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for firmly quasi-nonexpansive mappings U and T , where γk ∈ (ϵ, 2
λA+λB

− ϵ), λA, λB

stand for the spectral radiuses of A∗A and B∗B, respectively.

Recently, Zhao and Wang [17] proposed the following viscosity iterative algorithm

for solving the SEFP (1.1):
uk = xk − γkA

∗(Axk −Byk),

xk+1 = αkf1(xk) + (1− αk)((1− wk)uk + wkUuk),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = αkf2(yk) + (1− αk)((1− wk)vk + wkTvk),

(1.2)

where f1 : H1 → H1 and f2 : H2 → H2 are two contractions, U : H1 → H1 and

T : H2 → H2 are quasi-nonexpansive. They proved a strong convergence result of

the algorithm (1.2) in Hilbert spaces.

On the other hand, the multiple-set split equality common fixed-point problem

(MSECFP) of quasi-nonexpansive mappings studied by Zhao and Wang [18] is to

(1.3) find x∗ ∈ ∩p
i=1F (Ui), y∗ ∈ ∩q

j=1F (Tj) such that Ax∗ = By∗,

where p, q ≥ 1 are integers. They introduced two mixed cyclic and parallel itera-

tive algorithms for solving the MSECFP (1.3) of quasi-nonexpansive mappings and

proved the weak convergence of these two algorithms.

Inspired and motivated by the works mentioned above, we consider a newly cyclic

viscosity approximation method for the MSECFP (1.3) of demicontractive map-

pings in Hilbert spaces. Under some mild assumptions we establish some strong

convergence theorems.

2. Preliminaries

Throughout this paper, we always assume that H1,H2,H3 are real Hilbert spaces

and let N and R be the set of positive integers and real numbers, respectively. We use

→ and ⇀ to denote strong and weak convergence, respectively, and F (T ) denotes

the set of the fixed points of a mapping T . We use ωwxk = {x : ∃ xkj ⇀ x} to

stand for the weak ω-limit set of {xk} and use Γ to stand for the solution set of the

MSECFP (1.3), i.e.,

Γ := {(x, y)| x ∈ ∩p
i=1F (Ui), y ∈ ∩q

j=1F (Tj) such that Ax = By}.

Let C be a nonempty closed convex subset of a Hilbert space H. The metric (or

nearest point) projection PC from H onto C is defined as follows: Given x ∈ H, the

unique point PCx ∈ C satisfies the property

∥x− PCx∥ = inf
y∈C

∥x− y∥.

It is well known [10] that PC is a nonexpansive mapping and is characterized by the

inequality

(2.1) PCx ∈ C, ⟨x− PCx, y − PCx⟩ ≤ 0, ∀ y ∈ C.
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Definition 2.1. Let H be a real Hilbert space. A mapping T : H → H is said to

be

(i) Lipschitzian if there exists a constant ρ > 0 such that

∥Tx− Ty∥ ≤ ρ∥x− y∥, ∀ x, y ∈ H,

especially, if ρ ∈ (0, 1), T is said to be a contraction with constant ρ;

(ii) nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥, ∀ x, y ∈ H;

(iii) quasi-nonexpansive if F (T ) ̸= ∅ and if ∥Tx−q∥ ≤ ∥x−q∥, ∀ x ∈ H, q ∈ F (T );

(iv) firmly nonexpansive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2, ∀ x, y ∈ H;

or equivalently,

∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩, ∀ x, y ∈ H;

(v) µ-demicontractive if F (T ) ̸= ∅ and the exists a constant µ ∈ (−∞, 1) such

that

∥Tx− q∥2 ≤ ∥x− q∥2 + µ∥x− Tx∥2, ∀ x ∈ H, q ∈ F (T ).

Remark 2.2. Notice that a 0-demicontractive mapping is exactly quasi-nonexpansive.

In particular, we say that it is quasi-strictly pseudo-contractive [7] if 0 ≤ µ < 1.

Moreover, if µ ≤ 0, every µ-demicontractive mapping becomes quasi-nonexpansive.

Therefore, it is sufficient to only take µ ∈ (0, 1) in (v) of Definition 2.1 in Hilbert

spaces. However, as seen in (iv) of Definition 2.1, every firmly quasi-nonexpansive

mapping (often called to be a directed operator [3]) is obvious (−1)-demicontractive.

It is worth noting that the class of demicontractive mappings is more general than

the class of quasi-nonexpansive mappings and the class of firmly quasi-nonexpansive

mappings.

Definition 2.3. Let C be a nonempty closed convex subset of a real Hilbert space

H. A mapping F : C → H is said to be

(i) monotone if ⟨Fx− Fy, x− y⟩ ≥ 0, ∀ x, y ∈ C;

(ii) strictly monotone if ⟨Fx− Fy, x− y⟩ > 0, ∀ x, y ∈ C, x ̸= y;

(iii) η-strongly monotone if there exists a constant η > 0 such that

⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2, ∀x, y ∈ C.

Definition 2.4. Let H be a real Hilbert space. An operator T : H → H is called

demiclosed at origin if, for any sequence {xk} which converges weakly to x, and if

the sequence {Txk} converges strongly to 0, then Tx = 0.

