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In 2010, Kocourek et al. [15] defined a wide class of mappings. A mapping
T : C → H is called

(iii) generalized hybrid [15] if there exist α, β ∈ R such that

α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C, where R is the set of real numbers. The class of generalized hybrid
mappings simultaneously includes nonexpansive mappings, nonspreading mappings
[17, 18], hybrid mappings [31], and λ-hybrid mappings [1] as special cases. Note
that nonspreading mappings and hybrid mappings are not necessarily continuous
(see [12] or [36]).

The class of generalized hybrid mappings has been further extended. A mapping
T : C → H is called

(iv) normally generalized hybrid [35] if there exist α, β, γ, δ ∈ R such that

α ∥Tx− Ty∥2 + β ∥x− Ty∥2 + γ ∥Tx− y∥2 + δ ∥x− y∥2 ≤ 0

for all x, y ∈ C, where (1) α+β+γ+δ ≥ 0 and (2) α+β > 0 or α+γ > 0. It is easy
to verify that the class of normally generalized hybrid mappings covers generalized
hybrid mappings. According to [35], a normally generalized hybrid mapping T has
at most one fixed point such as a contraction under the condition α+β+γ+ δ > 0.
A mapping T : C → C is called

(v) 2-generalized hybrid [24] if there exist α1, α2, β1, β2 ∈ R such that

α1

∥∥T 2x− Ty
∥∥2 + α2 ∥Tx− Ty∥2 + (1− α1 − α2) ∥x− Ty∥2

≤ β1
∥∥T 2x− y

∥∥2 + β2 ∥Tx− y∥2 + (1− β1 − β2) ∥x− y∥2

for all x, y ∈ C. It is obvious that the class of 2-generalized hybrid mappings is
generalized hybrid if α1 = β1 = 0. Hojo et al. [10] gave examples of 2-generalized
hybrid mappings that are not generalized hybrid. A mapping T : C → C is said to
be

(vi) normally 2-generalized hybrid [19] if there exist α0, β0, α1, β1, α2, β2 ∈ R such
that

α2

∥∥T 2x− Ty
∥∥2 + α1 ∥Tx− Ty∥2 + α0 ∥x− Ty∥2

+ β2
∥∥T 2x− y

∥∥2 + β1 ∥Tx− y∥2 + β0 ∥x− y∥2 ≤ 0

for all x, y ∈ C, where (1)
∑2

n=0 (αn + βn) ≥ 0 and (2) α2 +α1 +α0 > 0. The class
of normally 2-generalized hybrid mappings contains mappings of types (i)–(v) (see
[19]). For a normally 2-generalized hybrid mapping T , Kondo and Takahashi [19]
considered the following iteration process:

x1 ∈ C : given,

xn+1 = anxn + bnTxn + cnT
2xn for all n ∈ N,

and proved a weak convergence theorem. In another paper [20], they considered the
following Halpern type iteration:

x1, z ∈ C : given,

xn+1 = λnz + (1− λn)
(
anxn + bnTxn + cnT

2xn
)

for all n ∈ N,
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and proved a strong convergence theorem.
Approximation methods for finding common fixed points of nonexpansive map-

pings have been intensively studied; see, for example, Lions [21], Shimizu and Taka-
hashi [26], Atsushiba and Takahashi [3], Shimoji and Takahashi [27], and Kimura
et al. [14]. Iemoto and Takahashi [11] dealt with a nonexpansive mapping and a
nonspreading mapping in the framework of a Hilbert space. Very recently, Hojo
et al. [6] proved weak and strong convergence theorems for the common attrac-
tive and fixed points of two commutative normally 2-generalized hybrid mappings
(see also [5,7,9,16]), while Takahashi [32] dealt with two noncommutative general-
ized hybrid mappings. However, no approximation method for finding the common
attractive and fixed points of two noncommutative normally 2-generalized hybrid
mappings has yet been developed.

This paper presents approximation methods for finding common attractive and
fixed points of two noncommutative normally 2-generalized hybrid mappings. First,
Mann type weak convergence theorems are obtained (Theorems 3.1, 3.2, and 3.4).
Strong convergence theorems of Halpern type iterations are also established (The-
orems 4.1, 4.2, and 4.4). Takahashi’s results [32] are derived from our theorems.

2. Preliminaries

This section briefly presents preliminary information and results. In a real Hilbert
space H, it is known that

(2.1) 2⟨x− y, y⟩ ≤ ∥x∥2 − ∥y∥2 ≤ 2⟨x− y, x⟩

for all x, y ∈ H. The strong and weak convergence of a sequence {xn} in H to
x (∈ H) are denoted by xn → x and xn ⇀ x, respectively. It is also known that a
closed and convex subset of H is weakly closed. For a bounded sequence {xn} in
H, {xn} is weakly convergent if and only if every weakly convergent subsequence
of {xn} has the same weak limit, that is,

xn ⇀ v ⇐⇒ [xni ⇀ u implies that u = v],

where {xni} is a subsequence of {xn} andu, v ∈ H. Takahashi and Takeuchi [33]
showed that the set of attractive points A (T ) is closed and convex in a Hilbert
space. For a normally 2-generalized hybrid mapping T : C → C, Kondo and
Takahashi [20] demonstrated that F (T ) ⊂ A (T ). A mapping T : C → H with
F (T ) ̸= ∅ is called quasi-nonexpansive if ∥Tx− u∥ ≤ ∥x− u∥ for all x ∈ C and
u ∈ F (T ). We know from [19] that a normally 2-generalized hybrid mapping with
F (T ) ̸= ∅ is quasi-nonexpansive. We also know that the set of fixed points F (T )
of a quasi-nonexpansive mapping is closed and convex (see [13]).

Let D be a nonempty, closed, and convex subset of H. For any x ∈ H, there
exists a unique nearest point u ∈ D, that is, ∥x− u∥ = infz∈D ∥x− z∥. This
correspondence is called themetric projection fromH ontoD, and is denoted by PD.
For the metric projection PD from H onto D, it holds that ⟨x− PDx, PDx− z⟩ ≥ 0
for all x ∈ H and z ∈ D. For more details, see Takahashi [29] and [30].

