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THE CONVEXITY OF CIRCULAR CONE TRACE FUNCTIONS

DI-WEN WU, YU-LIN CHANG*, AND YEN-CHI ROGER LIN

ABSTRACT. In this short paper, we establish the convexity of some functions
associated with circular cones, called circular cone trace functions. As illustrated,
these functions play a key role in the development of penalty and barrier function
methods for cone programs. With this method one may offer much simpler proofs
to some useful inequalities.

1. INTRODUCTION

The second-order cone (SOC) in R", also called Lorentz cone, is the set defined
as

(1.1) K= { (@1, 22) ERXR™™ [ 21 2 s ],

where || - || denotes the Euclidean norm. When n = 1, K" reduces to the set of
nonnegative real numbers R .
As shown in [14], K™ is also a set composed of the squared elements from Jordan

[1eb)

algebra (R™,0), where the Jordan product “o” is a binary operation defined by
(1.2) zoy = ((z,y), T1y2 + y172)

for any z = (z1,72),y = (y1,y2) € R x R~ L.
Here for any z € R, we use x1 to denote the first component of x, and x5 to
denote the vector consisting of the rest n — 1 components.

From [13, 14], we recall that each x € R™ admits a spectral decomposition asso-
ciated with K™ of the following form
(1.3) z = M (2)ul) + Xo(2)ul?,
where \;(x) and W for i = 1,2 are the spectral values and the associated spectral
vectors of x, respectively, defined by

A . 1 A
(1.4) N(@) =21+ (<) azll, ) = (1, (-1,
with Zo = 22 if x5 # 0, and otherwise Ty being any vector in R™ 1 such that

- [E=]]

1Z2]| = 1.
When zo # 0, the spectral decomposition is unique. The determinant and trace

of x are defined as det(z) := A\ (z)A2(x) and tr(z) := A (x) + A2(x), respectively.
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With the spectral decomposition above, for any given scalar function ¢ : J C
R — R, we may define a vector-valued function ¢%°¢: § C R® — R™ by

(1.5) 0*(x) = ¢(M(@)uf? + (Ao ())ul?
where J is an interval (finite or infinite, open or closed) of R, and S is the domain
of ¢*°°¢ determined by ¢.
Then, we can define the SOC trace function associated with ¢
(1.6) ¢ (2) == (A (@) + d(Na(x)) = tr(¢*°(2)) Yz €S,
Chen, Liao and Pan [12] give the following relation between ¢'" and ¢*°°

(1.7) Ve (z) =2(¢ )*°°(z) and VZ¢¥(z) = 2V(4)*°(z) Vz € intS.

By using Schur Complement Theorem, they establish the convexity of SOC trace
functions and the compounds of SOC trace functions. Some of these functions are
the key of penalty and barrier function methods for second-order cone programs
(SOCPs), as well as the establishment of some important inequalities associated
with SOCs, for which the proof of convexity of these functions is a necessity.

As a generalization of second-order cone, Zhou and Chen[23] begin to study a

new cone. For any angle 6 € (0°,90°). they define the circular cone Ly as
(1.8) Lo:={x=(x1,20) ERxR" | 2y > ||z| cos O}

1.
= {z = (21,22) ERxR" | 21 > |lzo| cot §}.

Although Ly is not a symmetric cone (except for § = 45°), one can still, due to
its special structure, give an explicit form of orthogonal decomposition (or spectral
decomposition) as

(1.9) =X (x) - ull) + Ao(2) - ul?,

xT

where

NON sin? 0
{ A(z) = 21 — ||22]| cot 6, and T 7 | —(sin@cos Bz |’

(1.10) Ao(x) = x1 + ||z2|| tan 6, (2) [ cos?
( Y

sin 0 cos 6) 2
with 25 = 29 /|22 if 29 # 0, and 75 being any unit vector w € R* ! if 25 = 0.