As a special case of the demicloseness principle on uniformly convex Banach

spaces given by [4], we know that if C is a nonempty closed convex subset of a Hilbert

space H, and T : C → H is a nonexpansive mapping. Then the mapping I − T is

demiclosed on C. Now the following question is naturally raised: If T : C → H is

quasi-nonexpansive, is I − T still demiclosed on C? The answer is negative even at

0 as follows.
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Example 2.5. ([11]; Example 2.11). The mapping T : [0, 1] → [0, 1] is defined by

Tx =

{
x
5 , x ∈ [0, 12 ],

x sinπx, x ∈ (12 , 1].

Then T is a quasi-nonexpansive mapping, but I − T is not demiclosed at 0.

Lemma 2.6. ([8]). Let T be a µ-demicontractive self mapping on H with F (T ) ̸= ∅
and set Tα = (1−α)I +αT for α ∈ [0, 1]. Then, Tα is quasi-nonexpansive provided

that α ∈ [0, 1− µ] and

∥Tαx− q∥2 ≤ ∥x− q∥2 − α(1− µ− α)∥x− Tx∥2, ∀ (x, q) ∈ H × F (T ).

Lemma 2.7. ([7]; Proposition 2.1). Assume C is a closed convex subset of a Hilbert

space H. Let T : C → C be a self-mapping of C. If T is a µ-demicontractive

mapping (which is also called µ-quasi-strict pseudo-contraction in [7]), then the

fixed point set F (T ) is closed and convex.

Lemma 2.8. ([5]). Assume {sk} is a sequence of nonnegative real numbers such

that {
sk+1 ≤ (1− λk)sk + λkδk,

sk+1 ≤ sk − ηk + µk,

where {λk} is a sequence in (0,1), {ηk} is a sequence of nonnegative real numbers

and {δk} and {µk} are two sequences in R such that

(i)
∑∞

k=1 λk = ∞;

(ii) limk→∞ µk = 0;

(iii) liml→∞ ηkl = 0 implies lim supl→∞ δkl ≤ 0 for any subsequence {kl} ⊂ {k}.
Then limk→∞ sk = 0.

Lemma 2.9. ([6]). Let X and Y be Banach spaces, A be a continuous linear

operator from X to Y . Then A is weakly continuous.

Lemma 2.10. ([13]; Proposition 2.7). Let H be a real Hilbert space. Suppose that

F : H → H is κ-Lipschitzian and η-strongly monotone over a closed convex set

C ⊂ H. Then, the following V IP (F,C)

⟨v − u∗, F (u∗)⟩ ≥ 0, ∀ v ∈ C

has its unique solution u∗ ∈ C.

3. Main results

In this section, we introduce a new cyclic viscosity approximation method for the

MSECFP (1.3) of demicontractive mappings and prove the strong convergence of

this algorithm.

Given a positive integer p, the p-mod function i takes values in the set {1, 2, · · · , p}
as

i(k) =

{
p, r = 0;

r, 0 < r < p,
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for k = np + r for some integers n ≥ 0 and 0 ≤ r < p. Given a positive integer q,

the q-mod function j can be also defined in a similar way.

Put H∗ = H1 ×H2. Define the inner product of H∗ as follows:

⟨(x1, y1), (x2, y2)⟩ = ⟨x1, x2⟩+ ⟨y1, y2⟩, ∀ (x1, y1), (x2, y2) ∈ H∗.

It is easy to see that H∗ is also a real Hilbert space and

∥(x, y)∥ = (∥x∥2 + ∥y∥2)
1
2 , ∀ (x, y) ∈ H∗.

Algorithm 3.1. Let x0 ∈ H1, y0 ∈ H2 be arbitrary given and p, q ≥ 1 be integers.

Let f1 : H1 → H1 and f2 : H2 → H2 be two contractions with constants ρ1, ρ2 ∈
[0, 1). Let the sequences {αk}, {βk}, {tk} ⊂ [0, 1]. Assume that the kth iterate

xk ∈ H1, yk ∈ H2 has been constructed and Axk − Byk ̸= 0, then we calculate

(k + 1)th iterate (xk+1, yk+1) via the formula

(3.1)


uk = xk − γkA

∗(Axk −Byk),

xk+1 = tkf1(xk) + (1− tk)(αkuk + (1− αk)Ui(k)uk),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = tkf2(yk) + (1− tk)(βkvk + (1− βk)Tj(k)vk), ∀ k ≥ 0.

Assume the stepsize γk is chosen in such a way that

(3.2) γk ∈ (ε,min{η, 2∥Axk −Byk∥2

∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2
} − ε)

for all k ∈ Ω and small enough ε > 0, where the index set Ω = {k : Axk−Byk ̸= 0},

η =
2∥Axl −Byl∥2

∥A∗(Axl −Byl)∥2 + ∥B∗(Axl −Byl)∥2
, l = min

k∈Ω
{k},

otherwise, γk = γ (γ being any nonnegative value). If Axk = Byk = 0, then

uk = xk, vk = yk and{
xk+1 = tkf1(xk) + (1− tk)(αkxk + (1− αk)Ui(k)xk),

yk+1 = tkf2(yk) + (1− tk)(βkyk + (1− βk)Tj(k)yk).