Regarding the existence of common attractive and fixed points, Hojo [5] found
the following result.
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Theorem 2.1 ([5]). Let C be a nonempty subset of H, and let S and T be com-
mutative normally 2-generalized hybrid mappings of C into itself. Suppose that
there exists an element z ∈ C such that {SkT lz : k, l ∈ N ∪ {0}} is bounded.
Then, A (S) ∩ A (T ) is nonempty. Additionally, if C is closed and convex, then
F (S) ∩ F (T ) is nonempty.

The following lemma will be used in the proofs of the main theorems in this
paper.

Lemma 2.2 ( [34]). Let D be a nonempty, closed, and convex subset of H, let
PD be the metric projection from H onto D, and let {xn} be a sequence in H. If
∥xn+1 − q∥ ≤ ∥xn − q∥ for all q ∈ D and n ∈ N, then {PDxn} is convergent in D.

In the following lemma, parts (a) and (b) were proved by Takahashi [30] and
Maruyama et al. [24], respectively. As was recognized in [24], parts (c), (d), and
more generalized equalities hold. For completeness, we provide the proof of (c) in
this paper.

Lemma 2.3 ( [24,30]). Let x, y, z, w, v ∈ H and a, b, c, d, e ∈ R. Then, the following
hold:

(a) If a+ b = 1, then ∥ax+ by∥2 = a ∥x∥2 + b ∥y∥2 − ab ∥x− y∥2.
(b) If a+ b+ c = 1, then

∥ax+ by + cz∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .

(c) If a+ b+ c+ d = 1, then

∥ax+ by + cz + dw∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2

−ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2

−bc ∥y − z∥2 − bd ∥y − w∥2 − cd ∥z − w∥2 .
(d) If a+ b+ c+ d+ e = 1, then

∥ax+ by + cz + dw + ev∥2

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2 + e ∥v∥2

− ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2 − ae ∥x− v∥2

− bc ∥y − z∥2 − bd ∥y − w∥2 − be ∥y − v∥2

− cd ∥z − w∥2 − ce ∥z − v∥2 − de ∥w − v∥2 .

Proof. We prove part (c). From the relationship between the inner product and
norm in Hilbert spaces, it follows that

∥ax+ by + cz + dw∥2

= ⟨ax+ by + cz + dw, ax+ by + cz + dw⟩
= a2 ∥x∥2 + b2 ∥y∥2 + c2 ∥z∥2 + d2 ∥w∥2

+ab ⟨x, y⟩+ ac ⟨x, z⟩+ ad ⟨x, w⟩+ ab ⟨y, x⟩+ bc ⟨y, z⟩+ bd ⟨y, w⟩
+ac ⟨z, x⟩+ bc ⟨z, y⟩+ cd ⟨z, w⟩+ ad ⟨w, x⟩+ bd ⟨w, y⟩+ cd ⟨w, z⟩
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= a2 ∥x∥2 + b2 ∥y∥2 + c2 ∥z∥2 + d2 ∥w∥2

+2ab ⟨x, y⟩+ 2ac ⟨x, z⟩+ 2ad ⟨x, w⟩
+2bc ⟨y, z⟩+ 2bd ⟨y, w⟩+ 2cd ⟨z, w⟩ .

Using ∥u− v∥2 = ∥u∥2 − 2 ⟨u, v⟩+ ∥v∥2 for all u, v ∈ H, we have that

∥ax+ by + cz + dw∥2

= a2 ∥x∥2 + b2 ∥y∥2 + c2 ∥z∥2 + d2 ∥w∥2

+ab
(
∥x∥2 + ∥y∥2 − ∥x− y∥2

)
+ ac

(
∥x∥2 + ∥z∥2 − ∥x− z∥2

)
+ad

(
∥x∥2 + ∥w∥2 − ∥x− w∥2

)
+ bc

(
∥y∥2 + ∥z∥2 − ∥y − z∥2

)
+bd

(
∥y∥2 + ∥w∥2 − ∥y − w∥2

)
+ cd

(
∥z∥2 + ∥w∥2 − ∥z − w∥2

)
= a (a+ b+ c+ d) ∥x∥2 + b (b+ a+ c+ d) ∥y∥2

+c (c+ a+ b+ d) ∥z∥2 + d (d+ a+ b+ c) ∥w∥2

−ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2

−bc ∥y − z∥2 − bd ∥y − w∥2 − cd ∥z − w∥2 .
Because a+ b+ c+ d = 1, we obtain

∥ax+ by + cz + dw∥2 = a ∥x∥2 + b ∥y∥2 + c ∥z∥2 + d ∥w∥2

−ab ∥x− y∥2 − ac ∥x− z∥2 − ad ∥x− w∥2

−bc ∥y − z∥2 − bd ∥y − w∥2 − cd ∥z − w∥2 .
This completes the proof of (c). Similarly, (d) can be derived from long and some-
what tedious calculations. □

The proof of the following lemma was developed in [15] and [24], among others.

Lemma 2.4 ([19,35]). Let C be a nonempty subset of H, let T be a mapping from
C into itself, and let {xn} be a sequence in C.

(a) Suppose that T is a normally generalized hybrid mapping. If {xn} satisfies
Txn − xn → 0 and xn ⇀ u, then u ∈ A (T ).

(b) Suppose that T is a normally 2-generalized hybrid mapping. If {xn} satisfies
Txn − xn → 0, T 2xn − xn → 0 and xn ⇀ u, then u ∈ A (T ).

The following lemma was demonstrated by Takahashi and Takeuchi [33].

Lemma 2.5 ([33]). Let C be a nonempty subset of H, and let T be a mapping from
C into H. Then, A (T ) ∩ C ⊂ F (T ).

The following two lemmas will be exploited to derive the strong convergence in
Theorem 4.1.

Lemma 2.6 ([2]; see also [38]). Let {Xn} be a sequence of nonnegative real numbers,
let {Yn} be a sequence of real numbers such that lim supn→∞ Yn ≤ 0, and let {Zn}
be a sequence of nonnegative real numbers such that

∑∞
n=1 Zn < ∞. Let {λn}

be a sequence of real numbers in the interval [0, 1) such that
∑∞

n=1 λn = ∞. If
Xn+1 ≤ (1− λn)Xn + λnYn + Zn for all n ∈ N, then Xn → 0 as n → ∞.
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Lemma 2.7 ([22]). Let {Xn} be a sequence of real numbers. Assume that {Xn} is
not monotone decreasing for sufficiently large n ∈ N, in other words, there exists
a subsequence {Xni} of {Xn} such that Xni < Xni+1 for all i ∈ N. Let n0 be a
natural number such that {k ≤ n0 : Xk < Xk+1} is nonempty. Define a sequence
{τ (n)}n≥n0

of natural numbers as follows:

τ (n) = max {k ≤ n : Xk < Xk+1} for all n ≥ n0.

