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A CYCLIC VISCOSITY APPROXIMATION METHOD
FOR THE MULTIPLE-SET SPLIT EQUALITY
COMMON FIXED-POINT PROBLEM

YAQIN WANG*, XIAOLI FANG', AND TAE-HWA KIM?

ABSTRACT. In this paper, we consider a newly cyclic viscosity approximation

method to approximate the multiple-set split common fixed point problem gov-

erned by demicontractive mappings which are generalization of quasi-nonexpansive
mappings in Hilbert spaces, and we prove that the generated sequence converges

strongly to a solution of this problem. The results obtained in this paper gener-

alize and improve the recent ones announced by many others.

1. INTRODUCTION

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was intro-
duced by Censor and Elfving [2] in 1994 for modeling inverse problems which arise
from phase retrievals and in medical imagine reconstruction. Recently, it has been
found that the SFP can be used in many areas such as image restoration, computer
tomograph, and radiation therapy treatment planning. Some methods have been
proposed to solve split feasibility problems; see, for instance, [1, 14, 15, 16].

In 2013, Moudafi and Al-Shemas [9] introduced the following new split fea-
sibility problem, which is called the split equality fixed point problem (SEFP).
Let Hy, Hs, Hs be real Hilbert spaces, let A : Hy — Hs3, B : Hy — Hs be two
bounded linear operators, let U : Hy — Hy and T : Hy — Hs be two firmly
quasi-nonexpansive mappings. The SEFP in [9] is to

(1.1) find z* € F(U), y* € F(T) such that Ax™ = By".

The interest is to cover many situations, for instance, in decomposition methods for
PDF’s, applications in game theory and in intensity-modulated radiation therapy
(IMRT).

For solving the SEFP (1.1), Moudafi and Al-Shemas [9] introduced the following
simultaneous iterative method:

{ Tp1 = Uz — A" (Azy, — Byy)),
Yk+1 = T'(yx + v B*(Azy — Byg)),
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for firmly quasi-nonexpansive mappings U and T', where 7 € (e, ﬁ —€), 4, \B
stand for the spectral radiuses of A*A and B*B, respectively.

Recently, Zhao and Wang [17] proposed the following viscosity iterative algorithm
for solving the SEFP (1.1):

up = v — YA (Az — Byr),

(1‘2) Tht+1 = Ckal(xk) + (1 — Ozk)((l — wk)uk + ’U)kU’U,k),
vk = Yk + W B*(Axg — Byy),
Yer1 = arfo(ye) + (1 — ar) (1 — wy)vp + wpTor),

where f1 : Hy — Hi and fs : Hy — Ho are two contractions, U : Hy — H; and
T : Hy — H, are quasi-nonexpansive. They proved a strong convergence result of
the algorithm (1.2) in Hilbert spaces.

On the other hand, the multiple-set split equality common fixed-point problem
(MSECFP) of quasi-nonexpansive mappings studied by Zhao and Wang [18] is to

(1.3) find 2" € N{_, F(U;), y* € Nj_ F(T;) such that Az = By,

where p,q > 1 are integers. They introduced two mixed cyclic and parallel itera-
tive algorithms for solving the MSECFP (1.3) of quasi-nonexpansive mappings and
proved the weak convergence of these two algorithms.

Inspired and motivated by the works mentioned above, we consider a newly cyclic
viscosity approximation method for the MSECFP (1.3) of demicontractive map-
pings in Hilbert spaces. Under some mild assumptions we establish some strong
convergence theorems.

2. PRELIMINARIES

Throughout this paper, we always assume that Hy, Ho, Hs are real Hilbert spaces
and let N and R be the set of positive integers and real numbers, respectively. We use
— and — to denote strong and weak convergence, respectively, and F'(T") denotes
the set of the fixed points of a mapping T. We use wyxp = {z : 3 T — x} to
stand for the weak w-limit set of {x;} and use I" to stand for the solution set of the
MSECFP (1.3), i.e.,

I:={(z,y)| z e _FU;), y € ﬂ?le(Tj) such that Ax = By}.