Lemma 3.2. Assume the solution set Γ of (1.3) is nonempty. Then {γk} defined

by (3.2) is well defined and bounded.

Proof. Take (x, y) ∈ Γ, i.e., x ∈ ∩p
i=1F (Ui), y ∈ ∩q

j=1F (Tj) and Ax = By. We have

⟨A∗(Axk −Byk), xk − x⟩ = ⟨Axk −Byk, Axk −Ax⟩

and

⟨B∗(Axk −Byk), y − yk⟩ = ⟨Axk −Byk, By −Byk⟩.
By adding the two above equalities and by taking Ax = By into account, we obtain

∥Axk −Byk∥2 = ⟨A∗(Axk −Byk), xk − x⟩+ ⟨B∗(Axk −Byk), y − yk⟩
≤ ∥A∗(Axk −Byk)∥∥xk − x∥+ ∥B∗(Axk −Byk)∥∥y − yk∥.

Consequently, for k ∈ Ω, that is, ∥Axk −Byk∥ > 0, we have ∥A∗(Axk −Byk)∥ ̸= 0

or ∥B∗(Axk −Byk)∥ ̸= 0. And since

∥A∗(Axk −Byk)∥2 ≤ ∥A∗∥2∥Axk −Byk∥2
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and

∥B∗(Axk −Byk)∥2 ≤ ∥B∗∥2∥Axk −Byk∥2,
we have

2∥Axk −Byk∥2

∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2
≥ 2

∥A∗∥2 + ∥B∗∥2
=

2

∥A∥2 + ∥B∥2
.

Thus we can choose small enough ε ∈ (0, 1
∥A∥2+∥B∥2 ). This leads that {γk} is well

defined. From (3.2) we obtain γk ∈ (ε, η − ε) and η is a fixed positive number, so

{γk} is bounded. □
Lemma 3.3. Given two bounded linear operators A : H1 → H3, B : H2 → H3, let

Ui : H1 → H1 (1 ≤ i ≤ p) and Tj : H2 → H2 (1 ≤ j ≤ q) be τi-demicontractive

and νj-demicontractive, respectively. Assume that the solution set Γ of (1.3) is

nonempty. Then Γ is a nonempty closed convex set.

Proof. By Lemma 2.7 we have F (Ti) (1 ≤ i ≤ p) and F (Uj) (1 ≤ j ≤ q) are both

closed convex subsets, and since A and B are both linear, it is easy to see that Γ is

a closed convex subset in H∗. □
Lemma 3.4. ([12]; Lemma 3.1). Let {uk} be a bounded sequence of a Hilbert space

H. Let p be a positive integer and I = {1, 2, · · · , p}. If limk→∞ ∥uk+1−uk∥ = 0 and

x∗ ∈ ωwuk, then for any i ∈ I, there exists a subsequence {ukm} of {uk}, depending
on i, such that i(km) = i for all m and ukm ⇀ x∗, where i denotes the p-mod

function.

Theorem 3.5. Let H1,H2,H3 be real Hilbert spaces. Given two bounded linear

operators A : H1 → H3, B : H2 → H3, let Ui : H1 → H1 (1 ≤ i ≤ p) and Tj : H2 →
H2 (1 ≤ j ≤ q) be τi-demicontractive and νj-demicontractive, respectively. Suppose

that I−Ui (1 ≤ i ≤ p), I−Tj (1 ≤ j ≤ q) are demiclosed at origin and the solution

set Γ of the MSECFP (1.3) is nonempty. Assume that the following conditions are

satisfied:

(i) ρ1, ρ2 ∈ [0, 1√
2
);

(ii) limk→∞ tk = 0 and
∑∞

k=0 tk = ∞;

(iii) τ < lim infk→∞ αk ≤ lim supk→∞ αk < 1;

(iv) ν < lim infk→∞ βk ≤ lim supk→∞ βk < 1,

where τ = max1≤i≤p τi, ν = max1≤j≤q νj.

Then the sequence {(xk, yk)} ⊂ H∗ generated by Algorithm 3.1 converges strongly

to (x∗, y∗) ∈ Γ which is the unique solution of the following variational inequality

problem (VIP)

(3.3) ⟨((I − f1)x
∗, (I − f2)y

∗), (x, y)− (x∗, y∗)⟩ ≥ 0, ∀ (x, y) ∈ Γ.

Proof. We divide the proof into several steps.

Step 1. The VIP (3.3) has a unique solution (x∗, y∗) ∈ Γ.

