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In Section 2, we introduce some basic concepts and useful results about the

circular cone. A projection and contraction algorithm for the CCCP is presented in

Section 3. The convergence property of the proposed method is analyzed in Section

4. Preliminary numerical results are reported in Section 5. Some conclusions are

made in the last section.

2. Preliminaries

This section covers some basic concepts and useful results of circular cone and

second-order cone, which will be extensively used in next section.

Kn represents a second-order cone, which can be expressed as

(2.1) Kn := {x = (x1, x2) ∈ R×Rn−1| ∥x2∥ ≤ x1}.

In fact, when θ = π
4 , the circular cone (1.2) is exactly the second-order cone, thus the

CCCP can be viewed as the generalization of the second-order cone complementarity

problem. The relation between circular cone and the second-order cone as follows:

lθ = A−1Kn,

Kn = A lθ,

where A :=

[
tan θ 0

0 I

]
.

The Jordan product associated with second-order cone are defined as

x ◦ y :=

[
⟨x, y⟩

y1x2 + x1y2

]
.

The Jordan product associated with circular cone are defined as

x • y :=

[
⟨x, y⟩

max{tan2θ, 1}x1y2 +max{cot2θ, 1}y1x2

]
.

Theorem 2.1 ([4]). Let lθ and Kn be defined as in (1.2) and (2.1), respectively.

Then, we have

AKn = lπ
2
−θ and lπ

2
−θ = A2 lθ,

l∗
θ
= lπ

2
−θ and (l∗θ)

∗ = lθ.

Theorem 2.2 ([4]). For any x ∈ Rn, the projection of x onto lθ is defined as

(2.2) Πlθ(x) = (λ1(x))+ · u(1)x + (λ2(x))+ · u(2)x .

where (a)+ := max{0, a}, ∀a ∈ R,

λ1(x) = x1 − ∥x2∥ cotθ,

λ2(x) = x1 + ∥x2∥ tanθ,
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u
(1)
x = 1

1+cot2θ

[
1 0

0 cot θ

] [
1

−w

]
,

u
(2)
x = 1

1+tan2θ

[
1 0

0 tan θ

] [
1

w

]
.

with w = x2
∥x2∥ if x2 ̸= 0, and any vector in Rn−1 satisfying ∥w∥ = 1 if x2 = 0.

For convenience, we let x+ denote the projection of x onto the lθ , and x− be the

projection of −x onto the l∗θ . Hence, it is easy to verify that ⟨x+, x−⟩ = 0 for any

x ∈ Rn.

3. Projection and contraction algorithm

This section proposes a projection and contraction method for solving the cir-

cular cone complementarity problem (CCCP) (1.1). Note that, for solving the

second-order cone complementarity problem (SOCCP), a popular approach is to

reformulate it as an unconstrained smooth minimization by using the second-order

cone complementarity functions. Two well-known complementarity functions are

Natural Residual(NR) and Fischer Burmeister(FB). This inspires us to find a new

complementarity function Φ for CCCP, provide that

Φ(x) = 0 ⇔ x solves the CCCP (1.1).

Hence, solving the problem (1.1) is equivalent to handing the unconstrained mini-

mization problem

min
1

2
∥Φ(x)∥2.

Reference [2] introduces a class of complementarity function, which is called the

penalized natural residual function and defined as

(3.1) Φp(x, y) = x− (x− y)+ + p(x+ • (−y)−), p > 0.

It is easy to verify that when p = 0, Φp(x, y) reduces to the Natural Residual

function ΦNR(x, y).

Theorem 3.1 ([2]). Let Φp : R
n ×Rn → Rn be defined as in (3.1). Then Φp is an

complementarity function for CCCP, i.e, for any x, y ∈ Rn,

Φp(x, y) = 0 ⇔ x ∈ lθ, y ∈ l∗θ and ⟨x, y⟩ = 0.

The proof of Theorem 3.1 have been completed in reference [2] and so is omitted.

Let e(x, α) denote the residual of the equation. Then, solving the CCCP (1.1) is

equivalent to finding a zero point of e(x, α).