Follow the same trick, given a twice differentiable function f : R — R, we may
define the trace function of f associated to Ly as

(1.11) (@) = f(M(@) + F(Ra(2)).
When f is non-constant, f' is differentiable on Ly except for the set

(1.12) E:={(21,0) e R x R" ! | z; > 0} C Ly.
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Nonetheless, the similar computation in [12], in £y \ E the gradient of f** can be
expressed by
tr _ ! 1 / 1
113 VD = 0D | o] 70 | gy
and the Hessian of f' is given by
b(x) c(w)az” ]
VQ tr — |: ,
(@) c(x)@s a(z)] + (d(z) — a(z)) 2’
"X tanf — f'(\ t 0
where a(x):f(Q( 7)) tand — f'(M(z) co
(1.14) 22|
b(z) = f"(M(2)) + " (a()),
c(z) = f"(Az(w)) tan§ — " (A1 (z)) cot 6,
d(z) = f"(M(2)) cot? 0 + " (Aa2(2)) tan? 6.

In the following section, we will show the convexity of the trace function f'(z).

2. THE MONOTONE CONDITION

All notations in Section 1 are kept, and we denote M = O (resp. M > O) when
a symmetric matrix M is semipositive definite (resp. positive definite). The Schur
Complement Theorem gives a condition for the positive definiteness( semidefinite-
ness) with respect that to a block partition of the matrix, which is stated as below.

Lemma 2.1 (Schur Complement Theorem [15]). Let A € R™*™ be a symmetric
positive definite matriz, C € R™ ™ be a symmetric matriz, and B € R™*"™. Then,

(2.1) ;T g ~0«<C-BT'A'B>o0;
and
(2.2) ;T g -0« C—-BT'A™'B > 0.

In this section, we will find sufficient conditions that imply the convexity of f
in Ly. We start with the following theorem.

Theorem 2.2. Suppose f : R — R is a twice continuously differentiable conver
function. Then in Ly \ E,

(1) Ifb(z) = 0, then V2f(z) = O if and only if a(z)(I — Z222") = O.
(2) If b(z) > 0, then

2 ptr . . (C(ﬂf))2 - =T .
Vi (z) =0 <= a(z)]+ (d(z) — a(z) JTads' = O;

2 ptr o . (C(‘r))z ~ - T
Vi (@) - 0 <= a(2)]+ (d(z) — a(z) JTada' = O.



334 D.-W. WU, Y.-L. CHANG, AND Y.-C LIN

Proof. (1) We assume that b(z) = 0 first. Since b(z) = f”(M(z)) + f”(Xa2(2)),
b(z) = 0 implies that f”(Ai(z)) = f”(X2(z)) = 0. From (1.14), it immediately
follows that c(x) = d(z) = 0 as well. Therefore the Hessian matrix V2 f%(z) has
the form

tr, |0 0
VQf (1‘)— 0 a(m)([—fgng)

It is then clear that V2 f'(z) is semi-positive definite if and only if a(z) (I — Z222")
is semi-positive definite.

(2) For the case b(x) > 0, because V2f%(z) is a symmetric matrix, the Schur
Complement Theorem directly applies here, that is,

V2 (2) = 0 <= a(@)]+ (d(z) - a(z) - (e x))Q)@:fQT - 0;

V2f(z) = 0 <= a(2)]+ (d(z) —a(z) —

|

Theorem 2.3. Suppose f : R — R is a twice continuously differentiable convex
function. If either

(1) 0 <0 <45° and f(x) is decreasing; or,
(2) 45° <0 < 90° and f(x) is increasing,

then the Hessian V2 f% is semi-positive definite in Ly \ E.
Proof. Again we examine the case b(z) = 0 first. By Theorem 2.2,
Vi) = 0 «— a(z)(I - ZEQ:fQT) = 0.
Take any v € R"!, then
vTa(a:)(I - fgng)v = a(2)(|v]* — (v, 72)?).

Because 7 is a unit vector, [|[v]| > |(v,22)|. Therefore a(z)(I — @27>7) is semi-
positive definite if and only if a(x) > 0. Recall from (1.14) that

a(z) = f'(A2(w)) tan  — f' (A (x)) cot 8
2]

Note that Aj(z) = x1 —||z2|| cot 0 < x1 +||z2|[tand = Ao(x). When 0 < 0 < 45° and
f is decreasing, both f’()\g(x)),f’ ()\1(3:)) < 0and tan < cot§; when 45° < 6 < 90°
and f is increasing, both f'(X2(z)), f'(Ai(x)) > 0 and tand > cot 6. In both cases,
we can always conclude that a(z) > 0, which finishes the case b(z) = 0.

