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we will restate the definition of the variational inequality problem as well as present

some well-known results about the existence of solution of the problem.

Definition 2.1. Let K ⊂ Rn be a closed convex nonempty set and let F : K → Rn

be a continuous mapping. The variational inequality defined by K and F , denoted

by VI(K,F ), is the problem of finding a vector x in K such that:

⟨F (x), y − x⟩ ≥ 0, ∀y ∈ K.

The solution set of this problem is denoted by SOL(K,F ).

Next, we recall two results about the existence of solutions. The first one is for

VI(K,F ) with the bounded set K and the last one is for the unbounded case.

Theorem 2.2 ([4, Theorem 3.1]). Let K ⊂ Rn be nonempty compact convex and

F : K → Rn be continuous. Then, SOL(K,F ) is nonempty and compact.

Instead of the compactness assumption in Theorem 2.2, we can assume certain

conditions on the function F to establish the same conclusion about SOL(K,F ).

Theorem 2.3 ( [4, Corollary 4.3]). Consider the problem VI(K,F ) and assume

further that F satisfies the coercive condition on K, i.e., there exists a vector xref ∈
K such that

lim
∥x∥→+∞

x∈K

⟨
F (x)− F (xref), x− xref

⟩
∥x− xref∥

= ∞.

Then, VI(K,F ) has a solution.

Theorem 2.2 can be proved by using the Brouwer fixed-point theorem. The proof

of Theorem 2.3, which is based on Theorem 2.2, uses the idea of compactification.

More specifically, one uses the coercive condition of F to construct a compact set

E with nonempty interior, then one shows that the VI(E,F ) has a solution, which

belongs to the interior of E. Finally, one uses the convexity of K to show that

the solution which was just obtained is also the solution of VI(K,F ). As men-

tioned earlier in the Introduction, we will borrow that idea and the regularization

approach to give an alternative proof for [2, Proposition 2.2.3]. Namely, we will

construct a sequence of perturbed problems in order to generate a sequence of per-

turbed solutions that converges to a solution of the original problem. Although

the Brouwer fixed-point theorem is proved by using degree-theoretic approach but

it is widely used in lots of mathematical fields, so this theorem is familiar to the

readers and is readily accepted. Now, we are ready to state and give a new proof

for Proposition 2.2.3 from [2].

Theorem 2.4. Let K ⊂ Rn be nonempty closed convex and F : K → Rn be

continuous. Consider the following statements:

(a) There exists a vector xref ∈ K such that the set

L< :=
{
x ∈ K :

⟨
F (x), x− xref

⟩
< 0

}
is bounded (possibly empty).



SOLUTION EXISTENCE OF FINITE-DIMENSIONAL VARIATIONAL INEQUALITIES 301

(b) There exist a bounded convex open set Ω and a vector xref ∈ K ∩ Ω such

that ⟨
F (x), x− xref

⟩
≥ 0, ∀x ∈ K ∩ ∂Ω,

where ∂Ω is the boundary of Ω.

(c) VI(K,F ) has a solution.

It holds that (a)⇒(b)⇒(c). Moreover, if the set

L≤ :=
{
x ∈ K :

⟨
F (x), x− xref

⟩
≤ 0

}
,

which is nonempty and larger than L<, is bounded, then SOL(K,F ) is nonempty

and compact.

Proof. The proof of the implication (a)⇒(b) as well as the last assertion which is

relevant to the boundedness of L≤ is easily to obtain and the readers can refer the

original proof in [2, Proposition 2.2.3]. In this note, we only prove the part (b)⇒(c).

Assume that (b) holds. Consider the set KΩ which is defined by

KΩ = K ∩ Ω,

where Ω is the closure of Ω. Then, KΩ is a nonempty convex compact set in Rn.

For each k ∈ N, consider the mapping Fk : K → Rn given by

Fk(x) = F (x) +
1

k
(x− xref), x ∈ K.

It is clear that Fk is continuous on K for every natural number k. By applying

Theorem 2.2, we can assert that the VI(KΩ, Fk) has a solution xk for all k ∈ N. We

will next show that xk belongs to Ω for each k ∈ N. Suppose by contradiction that

there exists an index k such that xk belongs to ∂Ω, then, in view of condition (b),

we have that ⟨
F (xk), xk − xref

⟩
≥ 0.