Let C be a nonempty closed convex subset of a Hilbert space H. The metric (or
nearest point) projection Po from H onto C'is defined as follows: Given x € H, the
unique point Pox € C satisfies the property

r — Poz|| = inf ||z — vy||.

| call = inf |z -yl

It is well known [10] that Pc is a nonexpansive mapping and is characterized by the
inequality

(2.1) Pox € C, (x — Pox,y — Pox) <0, VyeC.
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Definition 2.1. Let H be a real Hilbert space. A mapping T : H — H is said to
be
(i) Lipschitzian if there exists a constant p > 0 such that

[Tz =Tyl < plle —yll, Va,yeH,
especially, if p € (0,1), T is said to be a contraction with constant p;
(ii) nonexpansive if |Tz — Ty|| < ||z — y||, V z,y € H;
(iii) quasi-nonexpansive if F'(T) # @ and if | Tx—q|| < ||z—q|, Y2 € H,q € F(T);
(iv) firmly nonexpansive if

1Tz = Ty|* < ||z =yl = (I = T)z = (I =Tyl ¥ a,y€ H;
or equivalently,

(v) p-demicontractive if F(T) # () and the exists a constant p € (—oo, 1) such
that
T2 —ql* < llz — ql® + plle = Tz|*, V2 € H,qeF(T).

Remark 2.2. Notice that a 0-demicontractive mapping is exactly quasi-nonexpansive.
In particular, we say that it is quasi-strictly pseudo-contractive [7] if 0 < p < 1.
Moreover, if u < 0, every u-demicontractive mapping becomes quasi-nonexpansive.
Therefore, it is sufficient to only take p € (0,1) in (v) of Definition 2.1 in Hilbert
spaces. However, as seen in (iv) of Definition 2.1, every firmly quasi-nonexpansive
mapping (often called to be a directed operator [3]) is obvious (—1)-demicontractive.

It is worth noting that the class of demicontractive mappings is more general than
the class of quasi-nonexpansive mappings and the class of firmly quasi-nonexpansive
mappings.

Definition 2.3. Let C' be a nonempty closed convex subset of a real Hilbert space
H. A mapping F': C — H is said to be

(i) monotone if (Fx — Fy,x —y) >0, Vx,y € C,

(ii) strictly monotone if (Fz — Fy,x —y) >0, Vz,y € C,x # y;

(iii) m-strongly monotone if there exists a constant > 0 such that

<F$—Fy,l'—y>277|‘x—y||2, Vm,yGC.

Definition 2.4. Let H be a real Hilbert space. An operator T': H — H is called
demiclosed at origin if, for any sequence {zy} which converges weakly to z, and if
the sequence {T'x} converges strongly to 0, then Tx = 0.

As a special case of the demicloseness principle on uniformly convex Banach
spaces given by [4], we know that if C'is a nonempty closed convex subset of a Hilbert
space H, and T : C' — H is a nonexpansive mapping. Then the mapping I — T is
demiclosed on C'. Now the following question is naturally raised: If T': C — H is
quasi-nonexpansive, is I — T still demiclosed on C? The answer is negative even at
0 as follows.
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Example 2.5. ([11]; Example 2.11). The mapping T : [0, 1] — [0, 1] is defined by
z 1
To={ 5 w0l
rsinmr, x € (3,1].
Then T is a quasi-nonexpansive mapping, but I — T is not demiclosed at 0.

Lemma 2.6. ([8]). Let T be a u-demicontractive self mapping on H with F(T) # ()
and set Ty, = (1 —a)l +aT for o € [0,1]. Then, Ty is quasi-nonexpansive provided
that o € [0,1 — p] and

IToz = qll? < llz — al? = a(1 = i — @)z = Ta%, ¥ (z,q) € H x F(T).

