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convexity, quasi-convexity, Lipschitzian properties, cone-monotonicty of functions
via their subdiferentials [3,6,9,18,20], and characterizing the maximal monotonicity
of mappings by their coderivatives [7, 8, 19]. Another noticeable kind of the mean
value theorem is the multidirectional mean value inequality introduced by Clarke
and Ledyaev [5], which had interesting applications to the calculus of variations,
flow invariance, and generalized solutions of partial differential equations. A similar
result was given by Luc [16], who called it the strong mean value theorem. For more
information on mean value theorems, we refer the reader to [3, 18,24,27].

The application potential of nondifferentiable mean value theorems strongly de-
pends on the kind of generalized differentiability used in their formulation. It
is therefore more desirable to obtain the mean value theorems in terms of well-
developed generalized differentiations. The coderivative introduced by Mordukhovich
[17] is such a kind of generalized differentiation with a full calculus, which has been
recognized as a convenient tool to study many important issues in variational anal-
ysis and optimization [18]. However, to the best of our knowledge, no mean value
theorem via the coderivatives has been known so far. This leads us to the natural
and interesting question whether we can have some mean value theorems in terms
of the coderivatives.

The main aim of this paper is to present some mean value theorems of the in-
equality form via the regular and limiting coderivatives. Precisely, we establish
such theorems for nonsmooth vector-valued functions and set-valued mappings be-
tween Banach spaces, which extend the classical mean value theorem of inequality
form for smooth vector-valued functions. These results are then applied to deriving
some characterizations of Lipschitz single-valued and set-valued mappings via the
boundedness of their coderivatives.

The rest of the article is organized as follows. After recalling in Section 2 some
well-known notions and facts from variational analysis [18], in Section 3, we establish
the mean value theorem for vector-valued functions, which is formulated in term of
coderivatives, and then give a characterization of Lipschitz vector-valued functions.
Section 4 is devoted to presenting the mean value theorem via coderivatives for
set-valued mappings, and a characterization of the set-valued mappings that are
locally Lipschitzian in the Pompeiu-Hausdorff distance. Finally, Section 5 contains
some open questions in this research direction.

In the sequel, unless otherwise stated, X is assumed to be a Banach space with
its dual X∗, and B∗ (or BX∗) and B (or BX) are the closed unit balls in X∗ and X,
respectively. As usual, the symbol ⟨·, ·⟩ signifies the canonical pairing. The nota-

tion
w∗
→ indicates for the weak-star convergence in X∗. Given a set-valued mapping

F : X ⇒ X∗ and a point x̄ ∈ X, the symbol

Lim sup
x→x̄

F (x) : =
{
x∗ ∈ X∗|∃ sequences xk → x̄, x∗k

w∗
→ x∗,

with x∗k ∈ F (xk) for all k = 1, 2, ...
}

stands for the sequential Painlevé-Kuratowski outer/upper limit of F with respect
to the norm topology of X and the weak-star topology of X∗.
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2. Preliminaries

In this section, we briefly recall some well-known notions and facts from varia-
tional analysis, which can be found in, e.g., [18].

Let Ω be a nonempty subset of X. For each ε ≥ 0, the set of ε-normals to Ω at
x̄ ∈ Ω is defined by

(2.1) N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ ε
}
,

where x
Ω−→ x̄means that x → x̄ with x ∈ Ω. When ε = 0, the set N̂(x̄; Ω) := N̂0(x̄; Ω)

in (2.1) is a cone called the regular normal cone (also, the Fréchet normal cone) to

Ω at x̄. If x̄ ̸∈ Ω, one puts N̂ε(x̄; Ω) = ∅ for all ε ≥ 0.

The limiting normal cone (also, the Mordukhovich normal cone) to Ω at x̄ is the
set N(x̄; Ω) defined by

N(x̄; Ω) := Lim sup

x
Ω−→x̄
ε↓0

N̂ε(x; Ω),

where one can put ε = 0 when Ω is closed and the space X is Asplund, i.e., a Banach
space whose separable subspaces have separable duals.

Let F : X ⇒ Y be a set-valued mapping between two Banach spaces X and Y.
The domain domF and the graph gphF of F are given, respectively, by

domF :=
{
x ∈ X

∣∣ F (x) ̸= ∅
}

and gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
.

