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SURROGATE DUALITY FOR OPTIMIZATION PROBLEMS
INVOLVING SET FUNCTIONS

DAISHI KUROIWA, GUE MYUNG LEE, AND SATOSHI SUZUKI

ABSTRACT. In this paper, we study surrogate duality for optimization problems
involving set functions. We investigate the level sets of quasiconvex set functions,
and then show surrogate duality for optimization problems involving quasiconvex
and convex set functions with the Slater type constraint qualification.

1. INTRODUCTION

In convex analysis, various types of functions have been introduced. Convexity
and generalized convexity of a real-valued function have been investigated and gener-
alized by various researchers. Vector-valued functions are ones of the generalization
for multi-objective optimization problems. Additionally, set-valued functions have
been investigated in set optimization problems.

On the other hand, in [20], Morris introduced set functions, which is defined
on the class of measurable subsets of an atomless finite measure space satisfying a
certain convexity condition. Although a set-valued function is defined on a vector
space and the value is a set, a set function is defined on a class of subsets and the
value is a real number. For this type of set functions, various results have been
introduced, see [3,4,10,11,14-16,18,20,31]. There are some types of duality results
for convex set functions, for example, Lagrange duality in [20], the subdifferential
sum formula in [14], and Fenchel-Moreau theorem in [15].

In optimization problems, duality theorems play an important role. It is well
known that Lagrange duality for convex optimization have been studied extensively.
Additionally, there are so many useful duality results in optimization theory, for
example, surrogate duality, Fenchel duality, Mond-Weir duality, Wolfe duality, and
so on. However, for set functions, surrogate duality for quasiconvex set functions
have not been investigated yet.

In this paper, we study surrogate duality for optimization problems involving
set functions. We investigate the level sets of quasiconvex set functions. We show
surrogate duality for optimization problems involving quasiconvex and convex set
functions with the Slater type constraint qualification.

The paper is organized as follows. In Section 2, we introduce some preliminar-
ies and investigate the level sets of quasiconvex set functions. In Section 3, we
show surrogate duality for optimization problems involving quasiconvex and convex
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set functions. By using the separation theorem in the Euclidean space, we show
surrogate duality for the problem.

2. PRELIMINARIES

Let (X,.A,m) be an atomless finite measure space with L := Li(X,.A,m) sep-
arable. For € A, yq denotes the characteristic function of 2. For § C A, we
denote xs = {xa | © € S} and define clS is the w*-closure of xs in L. In [20],
Morris proved that for each Q, A € A and « € [0, 1], there exist Lo.-sequences {2, }
and {A,,} such that

w* w*
X, — (L= a)Xo\n, XA, — QAXA\Qs
and
Xanun,u@na) — (1 —a)xa + axa,

consequently, cly4 contains the convex hull of x 4. We call the sequence {I',, =
Q, UA, U (2N A)} a Morris sequence associated with (a, §2, A).

Definition 2.1. [20] A subfamily S C A is said to be convex if for every (a, 2, A) €
[0,1] xS x S and every Morris sequence {I', } associated with (a, 2, A), there exists
a subsequence {I'y,, } of {I';,} such that {I',, } C S.

We show an important property of convex subfamilies.
Theorem 2.2. Let S1, So be convex subfamilies of A. Then, Sy NSy is convex.

Proof. Let (o, Q2,A) € [0,1] x § x § and {I',} a Morris sequence associated with
(o, 2,A). Since S is convex, there exists a subsequence {I'y, } of {I';,} such that
{I'n,} C S1. It is clear that the subsequence {I',, } is also a Morris sequence {I';,}
associated with (a, €2, A). Hence there exists a subsequence {I'y, } of {I';,} such
that {I',, } C Sa. Then, {T'y, } is a subsequence of {I',} and {I',, } C &1 N Ss.
This comf)letes the proof. ' ' O

We introduce definitions of convex and quasiconvex set functions.

Definition 2.3. [20] Let S be a convex subfamily of A. A set function F': § — R
is said to be convex if for every (o, Q2,A) € [0,1] x S x S and every Morris sequence
{I'y,} associated with («, €2, A), there exists a subsequence {I',, } of {I',} such that
{I'n,} C S and
limsup F'(I'y,) < (1 — a)F(Q) + aF(A).

k—o0
Definition 2.4. [18] Let S be a convex subfamily of A. A set function F': § -+ R
is said to be quasiconvex if for every (a,,A) € [0,1] x S X § and every Morris
sequence {I',} associated with (a, 2, A), there exists a subsequence {I'y,, } of {T'y}
such that {I',,, } C S and

limsup F(I'y, ) < max{F(Q), F(A)}.

k—o00
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FEach convex set function is quasiconvex, but the converse is not generally true.
It is clear that the sum of convex set functions, and a scalar multiple of a convex set
function are convex. Furthermore, a scalar multiple of a quasiconvex set function
are also quasiconvex. However, the sum of quasiconvex set functions is not always
quasiconvex.

The following example is important.