By Lemma 3.3, we know that Γ is a nonempty closed convex subset in H∗. Let

F : Γ ⊂ H∗ → H∗ be defined by

F (x, y) = ((I − f1)x, (I − f2)y), ∀ (x, y) ∈ Γ.
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Putting ρ = max{ρ1, ρ2}, then from the condition (i) we have ρ ∈ [0, 1√
2
). For any

(x1, y1), (x2, y2) ∈ Γ, since f1 and f2 are two contractions, we have

⟨F (x1, y1)− F (x2, y2), (x1, y1)− (x2, y2)⟩
= ⟨((I − f1)x1 − (I − f1)x2, (I − f2)y1 − (I − f2)y2), (x1 − x2, y1 − y2)⟩
= ⟨(I − f1)x1 − (I − f1)x2, x1 − x2⟩+ ⟨(I − f2)y1 − (I − f2)y2, y1 − y2⟩
≥ ∥x1 − x2∥2 − ∥f1(x1)− f1(x2)∥∥x1 − x2∥

+∥y1 − y2∥2 − ∥f2(y1)− f2(y2)∥∥y1 − y2∥
≥ (1− ρ)(∥x1 − x2∥2 + ∥y1 − y2∥2)
= (1− ρ)∥(x1, y1)− (x2, y2)∥2,

which implies that F is (1− ρ)-strongly monotone. And

∥F (x1, y1)− F (x2, y2)∥2

= ∥((I − f1)x1 − (I − f1)x2, (I − f2)y1 − (I − f2)y2)∥2

= ∥(I − f1)x1 − (I − f1)x2∥2 + ∥(I − f2)y1 − (I − f2)y2∥2

≤ (1 + ρ1)
2∥x1 − x2∥2 + (1 + ρ2)

2∥y1 − y2∥2

≤ (1 + ρ)2∥(x1, y1)− (x2, y2)∥2,

which implies that F is (1 + ρ)2-Lipschitzian. Therefore, it follows from Lemma

2.10 that the VIP (3.3) has a unique solution (x∗, y∗) ∈ Γ.

Step 2. The sequences {xk} and {yk} are bounded.

Since (x∗, y∗) ∈ Γ, then x∗ ∈ ∩p
i=1F (Ui), y∗ ∈ ∩q

j=1F (Tj) and Ax∗ = By∗. By

(3.1) we have

∥uk − x∗∥2

= ∥xk − γkA
∗(Axk −Byk)− x∗∥2

= ∥xk − x∗∥2 − 2γk⟨xk − x∗, A∗(Axk −Byk)⟩+ γ2k∥A∗(Axk −Byk)∥2

= ∥xk − x∗∥2 − 2γk⟨Axk −Ax∗, Axk −Byk⟩+ γ2k∥A∗(Axk −Byk)∥2,

and

∥vk − y∗∥2

= ∥yk + γkB
∗(Axk −Byk)− y∗∥2

= ∥yk − y∗∥2 + 2γk⟨yk − y∗, B∗(Axk −Byk)⟩+ γ2k∥B∗(Axk −Byk)∥2

= ∥yk − y∗∥2 + 2γk⟨Byk −By∗, Axk −Byk⟩+ γ2k∥B∗(Axk −Byk)∥2.

By adding the above equalities and Ax∗ = By∗, we have

∥uk − x∗∥2 + ∥vk − y∗∥2

= ∥xk − x∗∥2 + ∥yk − y∗∥2 − γk[2∥Axk −Byk∥2

−γk(∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2)].(3.4)
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Put ũk = αkuk + (1 − αk)Ui(k)uk and ṽk = βkvk + (1 − βk)Tj(k)vk. Using (ii) and

Lemma 2.6 we have

∥ũk − x∗∥2 = ∥αkuk + (1− αk)Ui(k)uk − x∗∥2

≤ ∥uk − x∗∥2 − (1− αk)(αk − τi)∥Ui(k)uk − uk∥2

≤ ∥uk − x∗∥2 − (1− αk)(αk − τ)∥Ui(k)uk − uk∥2(3.5)

≤ ∥uk − x∗∥2(3.6)

for all sufficiently large k. Similarly, we obtain

∥ṽk − y∗∥2

≤ ∥vk − y∗∥2 − (1− βk)(βk − ν)∥Tj(k)vk − vk∥2(3.7)

≤ ∥vk − y∗∥2(3.8)

for all sufficiently large k. It follows from (3.1), (3.5) and the convexity of ∥ ·∥2 that

∥xk+1 − x∗∥2 ≤ tk∥f1(xk)− x∗∥2 + (1− tk)∥ũk − x∗∥2

≤ tk[ρ1∥xk − x∗∥+ ∥f1(x∗)− x∗∥]2 + (1− tk)(∥uk − x∗∥2

−(1− αk)(αk − τ)∥Ui(k)uk − uk∥2)
≤ 2tkρ

2∥xk − x∗∥2 + 2tk∥f1(x∗)− x∗∥2 + (1− tk)∥uk − x∗∥2

−(1− tk)(1− αk)(αk − τ)∥Ui(k)uk − uk∥2.(3.9)

Replacing the role of (3.5) with (3.7), we similarly obtain

∥yk+1 − y∗∥2 ≤ 2tkρ
2∥yk − y∗∥2 + 2tk∥f2(y∗)− y∗∥2 + (1− tk)∥vk − y∗∥2

−(1− tk)(1− βk)(βk − ν)∥Tj(k)vk − vk∥2.(3.10)