Since xk is a solution of VI(KΩ, Fk), we have ⟨Fk(xk), y − xk⟩ ≥ 0 for all y ∈ KΩ

or, equivalently, ⟨
F (xk) +

1

k
(xk − xref), y − xk

⟩
≥ 0.

On the other hand, it is easy to see that xref ∈ KΩ, then we can substitute y by xref

in the above inequality and obtain⟨
F (xk) +

1

k
(xk − xref), xref − xk

⟩
≥ 0,

which leads to ⟨
F (xk), x

ref − xk
⟩
≥ 1

k
∥xk − xref∥2.

It follows from the assumption xk ∈ ∂Ω that xk ̸= xref, therefore we obtain the

following inequalities

0 ≥
⟨
F (xk), x

ref − xk
⟩
≥ 1

k
∥xk − xref∥2 > 0,
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which is a contradiction. So we must have xk ∈ Ω for each k.

We claim that xk belongs to SOL(K,Fk) for each k. Indeed, for each k in N we

have that xk belongs to Ω, then there is a positive number rk such that

B(xk, rk) := {y ∈ Rn : ∥y − xk∥ < rk} ⊂ Ω.

Fix an arbitrarily natural number k, for each vector y in K which differs from xk,

we can find a positive number δk satisfying the following conditions:

δk <
rk

∥xk − y∥
and δk < 1.

From the first condition, we have that

∥xk − (xk + δk(y − xk))∥ = δk∥y − xk| < rk,

therefore, we obtain

xk + δk(y − xk) ∈ B(xk, rk) ⊂ Ω.

The last condition of δk asserts that xk+δk(y−xk) belongs to K since K is convex.

Combine the above arguments, we have that

xk + δk(y − xk) ∈ K ∩ Ω = KΩ.

Because xk is a solution of VI(KΩ, Fk), we obtain the following inequality:

⟨Fk(xk), xk + δk(y − xk)− xk⟩ ≥ 0,

or, equivalently,

⟨Fk(xk), y − xk⟩ ≥ 0,

Since the vector y is considered arbitrarily inK then we have that the last inequality

holds for all y in K. In other word, xk is a solution of VI(K,Fk) for all k.

We now end the proof by showing the existence of solution of the original problem.

Because the sequence {xk} lies in Ω, it is bounded. This leads to the existence of a

subsequence {xki} of {xk} which converges to a vector x in Rn. The closedness of

K implies that this vector must belong to K. Since xki is a solution of VI(K,Fki)

for each i, for all y ∈ K,

⟨Fki(xki), y − xki⟩ ≥ 0, ∀i ∈ N.

This leads to ⟨
F (xki) +

1

ki
(xki − xref), y − xki

⟩
≥ 0, ∀i ∈ N, ∀y ∈ K.

Letting ki → +∞, we obtain

⟨F (x), y − x⟩ ≥ 0, ∀y ∈ K.

The last statement shows that x is a solution of VI(K,F ). In other word, we obtain

the nonemptiness of SOL(K,F ); thus (b) ⇒ (c). □
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Remark 2.5. In the part of the above proof where we show that xk belongs to

SOL(K,Fk) for all k, we have relied on the technique used in the proof of [2,

Proposition 2.2.8].

Remark 2.6. We can see that the first advantage of this alternative proof is that

we do not need to use the Tietze extension theorem. Second, this proof does not

require much knowledge about the degree theory as well as some relevant results

and techniques. Another advantage of this proof is that it is algorithmic. More

precisely, this proof opens a way to solve the original problem, in which a sequence

of auxiliary problems with better properties is solved. One of these properties which

is easy to see is that we will treat the subproblem on a compact set, while the set K

in the initial problem can be unbounded. Finally, any limit point of the sequence

of solutions of these subproblems is a solution of the initial problem.

Remark 2.7. In [1], the author provides an elementary proof for the solution exis-

tence of the VI(K,F ) problem where K is a bounded closed set and F is continuous

and monotone. Combining this result with our alternative approach, we obtain an

elementary way to prove the solution existence in the foregoing case.

3. Conclusions

In this note, we established a new proof for the solution existence for the finite-

dimensional variational inequalities which does not rely much on the concept of

degree theory. This proof also provides a way to solve the original problem by

solving the sequence of subproblems with better properties. One property which

can be outlined is that the domain in which we solve the problem is a compact set.
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