Then, the following hold:
(a) τ (n) → ∞ as n → ∞;
(b) Xn ≤ Xτ(n)+1 for all n ≥ n0;
(c) Xτ(n) < Xτ(n)+1 for all n ≥ n0.

3. Weak approximation

This section describes weak approximation methods for finding common attrac-
tive and fixed points of two nonlinear mappings that are not necessarily commuta-
tive.

3.1. Normally Generalized and 2-Generalized Hybrid Mappings. At the
outset, we present a method to approximate the common attractive points of a
normally generalized hybrid mapping and a normally 2-generalized hybrid mapping
without assuming that the domain of the mappings is closed. An approximation
method for finding fixed points can also be obtained by supposing that the domain
is closed. The fundamentals of the proof were developed in [6, 15,19,24,32,35].

Theorem 3.1. Let C be a nonempty and convex subset of H, let S : C → C be a
normally generalized hybrid mapping, and let T : C → C be a normally 2-generalized
hybrid mapping. Suppose that A (S) ∩ A (T ) is nonempty. Let PA(S)∩A(T ) be the
metric projection from H onto A (S) ∩ A (T ). Let {an}, {bn}, {cn}, and {dn} be
sequences of real numbers in the interval (0, 1) such that an + bn + cn + dn = 1 and
0 < a ≤ an, bn, cn, dn ≤ b < 1 for all n ∈ N. Define a sequence {xn} in C as follows:

xn+1 = anxn + bnSxn + cnTxn + dnT
2xn

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges weakly
to a common attractive point x ∈ A (S) ∩ A (T ), where x ≡ limn→∞ PA(S)∩A(T )xn.
Additionally, if C is closed, then {xn} converges weakly to a common fixed point
x̂ ∈ F (S) ∩ F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

Proof. Note that A (S)∩A (T ) is a closed and convex subset of H. As it is assumed
that A (S) ∩ A (T ) ̸= ∅, there exists the metric projection PA(S)∩A(T ) from H onto
A (S) ∩A (T ).

First, we show that

(3.1) ∥xn+1 − q∥ ≤ ∥xn − q∥
for any q ∈ A (S)∩A (T ) and n ∈ N. Indeed, we obtain from q ∈ A (S)∩A (T ) that

∥xn+1 − q∥ ≡
∥∥anxn + bnSxn + cnTxn + dnT

2xn − q
∥∥

=
∥∥an (xn − q) + bn (Sxn − q) + cn (Txn − q) + dn

(
T 2xn − q

)∥∥
≤ an ∥xn − q∥+ bn ∥Sxn − q∥+ cn ∥Txn − q∥+ dn

∥∥T 2xn − q
∥∥
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≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥+ dn ∥xn − q∥
= ∥xn − q∥ .

From (3.1), we obtain the following. (i) The sequence {∥xn − q∥} is convergent in R
for all q ∈ A (S) ∩A (T ). (ii) Using Lemma 2.2,

{
PA(S)∩A(T )xn

}
is also convergent

in A (S)∩A (T ). We denote the limit by x, that is, x ≡ limn→∞ PA(S)∩A(T )xn. (iii)
The sequence {xn} is bounded because {∥xn − q∥} is convergent.

Next, we demonstrate that

anbn ∥xn − Sxn∥2 + ancn ∥xn − Txn∥2 + andn
∥∥xn − T 2xn

∥∥2(3.2)

+bncn ∥Sxn − Txn∥2 + bndn
∥∥Sxn − T 2xn

∥∥2 + cndn
∥∥Txn − T 2xn

∥∥2
≤ ∥xn − q∥2 − ∥xn+1 − q∥2

for any q ∈ A (S) ∩A (T ) and n ∈ N. Indeed, from Lemma 2.3-(c),

∥xn+1 − q∥2

=
∥∥an (xn − q) + bn (Sxn − q) + cn (Txn − q) + dn

(
T 2xn − q

)∥∥2
= an ∥xn − q∥2 + bn ∥Sxn − q∥2 + cn ∥Txn − q∥2 + dn

∥∥T 2xn − q
∥∥2

−anbn ∥xn − Sxn∥2 − ancn ∥xn − Txn∥2 − andn
∥∥xn − T 2xn

∥∥2
−bncn ∥Sxn − Txn∥2 − bndn

∥∥Sxn − T 2xn
∥∥2 − cndn

∥∥Txn − T 2xn
∥∥2

≤ an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2 + dn ∥xn − q∥2

−anbn ∥xn − Sxn∥2 − ancn ∥xn − Txn∥2 − andn
∥∥xn − T 2xn

∥∥2
−bncn ∥Sxn − Txn∥2 − bndn

∥∥Sxn − T 2xn
∥∥2 − cndn

∥∥Txn − T 2xn
∥∥2

= ∥xn − q∥2 − anbn ∥xn − Sxn∥2 − ancn ∥xn − Txn∥2

−andn
∥∥xn − T 2xn

∥∥2 − bncn ∥Sxn − Txn∥2

−bndn
∥∥Sxn − T 2xn

∥∥2 − cndn
∥∥Txn − T 2xn

∥∥2 .
Therefore, we obtain (3.2).

As {∥xn − q∥} is convergent and it is assumed that 0 < a ≤ an, bn, cn, dn ≤ b < 1
for all n ∈ N, we obtain from (3.2) that

xn − Sxn → 0, xn − Txn → 0, xn − T 2xn → 0,(3.3)

Sxn − Txn → 0, Sxn − T 2xn → 0, Txn − T 2xn → 0.

Because {xn} is bounded, there exists a subsequence {xni} of {xn} and u ∈ H
such that xni ⇀ u. As the mapping S is normally generalized hybrid and T is
normally 2-generalized hybrid, we have from Lemma 2.4-(a), (b) and (3.3) that
u ∈ A (S) ∩A (T ).