In the sequel, we always assume that F is proper in the sense that domF ̸= ∅.
The limiting coderivative or the Mordukhovich coderivative of F at (x̄, ȳ) ∈ X×Y

is the set-valued mapping D∗F (x̄, ȳ) : Y ∗ ⇒ X∗ defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )

}
,

i.e.,

D∗F (x̄, ȳ)(y∗) = {x∗ ∈ X∗ ∣∣ ∃ εk ↓ 0, (xk, yk) → (x̄, ȳ), (x∗k, y
∗
k)

w∗
−−→ (x∗, y∗) with

(x∗k,−y∗k) ∈ N̂εk((xk, yk); gphF ), k → ∞}.

The regular coderivative or the Fréchet coderivative of F at (x̄, ȳ) ∈ X × Y is the

set-valued mapping D̂∗F (x̄, ȳ) : Y ∗ ⇒ X∗ defined by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF ))} ∀y∗ ∈ Y ∗.

One drops ȳ in the notations of the coderivatives if F (x̄) = {ȳ}. Note that, when F
is single-valued,

D̂∗F (x̄)(y∗) =
{
∇F (x̄)∗y∗

}
and resp. D∗F (x̄)(y∗) =

{
∇F (x̄)∗y∗

}
for all y∗ ∈ Y ∗

if F is Fréchet differentiable and strictly differentiable at x̄, respectively, where
∇F (x̄)∗ stands for the adjoint derivative operator; see, e.g., [18, Theorem 1.38].

Recall that a set-valued mapping F : X ⇒ Y is said to be positively homogeneous
if 0 ∈ F (0) and F (λx) ⊃ λF (x) for all x ∈ X and λ > 0, or equivalently, when
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gphF is a cone in X × Y. The norm of a positively homogeneous mapping F is
defined by

∥F∥ := sup
{
∥y∥ | y ∈ F (x), ∥x∥ ≤ 1

}
.

Note that if (x̄, ȳ) ∈ gphF then the set-valued mappings D̂∗F (x̄, ȳ) and D∗F (x̄, ȳ)
are positively homogeneous.

Let φ : X → R := R ∪ {∞} be a proper extended-real-valued function (i.e., it is
not identically equal to infinity) and x̄ ∈ domφ := {x ∈ X|φ(x) < ∞}. The regular

subdifferential(also, the Fréchet subdifferential) of φ at x̄ is the set ∂̂φ(x̄) defined
by

∂̂φ(x̄) :=
{
x∗ ∈ X∗| lim inf

x→x̄

φ(x)− φ(x̄)− ⟨x∗, x− x̄⟩
∥x− x̄∥

≥ 0
}
.

If x̄ ̸∈ domφ, put ∂̂φ(x̄) := ∅.

Proposition 2.1. ( [18, Corollary 3.50]) Let φ : X → R be a lower semicontinuous
function defined on an Asplund space X, with a ∈ domφ. Then, for any b ∈ X and
ε > 0, one has

(2.2) |φ(b)− φ(a)| ≤ ∥b− a∥ sup
{
∥x∗∥

∣∣ x∗ ∈ ∂̂φ(x), x ∈ [a, b] + εB
}
,

where [a, b] := {λa+ (1− λ)b| λ ∈ [0, 1]}.

Note that in Proposition 2.1 we cannot replace ε > 0 by 0.

Example 2.2. Let φ : R → R be defined by

φ(x) :=

{
1 if x > 0,

−
√
−x if x ≤ 0.

It holds that

∂̂φ(x) =

{
{0} if x ∈ (0, 1],

∅ if x = 0,
and sup

{
∥x∗∥

∣∣ x∗ ∈ ∂̂φ(x), x ∈ [0, 1]
}
= 0.

Note that |φ(1)− φ(0)| = 1, we have

|φ(1)− φ(0)| > |1− 0| sup
{
∥x∗∥

∣∣ x∗ ∈ ∂̂φ(x), x ∈ [0, 1]
}
.

Recall that a given set-valued mapping F : X ⇒ Y is said to be Lipschitz-like
around (x̄, ȳ) ∈ gphF with modulus κ ≥ 0 if there exists δ > 0 such that

F (x) ∩ Bδ(ȳ) ⊂ F (u) + κ∥x− u∥BY for all x, u ∈ Bδ(x̄).