For the other case b(z) > 0, we perform the following computation. For sake of
simplicity, we write k; = f”(\;j(z)) for j = 1,2. Again from Theorem 2.2, we need



THE CONVEXITY OF CIRCULAR CONE TRACE FUNCTIONS 335

to check the (semi-)positive definiteness for

Note that d(z) — (c(x))? — b(x)d(z) — (c(x))?

b(x)d(z) — (c(x))? = (k1 + ko) (k1 cot? 0 + kg tan? 0) — (ko tan 6 — k cot )?
= k1ka(cot 6 + tan 0)?,

which will be non-negative when f is convex. Assuming the monotonicity of f, then
for v € R*1,

z)d(z) — (c(x))?
— a(:c)(||v\|2—(v,.f2)2) + b( )d( ) ( ( ))

As in the previous case b(z) = 0, we see that V2f%(z) is semi-positive definite
(resp. positive definite) if a(z) > 0 (resp. a(z) > 0 and b(x) > 0). The argument is
the same as before, and the proof is finished. o

With aid of Theorem 2.3, we are in position to prove the convexity of the trace
function f* in the whole circular cone £y subject to some sufficient conditions stated
as below.

Theorem 2.4. Suppose f : R — R is a twice continuously differentiable conver
function. Then f% is a convex function in Ly if either 0 < 0 < 45° and f is
decreasing, or 45° < 0 < 90° and f is increasing.

Proof. For sake of brevity, we refer the condition “either 0 < 6 < 45° and f is
decreasing, or 45° < 6 < 90° and f is increasing” as Hypothesis K. We separate
our discussions into 4 cases ([x,y] denotes the line segment whose endpoints are
x,y € Lg):

Case 1. [z,y] N E = @. In this situation, we can conclude that f*(az + (1 —
a)y) < af(z) + (1 — ) f"(y) for all a € [0, 1], thanks to Theorem 2.3.

Case 2. Suppose z € Lg, y € E. For t € [0, 1], define u(t) = y + t(x — y). Since
f% is continuous on Ly, we have

lim f*(u(t)) = f"(y)-

t—0t
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For t > 0, we know that [x,u(t)] C Ly \ E. Hence if Hypothesis K holds, by Case 1
we have: for each X € [0,1],

A (@) + (1= X)) = lim (A" (@) + (1= ) f(u(2)

> tgxglJr fr Az 4+ (1= Nu(?))

= ftr(/\:v +(1- /\)y).

Case 3. Suppose z,y € Ly \ E, and the segment [z, y] intersects with F at some
interior point, that is, there is a ¢ty € (0,1) such that z := tpx + (1 — tg)y € E. Set
= (71,72), y = (y1,%2) in R x R®!. Then we have
—to

(23)  z=(toz1+ (1 -t)y,0), 1o =1— »

to
v el = 2 laal

1—
Since f is convex, so for 0 <t < 1,
tf(x) + (1 =) (y) = t(fa (@) + fFe(2) + (1 =) (f(M(y) + FRa(y))
= tf(M(z)) + (1 =) f(Ra(y) +tf(Aa(2)) + (1 =) f(M(y))
> f(tA(@) + (1 =) Aa2(y)) + f(tra(2) + (1 = )M (y)
— fltw1+ (1 — g1 — t]as] ot + (1 — 1)]lys | tan )
+ f(ter + (1 — t)y1 + t||x2|| tand — (1 — ¢)||y2]| cot 6).
When we put ¢ in place of ¢ in the last expression and use (2.3), we see that
ftoxy + (1 —to)y1 — tol|xa|| cot @ + (1 — to)||ly2|| tan @)
+ f(tox1 + (1 — to)y1 + tol|xz|| tan§ — (1 — o) ||y2]| cot H)
= 2f (tox1 + (1 — to)y1 + to|z2||(tan 6 — cot 9)).
To recap, at t = ty we have
tof"(z) + (1 —to) f" (y) > 2f (tow1 + (1 — to)yr + tol|z2||(tan 6 — cot 6)).