We prove that xn ⇀ u. Let xnj ⇀ u1 and xnk
⇀ u2, where

{
xnj

}
and {xnk

} are
subsequences of {xn}. It suffices to show that u1 = u2. From (3.3) and Lemma 2.4,
we have that u1, u2 ∈ A (S) ∩ A (T ). From (3.1), the two sequences {∥xn − u1∥}
and {∥xn − u2∥} are convergent. Define a ≡ limn→∞ (∥xn − u1∥ − ∥xn − u2∥) ∈ R.
As

∥xn − u1∥ − ∥xn − u2∥ = 2 ⟨xn, u2 − u1⟩+ ∥u1∥ − ∥u2∥
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for all n ∈ N, we obtain

a = 2 ⟨u1, u2 − u1⟩+ ∥u1∥ − ∥u2∥ and

a = 2 ⟨u2, u2 − u1⟩+ ∥u1∥ − ∥u2∥ .
Thus, 2 ⟨u1 − u2, u2 − u1⟩ = 0, which means that u1 = u2.

Next, we show that u = x
(
≡ limn→∞ PA(S)∩A(T )xn

)
. As u ∈ A (S) ∩ A (T ), it

holds that ⟨
xn − PA(S)∩A(T )xn, PA(S)∩A(T )xn − u

⟩
≥ 0

for all n ∈ N. Since xn ⇀ u and PA(S)∩A(T )xn → x, we get that ⟨u− x, x− u⟩ ≥ 0.
This means that u = x.

Additionally, suppose that C is closed in H. As C is weakly closed, we have
that x ∈ C ∩ A (S) ∩ A (T ), where x ≡ limn→∞ PA(S)∩A(T )xn. From Lemma 2.5,
x ∈ F (S) ∩ F (T ). Thus, F (S) ∩ F (T ) is nonempty. As S and T are quasi-
nonexpansive, F (S) ∩ F (T ) is closed and convex. Hence, there exists the metric
projection PF (S)∩F (T ) from H onto F (S) ∩ F (T ). In much the same way as for the
proof of (3.1), we can obtain

∥xn+1 − q∥ ≤ ∥xn − q∥
for all q ∈ F (S) ∩ F (T ) and n ∈ N. Thus, we have from Lemma 2.2 that
{PF (S)∩F (T )xn} converges strongly to an element x̂ of F (S) ∩ F (T ), that is, x̂ ≡
limn→∞ PF (S)∩F (T )xn. We show that

x
(
≡ lim

n→∞
PA(S)∩A(T )xn

)
= x̂

(
≡ lim

n→∞
PF (S)∩F (T )xn

)
.

From a property of the metric projection, we have that

⟨xn − PF (S)∩F (T )xn, PF (S)∩F (T )xn − x⟩ ≥ 0

for all n ∈ N. As xn ⇀ x and PF (S)∩F (T )xn → x̂, we have that ⟨x − x̂, x̂ −
x⟩ ≥ 0, which means that x̂ = x. This implies that {xn} converges weakly to
x̂ = limn→∞ PF (S)∩F (T )xn ∈ F (S) ∩ F (T ). This completes the proof. □

Theorem 3.1 offers alternative approximation methods to those of Takahashi’s
Theorem 3.2 [32], which is reproduced below as Theorem 3.3. These methods find
common attractive and fixed points for two noncommutative generalized hybrid
mappings, because the classes of normally generalized hybrid mappings and nor-
mally 2-generalized hybrid mappings include generalized hybrid mappings as special
cases.

3.2. Two Normally Generalized Hybrid Mappings. Let us refocus the proof
of Theorem 3.1. By using Lemma 2.3-(b) instead of part (c), as well as Lemma
2.4-(a), we can obtain the following theorem, which presents weak approximation
methods for finding common attractive and fixed points of two noncommutative
normally generalized hybrid mappings.

Theorem 3.2. Let C be a nonempty and convex subset of H, and let S and T be
normally generalized hybrid mappings from C into itself. Suppose that A (S)∩A (T )
is nonempty. Let PA(S)∩A(T ) be the metric projection from H onto A (S) ∩ A (T ).
Let {an}, {bn}, and {cn} be sequences of real numbers in the interval (0, 1) such
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that an+bn+cn = 1 and 0 < a ≤ an, bn, cn ≤ b < 1 for all n ∈ N. Define a sequence
{xn} in C as follows:

xn+1 = anxn + bnSxn + cnTxn for all n ∈ N,

where x1 ∈ C is given. Then, the sequence {xn} converges weakly to a common
attractive point x ∈ A (S) ∩ A (T ), where x ≡ limn→∞ PA(S)∩A(T )xn. Additionally,
if C is closed, then {xn} converges weakly to a common fixed point x̂ ∈ F (S)∩F (T ),
where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

As an application of Theorem 3.2, we can obtain Theorem 3.2 of Takahashi [32]
as follows.

Theorem 3.3 (Theorem 3.2 of Takahashi [32]). Let C be a nonempty and convex
subset of H, let S and T be generalized hybrid mappings from C into itself with
A (S)∩A (T ) ̸= ∅, and let PA(S)∩A(T ) be the metric projection from H onto A (S)∩
A (T ). Let {αn} and {γn} be sequences of real numbers in the interval (0, 1) such
that 0 < a ≤ αn, γn ≤ b < 1 for all n ∈ N. Define a sequence {xn} in C as follows:

xn+1 = αnxn + (1− αn) (γnSxn + (1− γn)Txn) for all n ∈ N,

where x1 ∈ C is given. Then, the sequence {xn} converges weakly to a common
attractive point x ∈ A (S) ∩ A (T ), where x ≡ limn→∞ PA(S)∩A(T )xn. Additionally,
if C is closed, then {xn} converges weakly to a common fixed point x̂ ∈ F (S)∩F (T ),
where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

Proof. We know that a generalized hybrid mapping is normally generalized hybrid.
Define an ≡ αn, bn ≡ (1− αn) γn, and cn ≡ (1− αn) (1− γn). Then, it holds
that an + bn + cn = 1. Furthermore, as there exist real numbers a, b ∈ (0, 1) such
that a ≤ αn, γn ≤ b for all n ∈ N, we have that c, d ∈ (0, 1) exist such that
c ≤ an, bn, cn ≤ d for all n ∈ N. Hence, from Theorem 3.2, we obtain the desired
result. □

3.3. Two Normally 2-Generalized Hybrid Mappings. In the proof of Theo-
rem 3.1, by using Lemma 2.3-(d) instead of (c), as well as Lemma 2.4-(b), we can
obtain the following theorem which presents weak approximation methods concern-
ing two noncommutative normally 2-generalized hybrid mappings.