(3.2) e(x, α) = x− (x− αF (x))+ + p(x+ • (−αF (x))−).

Now we are in position to state our algorithm.

Algorithm 3.1.
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Step 0 Given ε > 0, let 0 < v < u < 1, γ ∈ (0, 2), s ∈ (0, 1), α = α0 = 1 and x0 be

an arbitrary starting point. Set k := 0.

Step 1 Compute e(xk, αk) be defined as in (3.2), if
∥∥e(xk, αk)

∥∥ < ε, stop; Otherwise,

go to step 2.

Step 2 Let mk be the smallest nonnegative integer statisfying αk = αsmk such that

(3.3)
αk

∥∥F (xk)− F (xk − e(xk, αk))
∥∥

∥e(xk, αk)∥
≤ u.

If

(3.4)
αk

∥∥F (xk)− F (xk − e(xk, αk))
∥∥

∥e(xk, αk)∥
≤ v,

then α = 1.5αk.

Step 3 Calculate

(3.5) ρ(xk, αk) = e(xk, αk)
T d(xk, αk)

∥d(xk, αk)∥2
,

(3.6) d(xk, αk) = e(xk, αk)− αk[F (xk)− F (xk − e(xk, αk))].

Step 4 Compute

(3.7) xk+1 = (xk − γρ(xk, αk)d(x
k, αk))+.

Set k := k + 1; go to step 1.

Remark 3.2. It follows from the reference [9] that step 2 is feasible. The idea of

step 3 and step 4 refers to the references [7, 10, 12, 13]. Hence, the algorithm is

available. Detailed analysis can be found in the next part.

4. Convergence analysis

Lemma 4.1. Let ρ(xk, αk) be defined by (3.5), then ρ(xk, αk) ≥ 1
2 .

Proof. It is easy to verify that the problem is equivalent to proof

2
⟨
e(xk, αk), d(x

k, αk)
⟩
−
∥∥∥d(xk, αk)

∥∥∥2 ≥ 0.
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it follows from(3.3)-(3.6), we have that

2
⟨
e(xk, αk), d(x

k, αk)
⟩
−
∥∥∥d(xk, αk)

∥∥∥2
=

⟨
2e(xk, αk)− d(xk, αk), d(x

k, αk)
⟩

=
⟨
e(xk, αk)− αk[F (xk)− F (xk − e(xk, αk))], d(x

k, αk)
⟩

=
∥∥∥e(xk, αk)

∥∥∥2 − α2
k

∥∥∥F (xk)− F (xk − e(xk, αk))
∥∥∥2

≥ (1− L2)
∥∥∥e(xk, αk)

∥∥∥2
≥ 0.

where 0 < L < 1, and the first inequality follows from [9, Lemma 3.2] , so the proof

is completed. □
Lemma 4.2 ([9]). Suppose that F (x) is monotonous and x∗ is a solution of the

CCCP. e(x, α) and d(x, α) are defined by (3.2) and (3.6), respectively. Then, the

following inequalities hold.

⟨x− x∗, d(x, α)⟩ ≥ ⟨e(x, α), d(x, α)⟩ .
⟨e(x, α), d(x, α)⟩ ≥ (1− L)∥e(x, α)∥2.

Lemma 4.3 ([11]). For all x ∈ Rn and α̃ ≥ α > 0, it holds that

∥e(x, α̃)∥ ≥ ∥e(x, α)∥ .

Theorem 4.4. Suppose that F (x) is continuous and monotonus and the solution

set of CCCP (1.1) is nonempty. Then the sequence {xk} generated by Algorithm

3.1 converges to a solution of the CCCP (1.1).