Lemma 2.7. ([7]; Proposition 2.1). Assume C'is a closed convex subset of a Hilbert
space H. Let T : C — C be a self-mapping of C. If T is a p-demicontractive
mapping (which is also called p-quasi-strict pseudo-contraction in [7]), then the
fized point set F(T) is closed and convex.

Lemma 2.8. ([5]). Assume {s} is a sequence of nonnegative real numbers such
that

{ Skt1 < (1 — Ag)sk + A0k,
Sp1 < S — Mk + i,

where {\r} is a sequence in (0,1), {nr} is a sequence of nonnegative real numbers
and {0} and {u} are two sequences in R such that

() S5, M = oo

(i) Tt soc g1 = 0

(iii) limy oo m, = 0 implies limsup;_, , O, < 0 for any subsequence {k;} C {k}.
Then limy,_, o s = 0.

Lemma 2.9. ([6]). Let X and Y be Banach spaces, A be a continuous linear
operator from X toY. Then A is weakly continuous.

Lemma 2.10. ([13]; Proposition 2.7). Let H be a real Hilbert space. Suppose that
F : H — H is k-Lipschitzian and n-strongly monotone over a closed convexr set

C C H. Then, the following VIP(F,C)
(v—u", F(u")) =0, Vvel

has its unique solution u* € C.

3. MAIN RESULTS

In this section, we introduce a new cyclic viscosity approximation method for the
MSECFP (1.3) of demicontractive mappings and prove the strong convergence of
this algorithm.

Given a positive integer p, the p-mod function i takes values in the set {1,2,--- ,p}

w={r "

r, 0 <r <p,

as
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for £k = np 4+ r for some integers n > 0 and 0 < r < p. Given a positive integer ¢,
the g-mod function j can be also defined in a similar way.
Put H* = Hy x Hs. Define the inner product of H* as follows:

((w1,91), (22, y2)) = (21, 22) + (Y1,92), ¥ (z1,91), (22,92) € H".

It is easy to see that H* is also a real Hilbert space and

1 *
G, )l = ()*+ w2, ¥ (z,y) € H.

Algorithm 3.1. Let xy € Hy, yo € Ho be arbitrary given and p,q > 1 be integers.
Let f1 : Hi — Hi and f> : Ho — Hs be two contractions with constants p1, py €
[0,1). Let the sequences {ag}, {Bk}, {tx} C [0,1]. Assume that the kth iterate
xr € Hy, yr € Ho has been constructed and Axp — By # 0, then we calculate
(k + 1)th iterate (xg4+1, Yk+1) via the formula

up =z, — A" (Azg — Byg),

Tr41 = tefir(zg) + (1 — te) (apug + (1 — ag) Uiy uk),

vp = Yk + 1 B*(Azy — Byg),

Ye+1 = tefo(yr) + (1 — t) (Bevk + (1 — Bi)Tjwyve), Yk =0,

Assume the stepsize 7 is chosen in such a way that
2|| Azy, — Byg? e

Az — Byg)||? + || B*(Azy, — Byy)||?

for all k£ € Q and small enough € > 0, where the index set Q = {k : Axy — Byy # 0},

2|| Az — Byi? :
= A A — Bu)P + 1B+ (Aw - B> '~ EeR
otherwise, 7 = 7 (7 being any nonnegative value). If Az = By = 0, then

(3.1)

(3.2) Yk € (g, min{n, | A*(

Ui

U = Tk, Uk = Yy and

{ Tp+1 = tifi(zr) + (1 — ) (agzr + (1 — ar) Uiy Tn),
Yk1 = tifa(yr) + (1 —tx) (Bryr + (1 = Br) Ty Yk )-

Lemma 3.2. Assume the solution set I of (1.3) is nonempty. Then {7y} defined
by (3.2) is well defined and bounded.