It follows from (3.4), (3.9) and (3.10) that

∥xk+1 − x∗∥2 + ∥yk+1 − y∗∥2

≤ 2tkρ
2(∥xk − x∗∥2 + ∥yk − y∗∥2) + 2tk(∥f1(x∗)− x∗∥2

+∥f2(y∗)− y∗∥2) + (1− tk)(∥uk − x∗∥2 + ∥vk − y∗∥2)
−(1− tk)(1− αk)(αk − τ)∥Ui(k)uk − uk∥2

−(1− tk)(1− βk)(βk − ν)∥Tj(k)vk − vk∥2

≤ [1− tk(1− 2ρ2)](∥xk − x∗∥2 + ∥yk − y∗∥2)
+2tk(∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2)
−(1− tk)γk[2∥Axk −Byk∥2

−γk(∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2)]
−(1− tk)(1− αk)(αk − τ)∥Ui(k)uk − uk∥2

−(1− tk)(1− βk)(βk − ν)∥Tj(k)vk − vk∥2.

Then, setting sk = ∥xk − x∗∥2 + ∥yk − y∗∥2, we get

sk+1 ≤ [1− tk(1− 2ρ2)]sk + 2tk(∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2)
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−(1− tk)γk[2∥Axk −Byk∥2

−γk(∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2)]
−(1− tk)(1− αk)(αk − τ)∥Ui(k)uk − uk∥2

−(1− tk)(1− βk)(βk − ν)∥Tj(k)vk − vk∥2(3.11)

≤ [1− tk(1− 2ρ2)]sk + tk(1− 2ρ2)
2(∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2)

1− 2ρ2
.

It follows from induction that

sk+1 ≤ max{s0,
2(∥f1(x∗)− x∗∥2 + ∥f2(y∗)− y∗∥2)

1− 2ρ2
}, ∀ k ≥ 0,

i.e., {sk} is bounded. So {xk} and {yk} are also bounded.

Step 3. The sequence {(xk, yk)} converges strongly to (x∗, y∗).

It follows from (3.1) and (3.6) that

∥xk+1 − x∗∥2

≤ t2k∥f1(xk)− x∗∥2 + 2tk(1− tk)⟨f1(xk)− x∗, ũk − x∗⟩
+(1− tk)

2∥ũk − x∗∥2

≤ t2k∥f1(xk)− x∗∥2 + tk(1− tk)(∥f1(xk)− f1(x
∗)∥2 + ∥ũk − x∗∥2)

+(1− tk)
2∥ũk − x∗∥2 + 2tk(1− tk)⟨f1(x∗)− x∗, ũk − x∗⟩

≤ t2k∥f1(xk)− x∗∥2 + tk(1− tk)(ρ
2
1∥xk − x∗∥2 + ∥uk − x∗∥2)

+(1− tk)
2∥uk − x∗∥2 + 2tk(1− tk)⟨f1(x∗)− x∗, ũk − x∗⟩

≤ tk(1− tk)ρ
2∥xk − x∗∥2 + (1− tk)∥uk − x∗∥2

+t2k∥f1(xk)− x∗∥2 + 2tk(1− tk)⟨f1(x∗)− x∗, ũk − x∗⟩.(3.12)

Similarly we have

∥yk+1 − y∗∥2

≤ tk(1− tk)ρ
2∥yk − y∗∥2 + (1− tk)∥vk − y∗∥2 + t2k∥f2(yk)− y∗∥2

+2tk(1− tk)⟨f2(y∗)− y∗, ṽk − y∗⟩.(3.13)

By (3.4), (3.12) and (3.13) we get

sk+1 ≤ tk(1− tk)ρ
2(∥xk − x∗∥2 + ∥yk − y∗∥2)

+(1− tk)(∥uk − x∗∥2 + ∥vk − y∗∥2)
+t2k(∥f1(xk)− x∗∥2 + ∥f2(yk)− y∗∥2)
+2tk(1− tk)(⟨f1(x∗)− x∗, ũk − x∗⟩+ ⟨f2(y∗)− y∗, ṽk − y∗⟩)

≤ [1− tk(1− (1− tk)ρ
2)]sk + t2k(∥f1(xk)− x∗∥2 + ∥f2(yk)− y∗∥2)

+2tk(1− tk)(⟨f1(x∗)− x∗, ũk − x∗⟩+ ⟨f2(y∗)− y∗, ṽk − y∗⟩)
= (1− λk)sk + λkδk,(3.14)
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where λk = tk(1− (1− tk)ρ
2),

δk =
tk(∥f1(xk)− x∗∥2 + ∥f2(yk)− y∗∥2)

1− (1− tk)ρ2

+
2(1− tk)(⟨f1(x∗)− x∗, ũk − x∗⟩+ ⟨f2(y∗)− y∗, ṽk − y∗⟩)

1− (1− tk)ρ2
.