Proof. Let x∗ is a solution of CCCP (1.1), then it satisfies∥∥∥xk+1 − x∗
∥∥∥2 = ∥∥∥(xk − γρ(xk, αk)d(x

k, αk))+ − x∗
∥∥∥2

≤
∥∥∥xk − x∗ − γρ(xk, αk)d(x

k, αk)
∥∥∥2

=
∥∥∥xk − x∗

∥∥∥2 + γ2ρ2(xk, αk)
∥∥∥d(xk, αk)

∥∥∥2
− 2γρ(xk, αk)

⟨
xk − x∗, d(xk, αk)

⟩
≤

∥∥∥xk − x∗
∥∥∥2 − γ(2− γ)ρ(xk, αk)

⟨
e(xk, αk), d(x

k, αk)
⟩

≤
∥∥∥xk − x∗

∥∥∥2 − γ(2− γ)(1− L)

2

∥∥∥e(xk, αk)
∥∥∥2.

where the first inequality follows since the projection operator is nonexpansive,

the second and the last inequality follow from Lemma 4.1 and Lemma 4.2. Let

c0 =
γ(2−γ)(1−L)

2 , and inf{αk} = αmin > 0 , we get that

∞∑
k=0

c0

∥∥∥e(xk, αk)
∥∥∥2 ≤ ∥∥x0 − x∗

∥∥2.
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It follows from Lemma 4.3 that

lim
k→∞

e(xk, αmin) = 0,

which implies that the sequence {xk} is bounded. Let x̃∗ be a cluster point of {xk}
and the subsequence {xkj} converge to x̃∗. Since e(x, αmin) is continuous, we have

e(x̃∗, αmin) = lim
j→∞

e(xkj , αmin) = 0.

Hence, x̃∗ is a solution of CCCP.

In the following, we prove that the sequence {xk} has exactly one cluster point.

Assume that x̃ is another cluster point, and denote

δ := ∥x̃− x̃∗∥ > 0.

Because x̃∗ is a cluster point of the sequence {xk} , there is a k0 > 0 such that∥∥∥xk0−x̃∗
∥∥∥ ≤ δ/2.

On the other hand, ∥∥∥xk − x̃∗
∥∥∥ ≤

∥∥∥xk0 − x̃∗
∥∥∥ ,∀k ≥ k0.

It follows that ∥∥∥xk − x̃
∥∥∥ ≥ ∥x̃− x̃∗∥ −

∥∥∥xk − x̃∗
∥∥∥ > δ/2, ∀k ≥ k0.

This contradicts with the assumption. Thus, x̃∗ is the unique cluster point of

{xk}. □

5. Numerical experiment

In this section, we use Algorithm 3.1 to solve three examples. All the program

codes are written in MATLAB and run in MATLAB R2018b. We choose u =

0.75, γ = 1.95 and employed ε = 10−8 as the termination criterion. We use ITER

to represent the average number of iterations and ACPU to represent the average

CPU time.

Example 5.1. We choose the test function F (x) = Mx + q, where M = NTN ,

the element of N and q is randomly generated number by MATLAB and n is the

dimension of the vector x, x0 = e as the starting point. In order to investigate the

numerical performance of the Algorithm 3.1, we compare its numerical results with

Smoothing Newton Algorithm in [6]. The experimental results are shown in the

following Tables [1-4].

It can be seen from Tables [1-4] that the ACPU and ITER generated by the

Algorithm 3.1 are relatively small and stable, so the Algorithm is effective. And

when the angle is close to π
4 , the Algorithm 3.1 is appropriately better than the

Smooth Newton Algorithm, as the size of the problem raises, the ITER and ACPU

of the both Algorithm increase.
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Table 1. Solving numerical results

with different Algorithms when θ=π
3

Algorithm3.1 Algorithm[6]

n ITER ACPU ITER ACPU

100 149.0 0.5453 5.0 0.0700

200 213.0 0.6934 5.0 0.2783

300 261.0 2.4929 5.9 0.7516

400 308.0 6.8359 6.0 1.6756

500 341.0 13.6148 6.0 2.9128

600 343.0 18.7823 6.0 4.7698

700 374.0 20.4612 6.0 6.6911

800 398.0 28.3181 6.0 9.5330

900 410.0 30.9016 6.2 13.1500

1000 412.0 34.7429 6.6 18.4252

1100 418.0 63.7764 7.0 28.1791

1200 420.0 87.0782 7.0 37.5283

1300 420.0 98.8902 7.0 45.0912

1400 421.0 137.5849 7.0 54.3626

1500 424.0 199.8247 7.0 66.0708

Table 2. Solving numerical results

with different Algorithms when θ=π
4

Algorithm3.1 Algorithm[6]