Theorem 3.4. Let C be a nonempty and convex subset of H, and let S and T be
normally 2-generalized hybrid mappings from C into itself. Suppose that A (S) ∩
A (T ) is nonempty. Let PA(S)∩A(T ) be the metric projection from H onto A (S) ∩
A (T ). Let {an}, {bn}, {cn}, {dn}, and {en} be sequences of real numbers in the
interval (0, 1) such that an + bn + cn + dn + en = 1 and 0 < a ≤ an, bn, cn, dn, en ≤
b < 1 for all n ∈ N. Define a sequence {xn} in C as follows:

xn+1 = anxn + bnSxn + cnS
2xn + dnTxn + enT

2xn for all n ∈ N,

where x1 ∈ C is given. Then, the sequence {xn} converges weakly to a common
attractive point x ∈ A (S) ∩ A (T ), where x ≡ limn→∞ PA(S)∩A(T )xn. Additionally,
if C is closed, then {xn} converges weakly to a common fixed point x̂ ∈ F (S)∩F (T ),
where x̂ ≡ limn→∞ PF (S)∩F (T )xn.
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Theorem 3.4 offers alternative approximation methods to those of Takahashi’s
Theorem 3.2 [32] for finding common attractive and fixed points for two noncom-
mutative generalized hybrid mappings. This is because the class of normally 2-
generalized hybrid mappings contains generalized hybrid mappings.

4. Strong approximation

This section presents strong approximation methods for finding common attrac-
tive and fixed points of two nonlinear mappings.

4.1. Normally Generalized and 2-Generalized Hybrid Mappings. In the
first theorem of this section, we deal with a normally generalized hybrid mapping
and a normally 2-generalized hybrid mapping. The fundamentals of the proof were
developed in [8, 20,28,36].

Theorem 4.1. Let C be a nonempty and convex subset of H, let S : C → C be a
normally generalized hybrid mapping, and let T : C → C be a normally 2-generalized
hybrid mapping. Suppose that A (S) ∩ A (T ) is nonempty. Let PA(S)∩A(T ) be the
metric projection from H onto A (S)∩A (T ). Let {λn}, {an}, {bn}, {cn}, and {dn}
be sequences of real numbers in the interval (0, 1) such that

λn → 0,
∞∑
n=1

λn = ∞,(4.1)

an + bn + cn + dn = 1,(4.2)

0 < a ≤ an, bn, cn, dn ≤ b < 1 for all n ∈ N.(4.3)

Let {zn} be a sequence in C such that zn → z (∈ H). Define a sequence {xn} in C
as follows:

xn+1 = λnzn + (1− λn)
(
anxn + bnSxn + cnTxn + dnT

2xn
)

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges strongly to
a common attractive point z ∈ A (S)∩A (T ), where z ≡ PA(S)∩A(T )z. Additionally, if
C is closed, then {xn} converges strongly to a common fixed point ẑ ∈ F (S)∩F (T ),
where ẑ ≡ PF (S)∩F (T )z.

Proof. Define yn ≡ anxn + bnSxn + cnTxn + dnT
2xn ∈ C for all n ∈ N. Then,

xn+1 = λnzn + (1− λn) yn ∈ C.
First, we will show that xn → z ≡ PA(S)∩A(T )z. It is easy to show that

(4.4) ∥yn − q∥ ≤ ∥xn − q∥

for all q ∈ A (S) ∩ A (T ) and n ∈ N. Indeed, because q ∈ A (S) ∩ A (T ), we have
from (4.2) that

∥yn − q∥ ≡
∥∥anxn + bnSxn + cnTxn + dnT

2xn − q
∥∥

≤ an ∥xn − q∥+ bn ∥Sxn − q∥+ cn ∥Txn − q∥+ dn
∥∥T 2xn − q

∥∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥+ dn ∥xn − q∥
= ∥xn − q∥ .
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From (4.4), we can demonstrate that the sequence {xn} is bounded using mathe-
matical induction. Indeed, let q ∈ A (S) ∩A (T ), and define

M ≡ max

{
sup
k∈N

∥zk − q∥ , ∥x1 − q∥
}
.

As {zn} is bounded, M is a real number. We will prove that ∥xn − q∥ ≤ M for all
n ∈ N. (i) It is obvious for the case of n = 1. (ii) Assume that ∥xk − q∥ ≤ M for
some k ∈ N. We have from (4.4) that

∥xk+1 − q∥ ≤ ∥λkzk + (1− λk) yk − q∥
≤ λk ∥zk − q∥+ (1− λk) ∥yk − q∥
≤ λk ∥zk − q∥+ (1− λk) ∥xk − q∥
≤ λkM + (1− λk)M = M.

Hence, {xn} is bounded.
Let us show that

anbn ∥xn − Sxn∥2 + ancn ∥xn − Txn∥2 + andn
∥∥xn − T 2xn

∥∥2(4.5)