The infimum of all such moduli κ is called the exact Lipschitzian bound of F
around (x̄, ȳ) and is denoted by lipF (x̄, ȳ). If F is not Lipschitz-like around (x̄, ȳ),
put lipF (x̄, ȳ) = +∞.

Note that the Lipschitz-like property, which is known also the Aubin prop-
erty [10], was introduced by Aubin [1] who called it the pseudo-Lipschitz prop-
erty. Here we follow Mordukhovich [18] in using the terminology “the Lipschitz-like
property”.
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Proposition 2.3. ( [18, Theorems 1.43, 4.7 & 4.10]) Let F : X ⇒ Y be a set-valued
mapping between two Banach spaces X and Y. The following assertions hold.

(i) If F is Lipschitz-like around some (x̄, ȳ) ∈ gphF with modulus κ ≥ 0, then
there exists η > 0 such that

sup
{
∥x∗∥ |x∗ ∈ D̂∗F (x, y)(y∗)

}
≤ κ∥y∗∥

whenever (x, y) ∈ gphF ∩ [Bη(x̄)× Bη(ȳ)] and y∗ ∈ Y ∗.
(ii) If X and Y are Asplund spaces, and gphF is closed, then the following

properties are equivalent.
(a) F is Lipschitz-like around (x̄, ȳ) ∈ gphF.
(b) There are positive number κ and η such that

sup
{
∥x∗∥ |x∗ ∈ D̂∗F (x, y)(y∗)

}
≤ κ∥y∗∥

whenever (x, y) ∈ gphF ∩ [Bη(x̄) × Bη(ȳ)] and y∗ ∈ Y ∗. Moreover, the exact Lips-
chitzian bound of F around (x̄, ȳ) is computed by

lipF (x̄, ȳ) = inf
η>0

sup
{
∥D̂∗F (x, y)∥ | (x, y) ∈ gphF ∩ [Bη(x̄)× Bη(ȳ)]

}
.

(iii) If X and Y are finite-dimensional, and gphF is closed, then

lipF (x̄, ȳ) = ∥D∗F (x̄, ȳ)∥.

3. Mean value theorem for vector-valued functions

In this section, we establish an mean value theorem via the regular and limiting
coderivatives and use it to prove a characterization of locally Lipschitz vector-valued
functions, which is expressed in terms of the boundedness of the regular coderivative.

The following is our first main result, which is the mean value theorem in a
inequality form, reducing to the classical one [13, p. 27] when the mapping under
consideration is a continuously differentiable mapping defined on an Asplund space.

Theorem 3.1. Let X be an Asplund space, Y a Banach space, and F : X → Y a
mapping continuous on an open convex set U of X. Then, for any a, b ∈ U, one has

(3.1) ∥F (b)− F (a)∥ ≤ ∥b− a∥ inf
ε>0

sup
{
∥D̂∗F (x)∥

∣∣ x ∈ [a, b] + εB
}
,

where ∥D̂∗F (x)∥ := sup{∥x∗∥
∣∣ x∗ ∈ D̂∗F (x)(y∗), ∥y∗∥ ≤ 1

}
and sup ∅ := 0 by

convention. Consequently, if X and Y are finite-dimensional, then

(3.2) ∥F (b)− F (a)∥ ≤ ∥b− a∥ sup
{
∥D∗F (x)∥

∣∣ x ∈ [a, b]
}
.

Proof. Obviously, (3.1) holds if F (b) = F (a). Suppose now that F (b) ̸= F (a). By
the Hahn-Banach theorem, there exists y∗0 ∈ Y ∗ with ∥y∗0∥ = 1 such that

(3.3) ⟨y∗0, F (b)− F (a)⟩ = ∥F (b)− F (a)∥.