n ITER ACPU ITER ACPU

100 16.0 0.3153 6.0 0.0863

200 16.0 0.3350 6.0 0.3343

300 16.0 0.4764 6.9 0.9180

400 17.0 0.8873 7.0 1.9657

500 16.0 1.2281 7.6 3.4351

600 17.0 1.7340 7.7 5.7232

700 17.0 2.8779 8.0 8.9254

800 17.0 3.4025 8.0 12.6333

900 17.0 4.2055 8.0 16.7760

1000 17.0 5.3609 8.0 22.2793

1100 17.0 9.4493 8.8 36.0361

1200 17.0 10.4033 9.0 48.2982

1300 18.0 12.5671 9.0 57.1845

1400 18.0 15.1305 9.0 71.0518

1500 18.0 17.7670 9.0 86.9723
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Table 3. Solving numerical results

with different Algorithms when θ=π
5

Algorithm3.1 Algorithm[6]

n ITER ACPU ITER ACPU

100 21.0 0.1944 6.2 0.0900

200 22.0 0.6952 7.0 0.3804

300 23.0 0.6697 8.0 1.0528

400 23.0 1.7568 8.1 2.2717

500 24.0 1.1067 8.2 3.8557

600 25.0 2.9996 9.0 6.6764

700 26.0 4.7780 9.0 10.0183

800 26.0 5.4031 9.3 14.3294

900 26.0 6.6910 9.3 19.4508

1000 26.0 9.2296 9.5 26.5724

1100 25.0 14.2795 10.0 40.4612

1200 26.0 18.1010 10.2 63.4451

1300 27.0 22.8509 10.2 80.3178

1400 27.0 27.9905 10.0 89.2193

1500 30.0 31.3124 10.6 100.3036

Table 4. Solving numerical results

with different Algorithms when θ=π
6

Algorithm3.1 Algorithm[6]

n ITER ACPU ITER ACPU

100 21.0 0.1965 6.9 0.0951

200 28.0 0.3537 7.5 0.4107

300 28.0 0.5642 7.9 1.0323

400 29.0 1.0670 9.0 2.5356

500 30.0 1.9998 8.9 4.3882

600 30.0 2.7780 9.2 7.2381

700 30.0 2.0319 9.5 10.5241

800 30.0 3.7528 10.5 16.4956

900 30.0 5.9110 10.8 22.5813

1000 42.0 7.4395 11.0 30.5843

1100 50.0 16.5665 11.4 53.8481

1200 71.0 23.6775 11.2 67.4972

1300 80.0 50.9373 11.3 82.1468

1400 93.0 90.9530 11.0 103.4186

1500 113.0 91.2199 11.4 132.5169
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Example 5.2. We choose the nonlinear function F (x) =


x1 + 1

ex2

2x3 + 3

x34
x25

 .

Now we give the numerical results.

Table 5. Solving numerical results of CCCP

with x0 = [00000]

π/4 π/6 π/8

n ITER ACPU ITER ACPU ITER ACPU

p = 0.01 12.0 0.1120 13.0 0.1281 14.0 0.1329

p = 0.03 12.0 0.1024 12.0 0.1213 14.0 0.1178

p = 0.05 14.0 0.9242 14.0 0.0995 14.0 0.1259

p = 0.07 14.0 0.1273 14.0 0.1567 15.0 0.1193

p = 0.09 14.0 0.1061 15.0 0.1110 16.0 0.1085

p = 0.10 16.0 0.1036 15.0 0.1377 16.0 0.1269

p = 0.30 125.0 0.2303 13.0 0.1623 16.0 0.1059

p = 0.50 15.0 0.2396 21.0 0.1276 25.0 0.1110

p = 0.70 16.0 0.2111 23.0 0.1135 27.0 0.1123

p = 0.90 17.0 0.2036 24.0 0.2648 27.0 0.1061

p = 1.00 23.0 0.2027 28.0 0.1354 29.0 0.1299

Example 5.3. We choose the nonlinear function

Table 6. Solving numerical results of CCCP

with x0 = [10000]