+ bncn ∥Sxn − Txn∥2 + bndn
∥∥Sxn − T 2xn

∥∥2 + cndn
∥∥Txn − T 2xn

∥∥2
≤ λn ∥zn − q∥2 + ∥xn − q∥2 − ∥xn+1 − q∥2

for all q ∈ A (S) ∩A (T ) and n ∈ N. By using Lemma 2.3-(a), (c), we obtain

∥xn+1 − q∥2

= ∥λn (zn − q) + (1− λn) (yn − q)∥2

≤ λn ∥zn − q∥2 + (1− λn) ∥yn − q∥2

≤ λn ∥zn − q∥2

+
∥∥an (xn − q) + bn (Sxn − q) + cn (Txn − q) + dn

(
T 2xn − q

)∥∥2
= λn ∥zn − q∥2 + an ∥xn − q∥2 + bn ∥Sxn − q∥2

+cn ∥Txn − q∥2 + dn
∥∥T 2xn − q

∥∥2
−anbn ∥xn − Sxn∥2 − ancn ∥xn − Txn∥2 − andn

∥∥xn − T 2xn
∥∥2

−bncn ∥Sxn − Txn∥2 − bndn
∥∥Sxn − T 2xn

∥∥2 − cndn
∥∥Txn − T 2xn

∥∥2
≤ λn ∥zn − q∥2 + an ∥xn − q∥2 + bn ∥xn − q∥2

+cn ∥xn − q∥2 + dn ∥xn − q∥2

−anbn ∥xn − Sxn∥2 − ancn ∥xn − Txn∥2 − andn
∥∥xn − T 2xn

∥∥2
−bncn ∥Sxn − Txn∥2 − bndn

∥∥Sxn − T 2xn
∥∥2 − cndn

∥∥Txn − T 2xn
∥∥2

= λn ∥zn − q∥2 + ∥xn − q∥2

−anbn ∥xn − Sxn∥2 − ancn ∥xn − Txn∥2 − andn
∥∥xn − T 2xn

∥∥2
−bncn ∥Sxn − Txn∥2 − bndn

∥∥Sxn − T 2xn
∥∥2 − cndn

∥∥Txn − T 2xn
∥∥2 .

This implies that (4.5) holds.
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Furthermore, it holds that

(4.6) ∥xn+1 − xn∥ ≤ λn ∥zn − xn∥+ ∥Sxn − xn∥+ ∥Txn − xn∥+
∥∥T 2xn − xn

∥∥
for all n ∈ N. This inequality can be ascertained as follows:

∥xn+1 − xn∥
= ∥λnzn + (1− λn) yn − xn∥
≤ λn ∥zn − xn∥+ (1− λn) ∥yn − xn∥
≤ λn ∥zn − xn∥

+
∥∥anxn + bnSxn + cnTxn + dnT

2xn − (an + bn + cn + dn)xn
∥∥

≤ λn ∥zn − xn∥+ bn ∥Sxn − xn∥+ cn ∥Txn − xn∥+ dn
∥∥T 2xn − xn

∥∥
≤ λn ∥zn − xn∥+ ∥Sxn − xn∥+ ∥Txn − xn∥+

∥∥T 2xn − xn
∥∥ .

Define Xn ≡ ∥xn − z∥2 (≥ 0), where z ≡ PA(S)∩A(T )z. Our purpose is to demon-
strate that Xn → 0 as n → ∞. The rest of the proof is divided into two cases.

Case (A). Suppose that there exists a natural number n′ such that Xn+1 ≤ Xn

for all n ≥ n′. In this case, the sequence {Xn} is convergent. As z ∈ A (S)∩A (T ),
it holds from (4.5) that

anbn ∥xn − Sxn∥2 + ancn ∥xn − Txn∥2 + andn
∥∥xn − T 2xn

∥∥2(4.7)

+bncn ∥Sxn − Txn∥2 + bndn
∥∥Sxn − T 2xn

∥∥2 + cndn
∥∥Txn − T 2xn

∥∥2
≤ λn ∥zn − z∥2 + ∥xn − z∥2 − ∥xn+1 − z∥2

≡ λn ∥zn − z∥2 +Xn −Xn+1

for all n ∈ N. Because {zn} is bounded, we have from (4.7), (4.1) and (4.3) that

xn − Sxn → 0, xn − Txn → 0, xn − T 2xn → 0,(4.8)

Sxn − Txn → 0, Sxn − T 2xn → 0, Txn − T 2xn → 0.

Then, it holds from (4.6) that

(4.9) xn+1 − xn → 0.

By using (2.1) and (4.4), we obtain

Xn+1 ≡ ∥xn+1 − z∥2

= ∥λn (zn − z) + (1− λn) (yn − z)∥2

≤ (1− λn)
2 ∥yn − z∥2 + 2λn ⟨xn+1 − z, zn − z⟩

≤ (1− λn) ∥xn − z∥2 + 2λn (⟨xn+1 − xn, zn − z⟩+ ⟨xn − z, zn − z⟩)
≡ (1− λn)Xn + 2λn (⟨xn+1 − xn, zn − z⟩+ ⟨xn − z, zn − z⟩)

for all n ∈ N. As {zn} is bounded, it holds from (4.9) that ⟨xn+1−xn, zn− z⟩ → 0.
Hence, from (4.1) and Lemma 2.6, it suffices to prove that

lim sup
n→∞

⟨xn − z, zn − z⟩ ≤ 0.
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As the sequences {xn} and {zn} are bounded, we can assume, without loss of
generality, that there exist subsequences {xni} of {xn} and {zni} of {zn} such that

lim sup
n→∞

⟨xn − z, zn − z⟩ = lim
i→∞

⟨xni − z, zni − z⟩

and xni ⇀ u for some u ∈ H. Lemma 2.4-(a), (b) and (4.8) imply that u ∈
A (S) ∩A (T ). As zn → z and z ≡ PA(S)∩A(T )z, we have that

lim sup
n→∞

⟨xn − z, zn − z⟩ = lim
i→∞

⟨xni − z, zni − z⟩

= ⟨u− z, z − z⟩ ≤ 0.

This completes the proof for Case (A).
Case (B). Suppose that there exists a subsequence {Xni} of {Xn} such that

Xni < Xni+1 for all i ∈ N. Let n0 be a natural number such that {k ≤ n0 : Xk <
Xk+1} is nonempty. Define

τ (n) = max {k ≤ n : Xk < Xk+1} for all n ≥ n0.