From (3.1), (3.5) and (3.7) we have

∥xk+1 − x∗∥2 ≤ tk∥f1(xk)− x∗∥2 + (1− tk)∥ũk − x∗∥2

≤ tk∥f1(xk)− x∗∥2 + (1− tk)(∥uk − x∗∥2

−(1− αk)(αk − τ)∥Ui(k)uk − uk∥2),
∥yk+1 − x∗∥2 ≤ tk∥f2(yk)− y∗∥2 + (1− tk)∥ṽk − y∗∥2

≤ tk∥f2(yk)− y∗∥2 + (1− tk)(∥vk − y∗∥2

−(1− βk)(βk − ν)∥Tj(k)vk − vk∥2).

From the above two inequalities and (3.4) we obtain

sk+1 ≤ ∥uk − x∗∥2 + ∥vk − y∗∥2 + tk(∥f1(xk)− x∗∥2 + ∥f2(yk)− y∗∥2)
−(1− tk)((1− αk)(αk − τ)∥Ui(k)uk − uk∥2

+(1− βk)(βk − ν)∥Tj(k)vk − vk∥)
≤ sk + tk(∥f1(xk)− x∗∥2 + ∥f2(yk)− y∗∥2)− γk[2∥Axk −Byk∥2

−γk(∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2)]
−(1− tk)[(1− αk)(αk − τ)∥Ui(k)uk − uk∥2

+(1− βk)(βk − ν)∥Tj(k)vk − vk∥]
≤ sk − ηk + µk,(3.15)

where µk = tk(∥f1(xk)− x∗∥2 + ∥f2(yk)− y∗∥2),

ηk = γk[2∥Axk −Byk∥2 − γk(∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2)]
+(1− tk)[(1− αk)(αk − τ)∥Ui(k)uk − uk∥2

+(1− βk)(βk − ν)∥Tj(k)vk − vk∥].

It follows from the condition (ii) that Σλk = ∞ and limk→∞ µk = 0 due to the

boundedness of {xk} and {yk}.
Next we show that, for any subsequence {kl} ⊂ {k},

lim
l→∞

ηkl = 0 ⇒ lim sup
l→∞

δkl ≤ 0.

Indeed, for any {kl} ⊂ {k} and liml→∞ ηkl = 0, by the conditions (ii)-(iv), for any

i ∈ {1, 2, · · · , p}, j ∈ {1, 2, · · · , q} we have

lim
l→∞

∥ukl − Ui(kl)ukl∥ = 0,(3.16)

lim
l→∞

∥vkl − Tj(kl)vkl∥ = 0.(3.17)
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And due to the assumption (3.2) on {γk} and liml→∞ ηkl = 0, we have

ε(∥A∗(Axkl −Bykl)∥
2 + ∥B∗(Axkl −Bykl)∥

2)

≤ 2∥Axkl −Bykl∥
2 − γkl(∥A

∗(Axkl −Bykl)∥
2(3.18)

+∥B∗(Axkl −Bykl)∥
2).

Since liml→∞ ηkl = 0, the right side of (3.18) immediately converges to zero, i.e.,

lim
l→∞

(∥A∗(Axkl −Bykl)∥
2 + ∥B∗(Axkl −Bykl)∥

2) = 0.

Therefore, in view of (3.18) again, we readily see

lim
l→∞

∥Axkl −Bykl∥
2 = 0.

Furthermore, we get

lim
l→∞

∥ukl − xkl∥ = lim
l→∞

γkl∥A
∗(Axkl −Bykl)∥ = 0,(3.19)

lim
l→∞

∥vkl − ykl∥ = lim
l→∞

γkl∥B
∗(Axkl −Bykl)∥ = 0.(3.20)

Then it follows from (3.1), (3.16), (3.19) and the condition (ii) that

∥xkl+1 − xkl∥
= ∥tklf1(xkl) + (1− tkl)(αklukl + (1− αkl)Ui(kl)ukl)− xkl∥
≤ tkl∥f1(xkl)− xkl∥+ (1− tkl)αkl∥ukl − xkl∥

+(1− tkl)(1− αkl)∥Ui(kl)ukl − xkl∥
≤ tkl∥f1(xkl)− xkl∥+ ∥ukl − xkl∥+ ∥Ui(kl)ukl − ukl∥ → 0.

Similarly, by (3.1), (3.17), (3.20) and the condition (ii) we have ∥ykl+1 − ykl∥ → 0.

Now we claim that ωw(xkl , ykl) ⊂ Γ. In fact, for any (x̃, ỹ) ∈ ωw(xkl , ykl), we get

x̃ ∈ ωw(xkl) and ỹ ∈ ωw(ykl). Since liml→∞ ∥xkl+1 − xkl∥ = 0, use Lemma 3.4 to

choose a subsequence {ml} ⊂ {kl} (depending on i), for any (fixed) i ∈ {1, 2, · · · , p},
such that xml

⇀ x̃ and i(ml) = i for all l. And by (3.19) we have uml
⇀ x̃. It turns

out that

lim
l→∞

∥uml
− Uiuml

∥ = lim
l→∞

∥uml
− Ui(ml)uml

∥ = 0.