Proof. Take (z,y) €T, ie,zent_F(U,;), y € ﬁgle(Tj) and Az = By. We have
(A*(Axy, — Byg), xx — z) = (Axp — Byy, Az, — Az)
and

(B*(Azy — Byk),y — yr) = (Azy, — Byy, By — Byy).
By adding the two above equalities and by taking Az = By into account, we obtain

|Azy — Byg|* = (A*(Axg — Byg), vk — @) + (B*(Azy, — Byy),y — yk)
< ||A*(Azg — Byp)llllzx — 2l + | B*(Azr — Byr)lllly — yell-

Consequently, for k € Q, that is, || Az — Byg|| > 0, we have ||A*(Azy — Byg)|| # 0
or ||B*(Ax, — Byg)|| # 0. And since

1A* (Azy — Byp)|* < || A*|*|| Azy — Bys®
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and
1B*(Azy — Byi)|I* < | B*|*| Az — By,
we have
2|| Az — Buyg? N 2 _ 2
|A*(Azy — Byg)[|? + | B*(Azy — Byx)|> = A2+ B> [AI>+[B]*

Thus we can choose small enough ¢ € (0, W)' This leads that {7} is well

defined. From (3.2) we obtain v, € (e, — ¢) and 7 is a fixed positive number, so
{7} is bounded. O

Lemma 3.3. Given two bounded linear operators A : Hi — Hs, B : Hy — Hgs, let
U :H — H (1 <i<p)andTj: Hy — Hy (1 < j < q) be 1-demicontractive
and vj-demicontractive, respectively. Assume that the solution set I' of (1.3) is
nonempty. Then I" is a nonempty closed convex set.

Proof. By Lemma 2.7 we have F(T;) (1 < i < p) and F(Uj;) (1 < j < q) are both
closed convex subsets, and since A and B are both linear, it is easy to see that I' is
a closed convex subset in H*. g

Lemma 3.4. ([12]; Lemma 3.1). Let {u} be a bounded sequence of a Hilbert space
H. Let p be a positive integer and I = {1,2,--- ,p}. Iflimg_ oo [[urr1 —ugkl| = 0 and
¥ € wyuy, then for any i € I, there exists a subsequence {uy,, } of {ur}, depending
on i, such that i(ky,) = i for all m and up, — x*, where i denotes the p-mod
function.

Theorem 3.5. Let Hy, Hy, H3 be real Hilbert spaces. Given two bounded linear
operators A : Hy — H3, B : Hy — Hs, let Uy : Hi — Hy (1 <i<p) and T : Hy —
Hy (1 < j < gq) be 1y-demicontractive and v;-demicontractive, respectively. Suppose
that I —U; (1 <i<p), I-T; (1 <j<gq) are demiclosed at origin and the solution
set I' of the MSECFP (1.3) is nonempty. Assume that the following conditions are
satisfied:

(i) p1, p2 €0, J5);

(i) img—yoo tx = 0 and Y ;2 oty = 00;

(iii) 7 < liminfg oo o < limsupy_,., o < 1;

(iv) v < liminfy_, o0 Br < limsupy,_,o Bk < 1,
where T = maxi<;<p T, V = MaxX1<j<q Vj.

Then the sequence {(x,yr)} C H* generated by Algorithm 3.1 converges strongly
to (x*,y*) € T' which is the unique solution of the following variational inequality
problem (VIP)

(3:3) (= f)z" (I = f2)y*), (z,y) — (2,y7)) 20, V(z,y) el
Proof. We divide the proof into several steps.
Step 1. The VIP (3.3) has a unique solution (z*,y*) € I'.