Example 2.5. [18,20] Let u be a real-valued function on R", and vq,...,v, €
Li(X,A,m). We define a function F' on A as follows:

F(Q):u(/gvldm,...,/gvndm>

Then the following statements hold:

(i) If u is convex, then F' is a convex set function.
(ii) If w is upper semicontinuous quasiconvex, then F' is a quasiconvex set func-
tion.

Morris introduced the above example in Example 3.1 of [20], and proved that F' is

convex if u is convex. Additionally, in Proposition 3.1 of [18], Lin proved that F' is
quasiconvex if u is quasiconvex.

In convex analysis, convex functions are characterized by their epigraphs. Sim-
ilarly, convex set functions are characterized by their epigraphs, see [3]. On the
other hand, quasiconvex functions are usually characterized by their level sets. We
show characterizations of quasiconvex set functions by their level sets. We define
level sets of a real-valued set function F' with respect to a binary relation ¢ on R as

L(F,0,B) :={Q2€ A| F() ¢ B}
for any 8 € R.

Theorem 2.6. Let F' be a real-valued set function from A. Then (i) and (ii) are
equivalent.

(i) F is quasiconver,

(ii) for each B € R, L(F, <, ) is convex.

Proof. We show that (i) implies (ii). Let 8 € R, (a,Q,A) € [0,1] x L(F,<

,B) x L(F, <, ), and {I',} a Morris sequence associated with (c, 2, A). Since F is

quasiconvex, there exists a subsequence {I'y, } of {I';} such that {I',,, } C A and
limsup F(I',, ) < max{F(Q), F(A)} < B.

k—o0
Hence, there exists a subsequence {Fnkj} of {T'y,, } such that {Fnkj} C L(F,<,p).
This shows that L(F, <, ) is convex.

Next, we show that (ii) implies (i). Let (a,Q,A) € [0,1] x A x A, {T',} a
Morris sequence associated with (a, 2, A) and 8 = max{F(Q), F(A)}. Then, for
each k € N, QA € L(F,<,8 + %) Since L(F, <, + %) is convex, there exists a
subsequence {I'% } of {T',} such that {I'% } C L(F,<,8+ %)
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Let I';,, =T} . For each k > 2, there exists k € N such that I', , = I';. Put
r,, = Fﬁko satisfying k > k where Fﬁko = I';. Then, I'y, is a subsequence of I';,
and for each k € N, F(I'y,, ) < 5+ % Hence,

limsup F(I',,) < 8 = max{F(Q), F(A)}.
k—o00

This shows that F' is quasiconvex. O

Remark 2.7. We consider the following statement (iii):

(iii) for each 5 € R, L(F, <, 3) is convex.
In [18], Lin proved that (iii) implies (i) in Theorem 2.6. In [16], Lee proved that
(i) implies (ii), and (iii) implies (i). However, the other implications have not been
investigated yet. The following conjecture is important.

(iv) If Sk be a convex subfamily of A for each k € N, then ﬂ Sy, is convex.

keN
If the conjecture (iv) is true, then (i), (ii), and (iii) are equivalent since

1
L(F.<,8)= ()L <F,<,5+ k,) :
keN
Definition 2.8. [11] Let S be a convex subfamily of A. A set function F': & — R is
said to be w*-upper semicontinuous (w*-usc) if for every Q € S, and anet {Q,} C S
satisfying xq, AN XQ,
F(Q2) > limsup F(,).
«
Remark 2.9. In [11], Hsia and Lee defined a w*-usc function as follows: F' is said
to be w*-usc if for each 2 € S,
F(Q) = inf sup F(Qg),
@) UEN(Q) QueUns (%)
where N (€) is the family of all w*-neighborhoods of 2. This condition is equivalent
to w*-upper semicontinuity in this paper. On the other hand, in [14,15], Lai and
Lin defined a w*-usc function by a sequence {2,,} C S, they did not define w*-usc
by a net. This type of semicontinuity is not equivalent to w*-upper semicontinuity
in this paper.

3. SURROGATE DUALITY

In this section, we consider the following optimization problem involving set

functions:
minimize F(x),
{subject to Gi(x) <0,Viel,

where I = {1,...,m}, F is a real-valued w*-usc quasiconvex set function from A4,
and G; is a real-valued convex set function from A for each i € I. Let S = {Q €
A | G;i(2) <0,Vi € I}, and assume that there exists 1 € A such that G;(21) <0
for each i € I.
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Surrogate duality has been studied for various types of optimization problems, for
example, zero-one integer programming problem, quasiconvex optimization, robust
optimization, and so on. For more details, see [5,7-9,19,25,30] and references
therein.

We show the following surrogate duality theorem for optimization problems in-
volving quasiconvex and convex set functions.

Theorem 3.1. Let I = {1,...,m}, F a real-valued w*-usc quasiconvex set function
on A, G; a real-valued convex set function on A for each i € I, and S = {Q2 € A |
G;i(R2) <0,Vi € I}. Assume that there exists Q1 € A such that G;(21) < 0 for each
1el.