Define the function φ : X → R by φ(x) := ⟨y∗0, F (x)⟩ for all x ∈ X. On one hand,
since F is continuous, so is φ. On the other hand, X is an Asplund space. Thus,
for each ε > 0, by Proposition 2.2,

(3.4) |φ(b)− φ(a)| ≤ ∥b− a∥ sup
{
∥x∗∥

∣∣ x∗ ∈ ∂̂φ(x), x ∈ [a, b] + εB
}
.
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Note that

(3.5) |φ(b)− φ(a)| = ∥F (b)− F (a)∥,

due to (3.3). We have ∂̂φ(x) ⊂ D̂∗F (x)(y∗0). Indeed, take any x∗ ∈ ∂̂φ(x). By the
definition of Fréchet subgradient,

lim inf
u→x

φ(u)− φ(x)− ⟨x∗, u− x⟩
∥u− x∥

≥ 0,

or, equivalently,

lim inf
u→x

⟨y∗0, F (u)⟩ − ⟨y∗0, F (x)⟩ − ⟨x∗, u− x⟩
∥u− x∥

≥ 0.

The latter implies that

lim sup

(u,v)
gphF→ (x,F (x))

−⟨y∗0, v − F (x)⟩+ ⟨x∗, u− x⟩
∥u− x∥+ ∥v − F (x)∥

≤ 0.

Thus,

(x∗,−y∗0) ∈ N̂
(
(x, F (x)); gphF

)
,

i.e., x∗ ∈ D̂∗F (x)(y∗0), which implies that ∂̂φ(x) ⊂ D̂∗F (x)(y∗0). Since ∥y∗0∥ = 1, we
have

∥x∗∥ ≤ ∥D̂∗F (x)∥ ∀x∗ ∈ ∂̂φ(x), x ∈ X.

Thus,

(3.6) sup
{
∥x∗∥

∣∣ x∗ ∈ ∂̂φ(x), x ∈ [a, b]+εB
}
≤ sup

{
∥D̂∗F (x)∥

∣∣ x ∈ [a, b]+εB
}
.

Combining (3.4), (3.5) with (3.6), we obtain (3.1).
To justify (3.2), assume further that both X and Y are finite-dimensional. Put

α := inf
ε>0

sup
{
∥D̂∗F (x)∥

∣∣ x ∈ [a, b] + εB
}
.

If α = 0 then (3.2) holds, due to (3.1). Let us now consider the case where
α ∈ (0,∞). Then we can find εk ↓ 0, xk ∈ [a, b] + εkB, y∗k ∈ Y ∗ with ∥y∗k∥ ≤ 1,

and x∗k ∈ D̂∗F (xk)(y
∗
k) such that ∥x∗k∥ → α as k → ∞. Since X and Y are finite-

dimensional and α ∈ R, assume without loss of generality that xk → x̄ ∈ [a, b],
y∗k → ȳ∗ ∈ Y ∗ with ∥ȳ∗∥ ≤ 1 and x∗k → x̄∗ ∈ X∗ with ∥x̄∗∥ = α. Note that
x̄∗ ∈ D∗F (x̄)(ȳ∗) and ∥ȳ∗∥ ≤ 1. We have

α = ∥x̄∗∥ ≤ ∥D∗F (x̄)∥ ≤ sup
{
∥D∗F (x)∥

∣∣ x ∈ [a, b]}.
Thus, by (3.1), (3.2) holds. Finally, consider the case where α = +∞. We will
prove that ℓ := sup

{
∥D∗F (x)∥

∣∣x ∈ [a, b]} = +∞. Indeed, if this is not true, then
ℓ < +∞. By Proposition 2.3 (iii), for each x ∈ [a, b], F is Lipschitz-like around
(x, F (x)) with lipF

(
x, F (x)

)
≤ ℓ. Thus, by Proposition 2.3 (i), for each x ∈ [a, b],

there exists εx > 0 such that

sup
{
∥D̂∗F (u)∥

∣∣ u ∈ Bεx(x)
}
≤ ℓ+ 1.

Since [a, b] is compact, one can find ε0 > 0 with [a, b] + ε0B ⊂
∪

x∈[a,b] Bεx(x). This

implies that

α ≤ sup
{
∥D̂∗F (x)∥

∣∣ x ∈ [a, b] + ε0B
}
≤ ℓ+ 1 < +∞,
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which is a contradiction. Thus ℓ = +∞ and (3.2) holds. The proof is complete. □

By the above result, we can obtain the following characterization of Lipschitz
vector-valued mappings, which improves [18, Theorem 4.7] (Proposition 2.3 (ii)) in
the single-valued settings by omitting the assumption of the Asplund property of
Y.