By Lemma 3.3, we know that I' is a nonempty closed convex subset in H*. Let
F:I' C H* — H* be defined by

F(l’,y) = ((I - fl)xa (I - f2)y)7 V(Zﬁ,y) el
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Putting p = max{p1, p2}, then from the condition (i) we have p € [0, %) For any
(x1,9y1), (z2,y2) € T, since fi; and fo are two contractions, we have

(F(x1,91) — F(22,92), (71,91) — (22, y2))

(I = fr)wr — (I = fr)ze, (I = f2)yr — (I = f2)ye), (21 — 22,51 — ¥2))
= ((I—=fo)zr — (I = f)ze,z1 —22) + (L = fo)yr — (I = f2)y2, y1 — y2)

> oy — @l = [ filzr) — filz2) |z — 22|
+Hlyr = v2ll® = Il f2(y1) — fa(v2)|lllva — w2l
> (1= p)(|ler — z2)® + llyr — v2l?)

= (1=pll(z1,y1) — (x2,52)]*

which implies that F' is (1 — p)-strongly monotone. And

[ F(21,91) — F(z2, y2)||2

= (I = fr)ar = (I = fr)az, (I = fo)yn — (I = f2)2)|
= I = fr)ar = (I = fo)zal® + | = f2)yr = (I = f2)wel?
(L+ p1)?[lar = 2al” + (1 + p2)?[lyr — ol
(14 p)*[[(@1,51) — (w2, 92) |7,
which implies that F is (1 + p)2-Lipschitzian. Therefore, it follows from Lemma
2.10 that the VIP (3.3) has a unique solution (z*,y*) € T.

Step 2. The sequences {z;} and {y;} are bounded.

Since (z*,y*) € T, then 2* € NY_, F(U;), y* € ﬁgle(Tj) and Ax* = By*. By
(3.1) we have

<
<

g — ¥
= |lop — wA*(Azy, — Byy) — *|?
= o — 2*|* = 29wy, — ¥, A*(Awy — Byp)) + 1il| A" (Azy, — Byy)|)?
= o — 2*||* — 2y (Axy, — Ax*, Axy — Byg) + i ||A*(Azy — By %,

and
loe — v
= |lyx + wB*(Azp — Byy) — y*|1?
vk — ™ 1I? + 27k (yx — y*, B*(Azy, — Byy)) + 72| B*(Azx, — By)|?
= |y — ¥*|I* + 2 (Byx — By*, Az, — Byx) + 77| B*(Azy — By)|*.
By adding the above equalities and Ax* = By*, we have
g, — 2*|1° + [Jog — "I
= ok — 2** + lyk — ¥*1I* — 2]l Azy — Byi?
(3.4) — (|| A*(Azy, — Byg)||” + | B*(Azi — Byg)|*)].
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Put u = apug + (1 — akz)Ui(k)Uk and vy, = Bror + (1 — 5kz)Tj(k)Uk- Using (ii) and
Lemma 2.6 we have

a, — 2*|* = |lawue + (1 — o) Uigyur, — *||?
< flu = 27 = (1= ag) (e — 7| Uigryur — )
(3.5) < g = 21 = (1 = ag)(an — )| Usryur, — ugl|?
(3.6) < flug — 2
for all sufficiently large k. Similarly, we obtain
1Tk — 12
(3.7) < ok = y* 117 = (1= Be) (B = I Tjmyvr — vkl
(3.8) < low =y

for all sufficiently large k. It follows from (3.1), (3.5) and the convexity of || - ||? that

e —2* < tllfalon) — 2+ (1= )@ — 2
< telprllak — 27| + 1A = 212+ (1= te) (lug — 27|
—(1 = ag)(ar — DUy ur — ugll®)
< 2t ok — P 4 2exllf1 (@) — 27+ (1=t g — 27

(3.9) —(1 = ti)(1 = o) (e — DI Uiryue — wil.
Replacing the role of (3.5) with (3.7), we similarly obtain

lyrsr — v 117 < 2tep®lur — v* (1P + 26l fay™) — v 1P + (1 — ti) lor — "I
(3.10) —(1 = 1) (1 = Br)(Be — Ty v — vill*-
It follows from (3.4), (3.9) and (3.10) that