π/4 π/6 π/8

n ITER ACPU ITER ACPU ITER ACPU

p = 0.01 14.0 0.1028 15.0 0.1223 15.0 0.1231

p = 0.03 15.0 0.1120 15.0 0.1196 15.0 0.1223

p = 0.05 15.0 0.1138 14.0 0.0995 16.0 0.0855

p = 0.07 15.0 0.1203 15.0 0.0921 17.0 0.1120

p = 0.09 16.0 0.0884 17.0 0.1297 17.0 0.1259

p = 0.10 20.0 0.1157 17.0 0.1369 21.0 0.0875

p = 0.30 124.0 0.1350 17.0 0.1822 26.0 0.2262

p = 0.50 22.0 0.2396 26.0 0.1488 27.0 0.1803

p = 0.70 21.0 0.2499 28.0 0.0977 29.0 0.1878

p = 0.90 22.0 0.1580 30.0 0.1012 33.0 0.1004

p = 1.00 24.0 0.1010 30.0 0.1524 38.0 0.1084
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F (x) =


3x21 + 2x1x2 + 2x22+x3+3x4−6

2x21 + x1 + x22+10x3+2x4−2

3x21 + x1x2 + 2x22+2x3+9x4−9

x21 + 3x22 + 2x3+3x4−3

.
Now we give the numerical results.

Table 7. Solving numerical results of CCCP

with x0 = [00000]

π/4 π/6 π/8

n ITER ACPU ITER ACPU ITER ACPU

p = 10.0 15.0 0.1473 16.0 0.1068 17.0 0.0641

p = 20.0 16.0 0.1259 16.0 0.1001 17.0 0.0693

p = 30.0 16.0 0.1302 16.0 0.0966 17.0 0.0718

p = 40.0 16.0 0.1156 16.0 0.1073 17.0 0.1004

p = 50.0 16.0 0.1296 16.0 0.1142 17.0 0.0944

p = 60.0 16.0 0.1054 16.0 0.1069 17.0 0.0921

p = 70.0 18.0 0.1180 16.0 0.1056 17.0 0.0985

p = 80.0 19.0 0.1152 16.0 0.1012 17.0 0.1035

p = 90.0 22.0 0.1213 26.0 0.1044 27.0 0.0988

p = 100.0 27.0 0.1279 29.0 0.1076 29.0 0.0959

Table 8. Solving numerical results of CCCP

with x0 = [10000]

π/4 π/6 π/8

n ITER ACPU ITER ACPU ITER ACPU

p = 10.0 16.0 0.0735 16.0 0.0864 17.0 0.0926

p = 20.0 18.0 0.1094 19.0 0.1431 20.0 0.1017

p = 30.0 19.0 0.0747 19.0 0.1045 20.0 0.0930

p = 40.0 20.0 0.1227 19.0 0.1042 20.0 0.0988

p = 50.0 21.0 0.0844 20.0 0.0952 21.0 0.1021

p = 60.0 21.0 0.1040 21.0 0.1019 22.0 0.0909

p = 70.0 21.0 0.1246 22.0 0.0743 23.0 0.1005

p = 80.0 24.0 0.1282 25.0 0.1125 26.0 0.0959

p = 90.0 24.0 0.1048 27.0 0.1189 29.0 0.1037

p = 100 31.0 0.1286 38.0 0.1130 40.0 0.0940

It can be seen from the Tables [5-8] that the starting point and angle have a little

effect on the ITER and ACPU. As the value of p raises, the ITER increases signifi-

cantly, and the ITER and ACPU are a little bigger only when p = 0.30 and θ=π
4 .

So the Algorithm 3.1 is effective in general.
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6. Conclusions

In this paper, we propose a projection and contraction method for the CCCP,

and we prove the iteration sequence produced by the method converges to a solution

of the CCCP. The results of numerical experiments show the effectiveness of this

method.
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