Corollary 3.2. Let X be an Asplund space, Y a Banach space, and F : X → Y a
mapping continuous on an open convex set U of X. Then, the following assertions
are equivalent.

(i) The mapping F is locally Lipschitz around x̄ ∈ U with modulus κ.

(ii) There exists r > 0 such that ∥D̂∗F (x)∥ ≤ κ for all x ∈ Br(x̄).

Proof. The implication (i) ⇒ (ii) is valid without the Asplund property of X, due to

Proposition 2.3 (i). To prove the inverse, suppose that for some r > 0, ∥D̂∗F (x)∥ ≤
κ for all x ∈ Br(x̄). Take any a, b ∈ B r

2
(x̄) and ε ∈ (0, r2). By Theorem 3.1,

∥F (b)− F (a)∥ ≤ ∥b− a∥ sup
{
∥D̂∗F (x)∥

∣∣ x ∈ [a, b] + εB
}
.

Since [a, b] + εB ⊂ Br(x̄), it holds that ∥D̂∗F (x)∥ ≤ κ for all x ∈ [a, b] + εB. Thus,

∥F (b)− F (a)∥ ≤ κ∥b− a∥ ∀a, b ∈ B r
2
(x̄).

The proof is complete. □

4. Mean value theorem for set-valued mappings

The aim of this section is to establish some set-valued counterparts of the obtained
results. Note that, in contrast to the single-valued case, the classical scalarization
technique seems not to be suitable for the set-valued case. Thus, to achieve the
purpose, we can use some ideas given by Penot [22].

Let C be a subset of X and α > 0. Put Bα(C) := C + αBX . Recall that the
excess of C over a set D of X is given by

e(C,D) := inf
{
ε > 0 |C ⊂ Bε(D)

}
= sup

x∈C
d(x,D),

and the Pompeiu-Hausdorff distance is defined by

h(C,D) := max
{
e(C,D), e(D,C)

}
.

The Pompeiu-Hausdorff distance h possesses the following properties:
(d1) h(A,B) ≥ 0, (d2) h(A,B) = h(B,A), and
(d3) h(A,C) + h(C,B) ≥ h(A,B) for every A,B,C ⊂ X.

One says that a set-valued mapping F : X ⇒ Y is locally Lipschitz around x̄ ∈ X
in the Pompeiu-Hausdorff distance if there exist κ > 0 and r > 0 such that

h
(
F (x1), F (x2)

)
≤ κpa∥x1 − x2∥ for allx1, x2 ∈ Br(x̄).

To proceed, we need the following result, which is similar to [22, Theorem 3.1]
where the sprout coderivative rather than coderivative was used. Our proof here is
somewhat different from the one of Penot [22].
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Lemma 4.1. Let X and Y be Asplund spaces, and let F : X ⇒ Y be a set-valued
mapping with closed graph. Suppose that there exist c, α, β > 0, x0 ∈ X, and a
nonempty subset V of Y such that

(4.1) ∥D̂∗F (x, y)∥ ≤ c for any x ∈ Bα(x0), y ∈ F (x) ∩ (V + βBY ).

Then there exists ρ ∈ (0, α) such that

e
(
F (x) ∩ V, F (x′)

)
≤ c∥x− x′∥ ∀x, x′ ∈ Bρ(x0).

Proof. Suppose to the contrary that the conclusion of lemma is false. Then there
exist ĉk > c, ĉk → c, xk → x0, x

′
k → x0 and yk ∈ F (xk) ∩ V such that

(4.2) d
(
yk, F (x′k)

)
> ĉk∥xk − x′k∥ for all k.

Note that xk ̸= x′k for every k. Put f(x, y) := ĉk∥x − x′k∥ + δ
(
(x, y); gphF

)
, where

δ
(
·; gphF

)
is the indicator of the graph of F, i.e., δ

(
(x, y); gphF

)
= 0 if (x, y) ∈ gphF

and δ
(
(x, y); gphF

)
= ∞ otherwise. Since gphF is closed, f is lower semicontinuous

on X × Y . Here X × Y is equipped with the norm ∥(x, y)∥ := γk∥x∥+ (1− γk)∥y∥,
where γk ∈ (0, 1) is chosen such that ĉk − 2γk > c and

(4.3) d
(
yk, F (x′k)

)
>

ĉk
1− γk

∥xk − x′k∥ for all k.