1 = 21 + lynr — y* |12

< 26507 ([lze — 2P + llye — ¥ 1) + 2t(| f1 (%) — 27|
Hf205") = v 117) + (U= te) (lug — 2*[1> + [Jox — y*[1?)
—(1 =) (1 — ag) (= )| Usggyur — ug?
—(1 = ti)(1 = Br)(Be — I Ty vr — vkl

< U=tk (=20 (lxn — 2* 1> + llyw — v*[I7)

2t ([| () = 2|2 + [ f(y™) — v IP)

—(1 = t)k[2l| Ay — Byi|?

k(|| A*(Azy, — Byp)||* + || B* (Azx — By)|1?)]
—(1 = ti)(1 = o) (e — DUy — i )?

—(1 =) (1 = Br) (B — )| Tjyvr — vill*.

Then, setting s = |z — 2*||? + |Jyx — y*||?, we get

sie1 < [1—tu(1 = 20%)]sp + 2t (| f (@) — 21 + [ foy") = v7IP)
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—(1 = t1)y&[2| Azg — By |?
k(| A*(Az, — By)||* + || B*(Azy, — Byx)|1*)]
—(1=t1)(1 = ag)(an — )| Usgyur — ug?
(3.11) —(1 = t&)(1 = Br) (Be — )| Tjkyvr — vill”

2(IAu(=") =21 + 1 f2(y") = w°*)

< [ —tr(1—2p"))sp + tr(1 — 2p?) 1—2p?

It follows from induction that

2(|LA1 (%) — 2P + [ f2(y*) — y*||2)}

Sk4+1 < maX{SO7 1— 2[)2

, VEk =0,
i.e., {si} is bounded. So {z} and {yx} are also bounded.

Step 3. The sequence {(zk,yr)} converges strongly to (z*,y*).

It follows from (3.1) and (3.6) that

41 — 22

< Gl Aulen) — 2N+ 2t (1 — t) (fr(en) — 2%, ug — 2%)
(1 — t)?|ug — 22

< Gl Aler) — 21 + (1= ) (1 (er) = frla) ) + i, — 2*[?)
+(1 — )2 — ¥ + 265 (1 — t) (f1r(2¥) — 2%, g, — %)

< il fi(mn) — 2P+ (1= t) (pF o — ¥ )1 + [Jux — 2*|]?)
+(1 — )2 |lug — 2| + 2t5(1 — t) (fr(a®) — 2™, Uy — )

< (1= t)p® [l — 27 + (1= tg) ug, — 2|

(3.12) il fuler) — 2 + 2601 — t) (fr(z") — 2%, — ).

Similarly we have

||yk+1 —y*H2
2 * (12 * (12 2 * (12
< (X =t)pllyk — v 1T+ (= t)lloe — ¥ 1° + till f2(ur) — ¥7 ||
(3.13) +2t(1 — te) (fo(y") — 4", U — ¥").

By (3.4), (3.12) and (3.13) we get

serr < tr(L—te)p*(lak — 21> + llye — v*I°)

+(1 = tr) (lur — 2| + [lvw — y*[1%)

+tr (I () — 217 + 1 f2 () — v*11%)

+2t5 (1 — tg) ((fr(z™) — 2™, U — ) + (fa(y") —y", 0 — ¥"))
[1— ti(1 — (1= tx)p™)]sk + tr (I fr(zw) — 21> + Il f2(wr) — ¥*)1?)
+2t(1 = te) ((fr(z™) — 2", — ™) + (f2(y") — ¥" 0k — ¥"))
(3.14) = (1= Ag)sk + Akl

IN
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where A\, = t(1 — (1 — t)p?),
te([Lf1(z) — 21 + | f2(ye) — y*11%)

% = 1 —(1—tg)p?
L 20— ) (N — 2% i — 27) + {f(y") — ", B — 7))
1= (1—tg)p? '