Since I−Ui is demiclosed at the origin, we have x̃ ∈ F (Ui) for all 1 ≤ i ≤ p, that is,

x̃ ∈ ∩p
i=1F (Ui). Similarly, we can prove that ỹ ∈ ∩q

j=1F (Tj). On the other hand, it

follows from (x̃, ỹ) ∈ ωw(xkl , ykl) and Lemma 2.9 that Ax̃−Bỹ ∈ ωw(Ax̃kl −Bỹkl),

and the weakly lower semicontinuity of the norm imply

∥Ax̃−Bỹ∥ ≤ lim inf
l→∞

∥Axkl −Bykl∥ = 0.

Hence (x̃, ỹ) ∈ Γ, i.e., ωw(xkl , ykl) ⊂ Γ. It is easy to see that limk→∞(1−(1−tk)ρ
2) =

1 − ρ2 and limk→∞ tk(∥f1(xk) − x∗∥2 + ∥f2(yk) − y∗∥2) = 0. Finally, completing

lim supl→∞ δkl ≤ 0, we only need to prove

lim sup
l→∞

(⟨f1(x∗)− x∗, ũkl − x∗⟩+ ⟨f2(y∗)− y∗, ṽkl − y∗⟩) ≤ 0.
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Indeed, from (3.16)-(3.20), for any i ∈ {1, 2, · · · , p}, j ∈ {1, 2, · · · , q}, we have

lim
l→∞

∥Ui(kl)ukl − xkl∥ = lim
l→∞

∥Tj(kl)vkl − ykl∥ = 0,

furthermore, we obtain

lim sup
l→∞

[⟨f1(x∗)− x∗, ũkl − x∗⟩+ ⟨f2(y∗)− y∗, ṽkl − y∗⟩]

= lim sup
l→∞

[⟨f1(x∗)− x∗, αklukl + (1− αkl)Ui(kl)ukl − x∗⟩

+⟨f2(y∗)− y∗, βklvkl + (1− βkl)Tj(kl)vkl − y∗⟩]
≤ lim sup

l→∞
[⟨f1(x∗)− x∗, αklxkl + (1− αkl)xkl − x∗⟩

+⟨f2(y∗)− y∗, βklykl + (1− βkl)ykl − y∗⟩]
+ lim sup

l→∞
⟨f1(x∗)− x∗, αkl(ukl − xkl) + (1− αkl)(Ui(kl)ukl − xkl)⟩

+ lim sup
l→∞

⟨f2(y∗)− y∗, βkl(vkl − ykl) + (1− βkl)(Tj(kl)vkl − ykl)⟩

= lim sup
l→∞

(⟨f1(x∗)− x∗, xkl − x∗⟩+ ⟨f2(y∗)− y∗, ykl − y∗⟩).(3.21)

By the boundedness of {(xkl , ykl)} in H∗, there exists a point (p, q) ∈ H∗ and a

subsequence {(xk′l , yk′l)} of {(xkl , ykl)} in H∗ such that (xk′l , yk
′
l
) ⇀ (p, q) and

lim sup
l→∞

[⟨f1(x∗)− x∗, xkl − x∗⟩+ ⟨f2(y∗)− y∗, ykl − y∗⟩]

= lim
l→∞

[⟨f1(x∗)− x∗, xk′l − x∗⟩+ ⟨f2(y∗)− y∗, yk′l − y∗⟩].(3.22)

Since (p, q) ∈ ωw(xk′l , yk
′
l
) ⊂ ωw(xkl , ykl) ⊂ Γ, it directly follows from (3.3), (3.21)

and (3.22) that

lim sup
l→∞

[⟨f1(x∗)− x∗, ũkl − x∗⟩+ ⟨f2(y∗)− y∗, ṽkl − y∗⟩]

≤ lim
l→∞

[⟨f1(x∗)− x∗, xk′l − x∗⟩+ ⟨f2(y∗)− y∗, yk′l − y∗⟩]

= ⟨f1(x∗)− x∗, p− x∗⟩+ ⟨f2(y∗)− y∗, q − y∗⟩
= −⟨(I − f1)x

∗ − (I − f2)y
∗, (p, q)− (x∗, y∗)⟩ ≤ 0,

i.e., lim supl→∞ δkl ≤ 0. Therefore it follows from Lemma 2.8 that limk→∞ sk = 0,

that is

lim
k→∞

(∥xk − x∗∥2 + ∥yk − y∗∥2) = 0,

which implies that {(xk, yk)} generated by Algorithm 3.1 converges strongly to

(x∗, y∗) ∈ Γ which is the unique solution of the VIP (3.3). □

Taking U1 = U2 = · · · = Up = U , T1 = T2 = · · · = Tq = T , the Algorithm 3.1

reduces to the following algorithm:

Algorithm 3.6. Let x0 ∈ H1, y0 ∈ H2 be arbitrary given and p, q ≥ 1 be integers.

Let f1 : H1 → H1 and f2 : H2 → H2 be two contractions with constants ρ1, ρ2 ∈
[0, 1). Let the sequences {αk}, {βk}, {tk} ⊂ [0, 1]. Assume that the kth iterate
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(xk, yk) ∈ H∗ has been constructed and Axk −Byk ̸= 0, then we calculate (k+1)th

iterate (xk+1, yk+1) in H∗ via the formula
uk = xk − γkA

∗(Axk −Byk),

xk+1 = tkf1(xk) + (1− tk)(αkuk + (1− αk)Uuk),

vk = yk + γkB
∗(Axk −Byk),

yk+1 = tkf2(yk) + (1− tk)(βkvk + (1− βk)Tvk), ∀ k ≥ 0.