Obviously, it holds that 0 < f(xk, yk) ≤ inf f+ε with ε := f(xk, yk). By the Ekeland
variational principle (λ := ε), there exists (uk, vk) ∈ gphF such that

(4.4) ĉk∥uk − x′k∥ ≤ ĉk∥x− x′k∥+ γk∥x− uk∥+ (1− γk)∥y − vk∥ ∀(x, y) ∈ gphF

and

(4.5) ĉk∥uk − x′k∥+ γk∥xk − uk∥+ (1− γk)∥yk − vk∥ ≤ ĉk∥xk − x′k∥.

If uk = x′k then (4.5) would yield

d
(
yk, F (x′k)

)
≤ ∥yk − vk∥ ≤ ĉk

1− γk
∥xk − x′k∥,

which contradicts (4.3) and hence uk ̸= x′k for every k. We next use the sum norm
in the product space X×Y. Then, the norm in the dual space (X×Y )∗ ≡ X∗×Y ∗

is ∥(x∗, y∗)∥ = max{∥x∗∥, ∥y∗∥}, and BX∗×Y ∗ = BX∗ × BY ∗ . Let

g(x, y) := ĉk∥x− x′k∥+ γk∥x− uk∥+ (1− γk)∥y − vk∥.

Then it holds that g(uk, vk)+δ
(
(uk, vk); gphF

)
= min

(x,y)∈X×Y

[
g(x, y)+δ

(
(x, y); gphF

)
],

and thus, according to the Fermat rule,

(0, 0) ∈ ∂̂
[
g + δ(·; gphF )

]
(uk, vk).

By the fuzzy sum rule, there exist (ũk, ṽk), ũk ̸= x′k, and (x̃k, ỹk) ∈ gphF such that

(0, 0) ∈ ∂̂g(ũk, ṽk) + N̂
(
(x̃k, ỹk), gphF

)
+ γkBX∗×Y ∗ ,

∥(ũk, ṽk)− (uk, vk)∥ < γk,

and

∥(x̃k, ỹk)− (uk, vk)∥ < γk.
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Note that g is convex and ∂̂g(ũk, ṽk) ⊂
(
ĉkSX∗ + γkBX∗)× (1− γk)BY ∗ . Thus

(0, 0) ∈
(
ĉkSX∗ + 2γkBX∗)× BY ∗ + N̂

(
(x̃k, ỹk), gphF

)
.

This implies that there exist ỹ∗k ∈ BY ∗ , ũ∗k ∈ SX∗ and b∗k ∈ BX∗ such that

(x̃∗k,−ỹ∗k) ∈ N̂
(
(x̃k, ỹk), gphF

)
or, equivalently,

x̃∗k ∈ D̂∗F (x̃k, ỹk)(ỹ
∗
k),

where x̃∗k := ĉkũ
∗
k + 2γkb

∗
k. Thus

∥D̂∗F (x̃k, ỹk)∥ ≥ ∥x̃∗k∥ ≥ ĉk − 2γk > c.

Since x̃k → x0, ∥ỹk − yk∥ → 0 and yk ∈ V, it follows that x̃k ∈ Bα(x0) and
ỹk ∈ F (x̃k) ∩ (V + βBY ) for all k sufficiently large. This contradicts (4.1). Thus we
have the desired conclusion. □

We are now ready to formulate and prove the main result of this section, which
is a set-valued counterpart of Theorem 3.1.

Theorem 4.2. Let F : X ⇒ Y be a set-valued mapping with closed graph between
two Asplund spaces X and Y , and a, b ∈ X with a ̸= b. Then, one has

(4.6) h
(
F (a), F (b)

)
≤ ∥b− a∥ inf

ε>0
sup

{
∥D̂∗F (x, y)∥ | x ∈ [a, b] + εB, y ∈ F (x)

}
.

If one suppose further that X and Y are finite-dimensional, and F is locally uni-
formly bounded at each x ∈ [a, b], that is, there exist positive real numbers rx and
Mx > 0 such that F

(
Brx(x)

)
⊂ MxBY , then

(4.7) h
(
F (a), F (b)

)
≤ ∥b− a∥ sup

{
∥D∗F (x, y)∥ | x ∈ [a, b], y ∈ F (x)

}
.