Then,

inf F(§2) = max inf {F(Q)
Qes AER™

i=1
Proof. Let u = infoes F'(€2). At first, we show surrogate weak duality. Let A € R
We can easily see that S C {2 € A| > ", \iG;(©2) < 0}. This shows that

EminGi(Q) < 0} ,
=1

p > sup inf {F(Q)
AERT

that is, surrogate weak duality holds.
If 4 = —o0, then putting A = 0, the equality holds.
Assume that p > —oo. Let

A = {zeRm 0 e A s.t.

G,(Q) < z,Vie {1,...,m},
FQ)<p ’
N = {zeR™|z <0,Vie{l,...,m}},

where R™ is the m-dimensional Euclidean space. It is clear that N is a closed
convex cone in R™.

We show that clA is a convex subset of R™. Let z, y € clA, and « € [0, 1]. For
each € > 0, there exist z., y. € A such that ||z — z.|| < ¢ and ||y — y|| < e. Also,
there exist Q,_, €,. € A such that F(Q,.) < p, F(Qy.) < p, Gi(Qs.) < 2. for
each i € I, and G;(§y,) < y.,; for each i € I. Hence

Gi(Q.) — € <z, and Gi(Qy.) — € < y;.

Then, there exists a Morris sequence {I',} associated with (o, Qg_, . ) such that
for each i € I,
lim sSup Gz(Fn> < (1 - a)Gz<st) + aGi(st)v
n—oo
and
lim sup F(T,) < max{F(Q,,), (@, )} <
n—oo
since F' is quasiconvex, and G; is convex. Also,
limsupG;(I'y,)) < (1 —a)Gi(Qa.) + aG4(82y,)

n—o0
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< (I-a)(zite)+alyite)

= 1—-ao)z;+ay +e.
Hence, there exists ng € N such that for each ¢ € I,

Gi(FnO) < (1 — Oé)ﬁi + oy; +¢,
and
F(Tny) < max{F(Qe,), F({y,)} < p.
This shows that
(1—0¢):U+ay+(5,5,._.,5) < A:

that is, (1 — o)z + ay € clA. Hence, clA is convex.

Also, we can prove that (clA) N (intN) = () since p = infges F(2). Hence, by the
separation theorem between clA and N, there exist w € R™ \ {0} and § € R such
that for each z € A and y € N,

(w,2) =2 B> (w,y).
By the definition of the cone N, we can show that § =0 and w € R \ {0}.

Next, we show that for each z € A, (w, z) > 0.

Assume that there exists zp € A such that (w, zp) = 0. Then, there exists Qy € A
such that G;(Q) < 2o, for each i € {1,...,m}, and F(p) < u. Let

Z1 = (Gl(Ql), GQ(Ql), ceey Gm(Ql)) e R™,

. icT
€= min{ |21l |7 }, and e = (g,¢,...,¢) € R". Then, we can check that z; ;4+¢ <

0 for each i € I, and 21 + e ¢ A. For each a € (0, 1], let

zo = (1 —a)zo+ a(z1 +e).
Since w € R\ {0}, z1; + € <0, and (w, 29) = 0,
(W, 20) = (1 —a) (w, z0) + a(w, 21 +€) = a(w, z; +¢) <O0.
This shows that z, ¢ A for each o € (0,1]. Let U € D := {U : w*-nbd. of xq,}.
Then, there exists ag € (0, 1] such that
(1-— Ozo)XQO + apxa, €U.

Also, there exists a neighborhood Uy, of (1 — ag)xa, + @oxq, such that U,, C U.
Since Gj is convex, there exists a Morris sequence {2, } associated with (ag, Q0, 21)
such that

*

X, — (1= ag)xa, + aoxe,,
and for each i € I,

limsup G;(€2n) < (1 — a0)Gi(20) + aoGi(§21).

n—oo
Then,
limsup G;(2,) < (1 — a)Gi(Q0) + apGi (1)
n—o0
< (1 —ap)z0,i + w21,
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< (1 —ap)z0,i + ao(z1,i +e€).
Hence, there exists ng € N such that Xy € Uas, C U, and for each i € I,
Gi(Qny) < (1 — )20, + ao(z1,i +¢€).
Since 2o, ¢ A, F(2yy) > p. Put Qu = Qy,,. Then, we can check that {xq, }vep is

a net and xq, i Xq,- Since F' is w*-usc,
F(@) 2 limsup F(Q) > o
This is a contradiction. Hence, (w, z) > 0 for each z € A.
By the separation inequality, for each Q € A with > /", w;G;(Q2) <0,
z=(G1(),G2(Q),...,Gn(Q)) ¢ A.
This shows that F'(2) > u. Hence,

D XGi(Q) < 0} < p.
=1

This completes the proof. O

u < inf {F(Q)

iwiGi(Q) < 0} < sup inf {F(Q)
i=1

AERT

Remark 3.2. In Theorem 3.1, we assume the following condition:
there exists 1 € A such that G;(€21) < 0 for each i € I.

The above condition is the Slater type constraint qualification for set functions.
In the research of duality theorems, various types of constraint qualifications have
been investigated, see [1,2,6,12,13,17,21-30]. Especially, necessary and sufficient
constraint qualifications for surrogate duality have been investigated, see [25,30].
Necessary and sufficient constraint qualifications for surrogate duality via set func-
tions are future research.
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