When 0 < 0 < 45°, we have tg||z2|(tan§ —cot #) < 0. Therefore if f is decreasing,
then

2f (toz1 + (1 — to)yr + tol|z2|| (tan b — cot 6)) > 2f (tox1 + (1 — to)y1).
On the other hand, when 45° < 6 < 90°, we have tg| 22| (tan #—cot ) > 0. Therefore
if f is increasing, then
2f (toz1 + (1 — to)yr + tol|x2|| (tand — cot 6)) > 2f (tox1 + (1 — to)y1).
Combining these results, we see that under Hypothesis K, we always have
tof" (@) + (1 —to) f"(y) = 2f (tox1 + (1 — to)y1 + tol|w2]|(tan 6 — cot )
> 2f(t0:r1 +(1- to)yl) = f"(2).

t
Now, when t € (0,y), we have tx + (1 — t)y € [z,y]. Set u = . and
0

te+ (1 —t)y=pz+ (1 —pny.
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Under Hypothesis K, we have from Case 2,
tf" (@) + (=) f"(y) = nltof"(2) + (1 = to) f" (1)) + (1 — 1) f " (y)
> uf(2) + (1= p) f(y)
> f"(pz + (1= p)y)
= "tz + (1 — t)y).
By symmetry, the same conclusion can be reached when ¢ € (g, 1).

Case 4. Suppose z,y € E. Then x = (x1,0) and y = (y1,0). Since f is convex,
hence for ¢t € (0, 1),

tf (@) + (L=6)f"(y) = 2(tf (x1) + (1 — ) f (1))
> 2f(txr + (1= )y1))
= f(tx + (1 —t)y).

These conclude the proof of Theorem 2.4. O

By examining the inequalities more closely, the following statement follows im-
mediately and its proof is omitted.

Corollary 2.5. Suppose f : R — R is a twice continuously differentiable function
with f"(x) > 0 for all x € R. If either 0 < 6 < 45° and [ is decreasing, or
45° < 0 < 90° and f is increasing, then f% is strictly conve.

3. COUNTEREXAMPLES OUT OF CONDITIONS

In this section we will give a few examples out of conditions to show that the
trace function from a convex function may not be convex.

Example 3.1. f(t) =¢’, 0<0 < Z.
Here f’(t) = e! > 0 for all ¢ € R, hence from Equation (1.14) we have

a(x) = f'(Xa(@)) tand — f'(Mi(z)) cot 0
22|

A(z
_ BB (hae1he) — org)
|| z2]|

eM(@) tan g
= (exp(||lza]|(tan @ + cot @) — cot?6).
T (A )) — cot”6)

As0 <6 <7, cot?6 > 1. Hence, when ||z < %, we have exp(||z2]|(tan 4+
cotf)) —cot? 6 < 0, and a(z) < 0.

For example, we take x = (10, ln72,0), y = (10,0, h‘72) € Ly C R?, with cotf = 2
and tg = % We have

Fr(@) = f(y) = (21 +271) e
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tof(z) + (1 — to) f™(y) = (21 +271) ' ~ 37207.2627;
Fr(tox + (1 — to)y) = (225 +277)e'® ~ 38354.01251.
As tof"(x) + (1 —t0) [ (y) < f*"(tox + (1 — to)y), f* is not convex.
Example 3.2. f(t)=e¢", F <0< 7.

Here f/(t) = —e™t < 0 for all ¢ € R. again from Equation (1.14) we have
f'(Na(2)) tand — f' (X (2))

a(x) =
2]
-
_ =@ tang (eA1<a:)—Az<m> _ cot? 9)
22|
—e @) tan g
_ ¢ any T2l an (exp(—ngH(tane + cot §)) — cot? 9).
Z2
T T 2 —In(cot? 6) .
As 7 <0 < 3, cot® 0 < 1. Hence, when ||z2|| < figreorg» We have exp(—||z2 || (tan 6+

cot §)) — cot? § > 0, and a(z) < 0.
For example, we take z = (10, 11122,0) y = (10,0, 1“72) € Ly C R3, with cotd = %
and tg = % We have

@) = 7 (y) = @5 +27 e !
tof(z) + (1 —to) f™(y) = (21 + 27 e ™20 & 7.668988 x 1077;
FT(tox + (1 — to)y) = (27 +277) el ~ 7.905351 x 107,
As tof(x) + (1 —to) f"(y) < f(tox + (1 —tg)y), ' is not convex.
Example 3.3. f(t) = —Int fort >0, T <0< 3.