From Lemma 2.7, the following hold:

τ (n) → ∞ as n → ∞;(4.10)

Xn ≤ Xτ(n)+1 for all n ≥ n0;(4.11)

Xτ(n) < Xτ(n)+1 for all n ≥ n0.(4.12)

From (4.11), it is sufficient to show that Xτ(n)+1 → 0. From (4.1), (4.10), (4.2),
and (4.3), we have

λτ(n) → 0 as n → ∞,(4.13)

aτ(n) + bτ(n) + cτ(n) + dτ(n) = 1 and(4.14)

0 < a ≤ aτ(n), bτ(n), cτ(n), dτ(n) ≤ b < 1(4.15)

for all n ≥ n0. As z ∈ A (S) ∩A (T ), inequalities (4.4)–(4.6) yield

(4.16)
∥∥yτ(n) − z

∥∥ ≤
∥∥xτ(n) − z

∥∥ ,
aτ(n)bτ(n)

∥∥xτ(n) − Sxτ(n)
∥∥2 + aτ(n)cτ(n)

∥∥xτ(n) − Txτ(n)
∥∥2(4.17)

+ aτ(n)dτ(n)
∥∥xτ(n) − T 2xτ(n)

∥∥2 + bτ(n)cτ(n)
∥∥Sxτ(n) − Txτ(n)

∥∥2
+ bτ(n)dτ(n)

∥∥Sxτ(n) − T 2xτ(n)
∥∥2 + cτ(n)dτ(n)

∥∥Txτ(n) − T 2xτ(n)
∥∥2

≤ λτ(n)

∥∥zτ(n) − z
∥∥2 + ∥∥xτ(n) − z

∥∥2 − ∥∥xτ(n)+1 − z
∥∥2

≡ λτ(n)

∥∥zτ(n) − z
∥∥2 +Xτ(n) −Xτ(n)+1, and∥∥xτ(n)+1 − xτ(n)

∥∥ ≤ λτ(n)

∥∥zτ(n) − xτ(n)
∥∥+

∥∥Sxτ(n) − xτ(n)
∥∥(4.18)

+
∥∥Txτ(n) − xτ(n)

∥∥+
∥∥T 2xτ(n) − xτ(n)

∥∥ ,
respectively. From (4.12) and (4.17), it holds that

aτ(n)bτ(n)
∥∥xτ(n) − Sxτ(n)

∥∥2 + aτ(n)cτ(n)
∥∥xτ(n) − Txτ(n)

∥∥2
+aτ(n)dτ(n)

∥∥xτ(n) − T 2xτ(n)
∥∥2 + bτ(n)cτ(n)

∥∥Sxτ(n) − Txτ(n)
∥∥2
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+bτ(n)dτ(n)
∥∥Sxτ(n) − T 2xτ(n)

∥∥2 + cτ(n)dτ(n)
∥∥Txτ(n) − T 2xτ(n)

∥∥2
≤ λτ(n)

∥∥zτ(n) − z
∥∥2 .

As
{
zτ(n)

}
is bounded, we obtain from (4.10), (4.13) and (4.15) that

xτ(n) − Sxτ(n) → 0, xτ(n) − Txτ(n) → 0,(4.19)

xτ(n) − T 2xτ(n) → 0,

Sxτ(n) − Txτ(n) → 0, Sxτ(n) − T 2xτ(n) → 0,

Txτ(n) − T 2xτ(n) → 0

as n → ∞. Thus, (4.13), (4.18), and (4.19) imply that

(4.20) xτ(n)+1 − xτ(n) → 0.

As
{
xτ(n)

}
and

{
xτ(n)+1

}
are bounded, we have that

(4.21) Xτ(n)+1 −Xτ(n) → 0.

Thus, our goal is to prove that Xτ(n) → 0. Using (2.1) and (4.16), we obtain

Xτ(n)+1 ≡
∥∥xτ(n)+1 − z

∥∥2
=

∥∥λτ(n)

(
zτ(n) − z

)
+
(
1− λτ(n)

) (
yτ(n) − z

)∥∥2
≤

(
1− λτ(n)

)2 ∥∥yτ(n) − z
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − z, zτ(n) − z

⟩
≤

(
1− λτ(n)

) ∥∥xτ(n) − z
∥∥2 + 2λτ(n)

⟨
xτ(n)+1 − z, zτ(n) − z

⟩
≡

(
1− λτ(n)

)
Xτ(n) + 2λτ(n)

⟨
xτ(n)+1 − z, zτ(n) − z

⟩
,

and hence,

λτ(n)Xτ(n) ≤ Xτ(n) −Xτ(n)+1 + 2λτ(n)

⟨
xτ(n)+1 − z, zτ(n) − z

⟩
.

From (4.12),

λτ(n)Xτ(n) ≤ 2λτ(n)

⟨
xτ(n)+1 − z, zτ(n) − z

⟩
.

As λτ(n) > 0, we have that

Xτ(n) ≤ 2
⟨
xτ(n)+1 − z, zτ(n) − z

⟩
= 2

⟨
xτ(n)+1 − xτ(n), zτ(n) − z

⟩
+ 2

⟨
xτ(n) − z, zτ(n) − z

⟩
= 2

⟨
xτ(n)+1 − xτ(n), zτ(n) − z

⟩
+2

⟨
xτ(n) − z, zτ(n) − z

⟩
+ 2

⟨
xτ(n) − z, z − z

⟩
Because

{
xτ(n)

}
is bounded and zτ(n) → z, we have from (4.20) that

2
⟨
xτ(n)+1 − xτ(n), zτ(n) − z

⟩
+ 2

⟨
xτ(n) − z, zτ(n) − z

⟩
→ 0

as n → ∞. Hence, it suffices to prove that

lim sup
n→∞

⟨
xτ(n) − z, z − z

⟩
.
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As
{
xτ(n)

}
is bounded, we can assume, without loss of generality, that there is a

subsequence
{
xτ(ni)

}
of

{
xτ(n)

}
such that

lim sup
n→∞

⟨
xτ(n) − z, z − z

⟩
= lim

i→∞

⟨
xτ(ni) − z, z − z

⟩
and xτ(ni) ⇀ u for some u ∈ H. From (4.19), it holds that u ∈ A (S) ∩ A (T ). As
z ≡ PA(S)∩A(T )z, we obtain

lim sup
n→∞

⟨
xτ(n) − z, z − z

⟩
= lim

i→∞

⟨
xτ(ni) − z, z − z

⟩
= ⟨u− z, z − z⟩ ≤ 0.

This completes the proof for Case (B), and we have shown that xn → z ≡ PA(S)∩A(T )z.
Next, suppose that, in addition to the other assumptions, C is closed in H. Our

target is to show that xn → ẑ ≡ PF (S)∩F (T )z. As xn → z ≡ PA(S)∩A(T )z and C is
closed, we have that z ∈ C ∩ A (S) ∩ A (T ). From Lemma 2.5, z ∈ F (S) ∩ F (T ).
Thus, F (S)∩F (T ) is nonempty. As S and T are quasi-nonexpansive, F (S)∩F (T )
is closed and convex. Hence, there exists the metric projection PF (S)∩F (T ) from H
onto F (S) ∩ F (T ). It is sufficient to prove that

(ẑ ≡)PF (S)∩F (T )z = z
(
≡ PA(S)∩A(T )z

)
.

