check that {χΩU
}U∈D is

a net and χΩU

w∗
−→ χΩ0 . Since F is w∗-usc,

F (Ω0) ≥ lim sup
U

F (ΩU ) ≥ µ.

This is a contradiction. Hence, ⟨w, z⟩ > 0 for each z ∈ A.

By the separation inequality, for each Ω ∈ A with
∑m

i=1wiGi(Ω) ≤ 0,

z = (G1(Ω), G2(Ω), . . . , Gm(Ω)) /∈ A.

This shows that F (Ω) ≥ µ. Hence,

µ ≤ inf

{
F (Ω)

∣∣∣∣∣
m∑
i=1

wiGi(Ω) ≤ 0

}
≤ sup

λ∈Rm
+

inf

{
F (Ω)

∣∣∣∣∣
m∑
i=1

λiGi(Ω) ≤ 0

}
≤ µ.

This completes the proof. □

Remark 3.2. In Theorem 3.1, we assume the following condition:

there exists Ω1 ∈ A such that Gi(Ω1) < 0 for each i ∈ I.

The above condition is the Slater type constraint qualification for set functions.

In the research of duality theorems, various types of constraint qualifications have

been investigated, see [1, 2, 6, 12, 13, 17, 21–30]. Especially, necessary and sufficient

constraint qualifications for surrogate duality have been investigated, see [25, 30].

Necessary and sufficient constraint qualifications for surrogate duality via set func-

tions are future research.
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