Here f'(t) = —1 < 0 for all > 0. From the definitions in (1.8) and (1.10) we
know that both Aj(z) and Az(x) are non-negative for all x € Ly.
For those z € Ly with A\ (z) > 0 and Aa(z) > 0,

f'(Aa(x)) tan® — f'(A1(x)) cot 6

a(z) =
@ [
f'a(x)) tan 6 ¢ f'(Xa(x)) 2

= —cot” 0
22| ( f'(A (=) )
tan 6 A1(x) 9

=— —cot“ 0.

A1 ()[|zz]| <>\2($) )
We know from the definition that A2(z) > Ai(x) > 0, hence i;g; <1 For § <0<

cot? § > 1. Hence we conclude that a(z) < 0 in this case.
On the other hand,

(@) = fa(@) + fQa(2) = = In i (2) — In Ag(x) = — In(Ai(2) Aa())
= —In(2? + 21 |22/ (tan 6 — cot ) — ||za||?).

2’
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For example, we consider § = arccot & 5, ¢ = (10,1,0), y = (10,0,1) € Ly, and
to = 2. We have
f(z) = —In(100 + 15 — 1) = — In 114;
f(y) = —In(100 + 15 — 1) = — In 114;
tof™(z) + (1 —to) f™(y) = —In114.
On the other hand, tgz + (1 — tp)y = (10, %, ;) SO
225 1
" (toz + (1 —to)y) = — In(100 + ,/7 5) ~ —In 110.1066.
Astof*(z) + (1 —t0) f"(y) < f*(tox + (1 —t0)y)
Example 3.4. f(t) = (t —1)2.
Here f'(t) = 2t — 2, so f'(t) # 0 if and only if ¢ # 1. When x € Ly \ E,
)\2($) > )\1(.1‘) If )\1(.%) 75 1,
f'Na(z)) tan® — f'(A(x)) cot O

, f% is not convex.

a(x) =
B
P tnd O
= ey ~et)
_20u() - Deand () -1,
2] <A1<x> £0).

Case 1. When < 6 < Z, we have 0 < cot?# < 1. Thus in the case \i(z) <
Aa(z) <1, we have

0< M < 1.
Ai(z) —
A -1
Nevertheless, if )\El‘%l > cot? @, then a(z) < 0, that is, f* would not be in this
) —
case. !
For example, let us consider # = arccot 1, T = (%, %,0), Yy = (%,0, %) € Ly, and
to = 2.
—9\2 —1\2 97
tr _ ptr _ (7 _ - —  ~
[y =717 = (16) +( 1 ) 256 ~ 03789
97
tof*" 1—t = —— =~ 0.37891.
(@) + (1~ 10) () =
On the other hand, toz + (1 — to)y = (3, &, &), hence
1 2 5017
tr _ =" ~0. )
fHltor+ (1 —to)y ( 112) < ) 12544~ 039995
As tof¥(z) + (1 —to) f¥(y) < f¥(tox + (1 —to)y), f' is not convex.

Case 2. When 0 < 6 < 7, we have cot?§ > 1. Thus in the case Ai(z) > 1, we

have
/\Q(SC) —1

—>1
/\1(33)-1 -



340

A
since Ag(z) > Ay(z) > 1. However if =2

D.-W. WU, Y.-L. CHANG, AND Y.-C LIN

—1
)qgg—l < cot? @, then a(z) < 0, that is, f¥

would not be in this case.
For example, let us consider § = arccot 2, z = (10, 2,0), y = (10,0,2) € Ly, and

t(]:?.

3

o (z) = f¥(y) = 5% + 10? = 125;
tof(x) + (1 —to) f™ (y) = 125

On the other hand, toz + (1 — to)y = (10, ¢, 8), hence

T 7
43\ 2 68\2 6473
— = —— = 132.1020.
7) +(F) =g 10

P (to+ (1~ to)y) = ( -

As tof"(z) + (1 —to) f"(y) < f™(tox + (1 —to)y), f is not convex.
From these two cases, we see that f* is convex only if § = T

4. CONCLUSION

This short paper is an extension to [12]. We only focus on the convexity of the
trace functions. If one is interested in more inequatilities related to the convexity
or penalty and barrier function methods [1, 2, 3], he can go to check the details
in [12]. A similar result about the general symmetric cone is shown in [9]. It is
obvious to see the key point to show the convexity of the trace function heavily
depends on the decomposition (1.9). This inspires us if we want to study another

nonsymmetric cone, we need to get a good decomposition formula. Once we have a

way to construct lots of convex functions, every thing goes easily.
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