Because z ∈ F (S) ∩ F (T ), it suffices to prove that ∥z − z∥ ≤ ∥z − v∥ for all
v ∈ F (S) ∩ F (T ). Let v ∈ F (S) ∩ F (T ). Because F (S) ∩ F (T ) ⊂ A (S) ∩ A (T ),
we have that

∥z − z∥ = inf {∥z − q∥ : q ∈ A (S) ∩A (T )}
≤ inf {∥z − q∥ : q ∈ F (S) ∩ F (T )}
≤ ∥z − v∥ .

This means that z = PF (S)∩F (T )z (≡ ẑ). This completes the proof. □
Theorem 4.1 offers alternative approximation methods for Theorem 4.1 of Taka-

hashi [32], which is reproduced below as Theorem 4.3. These methods find common
attractive and fixed points of two generalized hybrid mappings, because the classes
of normally generalized hybrid mappings and normally 2-generalized hybrid map-
pings include generalized hybrid mappings as special cases.

4.2. Two Normally Generalized Hybrid Mappings. Recall the proof of The-
orem 4.1. By using Lemma 2.3-(b) instead of (c), as well as Lemma 2.4-(a), we
can obtain the following theorem which presents strong approximation methods
concerning two normally generalized hybrid mappings.

Theorem 4.2. Let C be a nonempty and convex subset of H, let S and T be
normally generalized hybrid mappings from C into itself with A (S) ∩ A (T ) ̸= ∅,
and let PA(S)∩A(T ) be the metric projection from H onto A (S) ∩ A (T ). Let {λn},
{an}, {bn}, and {cn} be sequences of real numbers in the interval (0, 1) such that

λn → 0,
∞∑
n=1

λn = ∞,

an + bn + cn = 1, 0 < a ≤ an, bn, cn ≤ b < 1 for all n ∈ N.
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Let {zn} be a sequence in C such that zn → z (∈ H). Define a sequence {xn} in C
as follows:

xn+1 = λnzn + (1− λn) (anxn + bnSxn + cnTxn) ∈ C for all n ∈ N,
where x1 ∈ C is given. Then, the sequence {xn} converges strongly to a common
attractive point z ∈ A (S) ∩ A (T ), where z ≡ PA(S)∩A(T )z. Additionally, if C is
closed, then {xn} converges strongly to a common fixed point ẑ ∈ F (S) ∩ F (T ),
where ẑ ≡ PF (S)∩F (T )z.

As an application of Theorem 4.2, we can obtain Theorem 4.1 of Takahashi [32]
as follows.

Theorem 4.3 (Theorem 4.1 of Takahashi [32]). Let C be a nonempty and convex
subset of H, let S and T be generalized hybrid mappings from C into itself with
A (S)∩A (T ) ̸= ∅, and let PA(S)∩A(T ) be the metric projection from H onto A (S)∩
A (T ). Let {αn}, {βn}, and {γn} be sequences of real numbers in the interval (0, 1)
such that

αn → 0,

∞∑
n=1

αn = ∞,

0 < a ≤ βn, γn ≤ b < 1 for all n ∈ N.
Let {zn} be a sequence in C such that zn → z (∈ H). Define a sequence {xn} in C
as follows:

xn+1 = αnzn + (1− αn) (βnxn + (1− βn) (γnSxn + (1− γn)Txn))

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges strongly to
a common attractive point z ∈ A (S)∩A (T ), where z ≡ PA(S)∩A(T )z. Additionally, if
C is closed, then {xn} converges strongly to a common fixed point ẑ ∈ F (S)∩F (T ),
where ẑ ≡ PF (S)∩F (T )z.

Proof. We know that a generalized hybrid mapping is normally generalized hybrid.
Define λn ≡ αn, an ≡ βn, bn ≡ (1− βn) γn, and cn ≡ (1− βn) (1− γn). Then, it
holds that an + bn + cn = 1 and that there exist real numbers c, d ∈ R such that
0 < c ≤ an, bn, cn ≤ d < 1 for all n ∈ N. From Theorem 4.2, we obtain the desired
results. □
4.3. Two Normally 2-Generalized Hybrid Mappings. We now refocus the
proof of Theorem 4.1. By using Lemma 2.3-(d) instead of (c), as well as Lemma
2.4-(b), we can obtain the following theorem, which presents strong approxima-
tion methods for finding common attractive and fixed points of two normally 2-
generalized hybrid mappings.

Theorem 4.4. Let C be a nonempty and convex subset of H, let S and T be
normally 2-generalized hybrid mappings from C into itself with A (S) ∩ A (T ) ̸= ∅,
and let PA(S)∩A(T ) be the metric projection from H onto A (S) ∩ A (T ). Let {λn},
{an}, {bn}, {cn}, {dn}, and {en} be sequences of real numbers in the interval (0, 1)
such that

λn → 0,

∞∑
n=1

λn = ∞,
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an + bn + cn + dn + en = 1,

0 < a ≤ an, bn, cn, dn, en ≤ b < 1 for all n ∈ N.

Let {zn} be a sequence in C such that zn → z (∈ H). Define a sequence {xn} in C
as follows:

xn+1 = λnzn + (1− λn)
(
anxn + bnSxn + cnS

2xn + dnTxn + enT
2xn

)
for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges strongly to
a common attractive point z ∈ A (S)∩A (T ), where z ≡ PA(S)∩A(T )z. Additionally, if
C is closed, then {xn} converges strongly to a common fixed point ẑ ∈ F (S)∩F (T ),
where ẑ ≡ PF (S)∩F (T )z.

Theorem 4.4 offers alternative approximation methods for Theorem 4.1 of Taka-
hashi [32], because the class of normally 2-generalized hybrid mappings contains
generalized hybrid mappings.

As a final remark, all results in this paper can be extended to the case of finite
families of normally 2-generalized hybrid mappings.
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