Proof. Let α := inf
ε>0

sup
{
∥D̂∗F (x, y)∥ | x ∈ [a, b] + εB, y ∈ F (x)

}
. Obviously, (4.6)

is valid if α = ∞. Otherwise, let us take any c ∈ (α,+∞). One can find ε > 0 such
that

c ≥ sup
{
∥D̂∗F (x, y)∥ | x ∈ [a, b] + εB, y ∈ F (x)

}
.

Put x0 := a, x1 := a + ε b−a
∥b−a∥ , . . . , xk := a + kε b−a

∥b−a∥ , . . . , xn := a + nε b−a
∥b−a∥ ,

xn+1 := b, where n is the integer part of ∥b−a∥
ε . Then

{
Bε(xi) | i = 0, 1, ..., n+ 1

}
satisfies the condition: xi ∈ Bε(xi−1) for all i ∈ {1, ..., n + 1}. Note that, for each
i ∈ {0, 1, ..., n+ 1}, xi ∈ [a, b] and Bε(xi) ⊂ [a, b] + εBX . Thus, it holds

sup
{
∥D̂∗F (x, y)∥ : x ∈ Bε(xi), y ∈ F (x)

}
≤ c.

By Lemma 4.1 (with V := Y ), we obtain

h
(
F (xi), F (xi−1)

)
≤ c∥xi − xi−1∥, ∀i = 1, ..., n+ 1.

This implies that

h
(
F (a), F (b)

)
≤ h

(
F (a), F (x1)

)
+ h

(
F (x1), F (x2)

)
+ ...+ h

(
F (xn), F (b)

)
≤ c(∥x1 − a∥+ ∥x2 − x1∥+ ...+ ∥b− xn∥)
= c∥b− a∥.
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Since c > α is taken arbitrarily, we get

h
(
F (a), F (b)

)
≤ ∥b− a∥ inf

ε>0
sup

{
∥D̂∗F (x, y)∥ | x ∈ [a, b] + εB, y ∈ F (x)

}
,

that is, (4.6) holds.
To justify (4.7), assume that X and Y are finite-dimensional and F is locally

uniformly bounded at each x ∈ [a, b]. If α = 0 then, by (4.6), h
(
F (a), F (b)

)
= 0

and thus (4.7) holds. Suppose now that α ∈ (0,∞). Then we can find εk ↓ 0,

xk ∈ [a, b] + εkB, yk ∈ F (xk), y
∗
k ∈ Y ∗ with ∥y∗k∥ ≤ 1 and x∗k ∈ D̂∗F (xk, yk)(y

∗
k)

such that ∥x∗k∥ → α as k → ∞. Since X and Y are finite-dimensional and α ∈ R,
we can assume without loss of generality that xk → x̄ ∈ [a, b], y∗k → ȳ∗ ∈ Y ∗ with
∥ȳ∗∥ ≤ 1 and x∗k → x̄∗ ∈ X∗ with ∥x̄∗∥ = α. By the locally uniform boundedness
of F at each point of [a, b] and x̄ ∈ [a, b], there exist positive real numbers rx̄ and
Mx̄ > 0 such that F

(
Brx̄(x̄)

)
⊂ Mx̄BY . Hence yk ∈ Mx̄BY for all k sufficiently large.

Since Mx̄BY is compact, by replacing a subsequence if necessary, we can assume
that yk → ȳ ∈ Y. Note that (x̄, ȳ) ∈ gphF, due to the closedness of gphF. Thus
x̄∗ ∈ D∗F (x̄, ȳ)(ȳ∗) and ∥ȳ∗∥ ≤ 1. We have

α = ∥x̄∗∥ ≤ ∥D∗F (x̄, ȳ)∥ ≤ sup
{
∥D∗F (x, y)∥

∣∣ x ∈ [a, b], y ∈ F (x)}.

Thus, by (4.6), (4.7) holds. Finally, consider the case where α = +∞. We claim
that

sup
{
∥D∗F (x, y)∥ | x ∈ [a, b], y ∈ F (x)

}
= +∞.