Assume the stepsize γk is chosen in such a way that

γk ∈ (ε,min{η, 2∥Axk −Byk∥2

∥A∗(Axk −Byk)∥2 + ∥B∗(Axk −Byk)∥2
} − ε)

for all k ∈ Ω and small enough ε > 0, where the index set Ω = {k : Axk−Byk ̸= 0},

η =
2∥Axl −Byl∥2

∥A∗(Axl −Byl)∥2 + ∥B∗(Axl −Byl)∥2
, l = min

k∈Ω
{k},

otherwise, γk = γ (γ being any nonnegative value). If Axk = Byk = 0, then

uk = xk, vk = yk and{
xk+1 = tkf1(xk) + (1− tk)(αkxk + (1− αk)Uxk),

yk+1 = tkf2(yk) + (1− tk)(βkyk + (1− βk)Tyk).

By Theorem 3.5, we have the following result.

Corollary 3.7. Let H1,H2,H3 be real Hilbert spaces. Given two bounded linear

operators A : H1 → H3, B : H2 → H3, let U : H1 → H1 and T : H2 → H2 be

τ -demicontractive and µ-demicontractive, respectively. Suppose that I − U , I − T

are demiclosed at origin and the solution set Γ of the SEFP (1.1) is nonempty.

Assume that the following conditions are satisfied:

(i) ρ1, ρ2 ∈ [0, 1√
2
);

(ii) limk→∞ tk = 0 and
∑∞

k=0 tk = ∞;

(iii) τ < lim infk→∞ αk ≤ lim supk→∞ αk < 1;

(iv) ν < lim infk→∞ βk ≤ lim supk→∞ βk < 1.

Then the sequence {(xk, yk)} generated by Algorithm 3.6 converges strongly to

a solution (x∗, y∗) of the the SEFP (1.1) which is the unique solution of the VIP

(3.3).

Let αk = βk = wk, tk = αk(k ≥ 0) and ν = τ = 0. Since every 0-demicontractive

mapping is quasi-nonexpansive, from Corollary 3.7, we also have the following corol-

lary.

Corollary 3.8. Let H1,H2,H3 be real Hilbert spaces. Given two bounded linear

operators A : H1 → H3, B : H2 → H3, let U : H1 → H1 and T : H2 → H2 (1 ≤ j ≤
q) be quasi-nonexpansive with the solution set Γ of the SEFP (1.1) is nonempty.

Assume that the following conditions are satisfied:

(i) ρ1, ρ2 ∈ [0, 1√
2
);

(ii) limk→∞ αk = 0 and
∑∞

k=0 αk = ∞;

(iii) I − U , I − T are demiclosed at origin;
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(iv) wk ∈ (0, 1) such that 0 < lim infk→∞wk ≤ lim supk→∞wk < 1.

Then the sequence {(xk, yk)} generated by Algorithm 3.6 converges strongly to

a solution (x∗, y∗) of the the SEFP (1.1) which is the unique solution of the VIP

(3.3).

Remark 3.9. Theorem 3.5 extends and develops Theorem 3.2 in [17] from the

following aspects:

(a) Two quasi-nonexpansive mappings U and T are extended to two finite family

of demicontractive mappings {Ui}pi=1 and {Tj}qj=1, then the split equality fixed point

problem is extended to the multiple-set split equality common fixed-point problem.

(b) The parameter sequence {ωk} is replaced by two different parameter sequences

{αk} and {βk}.
(c) The advantage of our choice (3.2) of the stepsizes {γk} lies in the fact that

no prior information about the operator norms of A and B is required, and still

convergence is guaranteed.

(d) In [17], the authors didn’t give the unique solution proof of the VIP (3.3),

which leads to an incomplete result. In this paper we prove it; see Step 1 in the

proof of Theorem 3.5.

Firstly we shall give an example which satisfies all the conditions of the solution

set Γ of the MSECFP (1.3), the mappings {Ui}pi=1, and {Tj}qj=1 in Theorem 3.5.

Example 3.10. Let H1 = H2 = H3 = ℓ2 and let i ∈ {1, 2, · · · , p} and j ∈
{1, 2, · · · , q} be arbitrarily fixed. Let Ui, Tj : ℓ2 → ℓ2 be defined by Uix = −2ix

and Tjx = −(2j +1)x for all x ∈ ℓ2. Then it is easy to see that ∩p
i=1F (Ui) = {0} =

∩q
j=1F (Tj) and A0 = 0 = B0. Thus Γ = {(0, 0)} ̸= ∅. Also Ui is τi-demicontractive

and Tj is νj-demicontractive by Example 2.5 in [11], where τi =
2i−1
2i+1 and νj =

j
j+1 ;

then I − Ui and I − Tj are demiclosed at 0 by Remark 2.12 in [11].
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