Indeed, if this is not true, then ℓ := sup
{
∥D∗F (x, y)∥ | x ∈ [a, b], y ∈ F (x)

}
< +∞.

By Proposition 2.3 (iii), for each x ∈ [a, b] and y ∈ F (x), F is Lipschitz-like around
(x, y) with lipF

(
x, y

)
≤ ℓ. Thus, by Proposition 2.3 (ii), for each x ∈ [a, b] and

y ∈ F (x), there exists εx,y > 0 such that

(4.8) sup
{
∥D̂∗F (u, v)∥

∣∣ (u, v) ∈ gphF ∩
[
Bεx,y(x)× Bεx,y(y)

]}
≤ ℓ+ 1.

Note that, due to the boundedness assumption of F, ([a, b]×Y )∩gphF is a compact
subset of the open set

∪
x∈[a,b], y∈F (x)

[
intBεx,y(x) × intBεx,y(y)

]
. Thus, there exists

ε0 > 0 such that[
([a, b] + ε0B)× Y

]
∩ gphF ⊂

∪
x∈[a,b], y∈F (x)

[
Bεx,y(x)× Bεx,y(y)

]
∩ gphF.

By (4.8), for each (u, v) ∈
[
([a, b] + ε0B)×Y

]
∩ gphF, we have ∥D̂∗F (u, v)∥ ≤ ℓ+1.

This implies that

sup
{
∥D̂∗F (u, v)∥

∣∣ u ∈ [a, b] + ε0B, v ∈ F (u)
}
≤ ℓ+ 1 < +∞.

Thus α < +∞, which is a contradiction, and the claim is justified. Hence (4.7)
holds. The proof is complete. □

Remark 4.3. If F : X ⇒ Y is a continuous single-valued mapping, then Theo-
rem 4.2 reduces to Theorem 3.1, provided that Y is an Asplund space.

The next result gives us a characterization of the set-valued mappings that are
locally Lipschitzian in the Pompeiu-Hausdorff distance.
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Corollary 4.4. Let F : X ⇒ Y be a set-valued mapping with closed graph between
two Asplund spaces X and Y. Then, the following assertions are equivalent.

(i) The mapping F is locally Lipschitz around x̄ with modulus κ.

(ii) There exists r > 0 such that ∥D̂∗F (x, y)∥ ≤ κ for all x ∈ Br(x̄) and y ∈ F (x).

Proof. To justify (i) ⇒ (ii), suppose that F is locally Lipschitz around x̄ with
modulus κ. Then there exists r > 0 such that F is Lipschitz-like around (x, y) with
modulus κ for any x ∈ Br(x̄) and y ∈ F (x). By Proposition 2.3 (i),

∥D̂∗F (x, y)∥ ≤ κ for all x ∈ Br(x̄), y ∈ F (x).

We now prove (ii) ⇒ (i). Suppose that, for some r > 0, it holds that

∥D̂∗F (x, y)∥ ≤ κ for all x ∈ Br(x̄), y ∈ F (x).

Take any a, b ∈ B r
2
(x̄) and ε ∈ (0, r2). By Theorem 4.2,

h
(
F (b), F (a)

)
≤ ∥b− a∥ sup

{
∥D̂∗F (x, y)∥

∣∣ x ∈ [a, b] + εB, y ∈ F (x)
}
.

Since [a, b] + εB ⊂ Br(x̄), it holds that ∥D̂∗F (x, y)∥ ≤ κ for all x ∈ [a, b] + εB and
y ∈ F (x). Thus,

h
(
F (b), F (a)

)
≤ κ∥b− a∥ for all a, b ∈ B r

2
(x̄).

This means F is locally Lipschitz around x̄. □

5. Concluding Remarks

The main results of this paper are some mean value theorems via coderivatives,
which allow us to derive some characterizations of Lipschitz mappings. For the
regular coderivative, only the ”fuzzy” mean value inequalities (3.1) and (4.6) have
been established. Until now, we have not known whether the ”exact” mean value
inequalities (3.2) and (4.7) hold if the limiting coderivative is replaced by the reg-
ular counterpart. The validity of the mean value inequalities (3.2) and (4.7) in
the infinite-dimensional settings has been also unclear to us. Finally, it would be
interesting if we could remove the assumption that Y is an Asplund space in The-
orem 4.2.
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