From (3.1), (3.5) and (3.7) we have

tll f1 (k) — 2”4 (1 — t) [up — 2*|
tell f1 (k) — 2| + (1 = t) (lup — 2*||
—(1 = o) (e — D Uigeyur — urll?),
tell fa(yr) = v [I” + (1 = t) [0 — "I
tell fa(yr) = y*[I° + (1 = tx) (lox — |
—(1 = Br) (Be = I Tjryvr — vill)-

From the above two inequalities and (3.4) we obtain

1 — 2"

IA A

lys1 — 2|

IA A

sk < flue — 2|+ ok — ¥ 12 + el Fi () — ¥ + [ f2(ur) — o)

—(1 = t5) (1 = o) (e — T) | Uiy e — |

+(1 = Be)(Br — )1 Ty ve — vill)

s+ te([| A1 (en) — 212 + [ falwr) — v*II°) — (2] Azy, — Byi|)?

k(|| A*(Azy, — Byy)||* + || B* (Azy — Byg)|1?)]

—(1 = tp)[(1 = ) (s — 7)Uiryun — ug)?

+(L = B) (B — V)| Tjry v — vill]

(3.15) S Sk — Mkt Hks

where py, = ti (|| f1(zx) — ¥ + || f2(yr) — v*I1%),

me = w2 Az, — Byrl* — (| A*(Azy, — By)||* + | B*(Azi — Byi)[?))

+(1 = t)[(1 = ag) (o — T)|Usgoyur, — ugel?
+(1 = Bk)(Br — V)| Tjryvx — vill]-

It follows from the condition (ii) that YA = oo and limg_o pr = 0 due to the

boundedness of {z;} and {yx}.
Next we show that, for any subsequence {k;} C {k},

IN

lim 7y, =0 = limsupd, <0.
l—=o0 l—o0

Indeed, for any {k;} C {k} and lim;_, ng, = 0, by the conditions (ii)-(iv), for any
ie{l1,2,---,p},7 €{1,2,---,q} we have

(3.16) Jim lur, — Uiyyur, || = 0,
(3'17) ll—lglo Hvkz - Tj(kz)vkl H =0.
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And due to the assumption (3.2) on {7} and lim;_, 1, = 0, we have
e(|A*(Azy, — Byy,)II” + |B* (Azk, — Byw,)|?)
(3.18) < 2||Azy, — Byg I = v, (1A% (Azy, — Bys,)|I?
+|B*(Azy, — Byg,)IIP)-
Since limy_,o Nk, = 0, the right side of (3.18) immediately converges to zero, i.e.,

lim (|| A" (Azy, — Byw)|I* + | B (Azy, — Byi,)|*) = 0.

Therefore, in view of (3.18) again, we readily see
lim || Azy, — Byg,||? = 0.
l—00

Furthermore, we get

(3.19) lim |lug, — x| = lim g, ||A*(Azy, — Byy,)|| =0,
=00 l—00

(3.20) lim |lvg, — yx, || = lim ~, || B*(Azy, — By,)|| = 0.
l—00 l—00

Then it follows from (3.1), (3.16), (3.19) and the condition (ii) that

”xkl-f-l - xkl”
[k, f1(r,) + (1 = tg,) (g ug, + (1 — ag) Uiy k) — T, ||

< tillfi(@e) — ogll + (1= te) o [lur, — @k, ||
+(1 - tkl)(l - akl)”Ui(kl)uk‘z - xk’lH
< tlefl(a:kl) - wsz + Hukz - xkz” + HUi(kl)ukl - ukl” — 0.

Similarly, by (3.1), (3.17), (3.20) and the condition (ii) we have |lyg,+1 — yg, || — O.
Now we claim that wy,(zg,,y,,) C I'. In fact, for any (z,9) € ww(x,, yr,), we get
T € wy(rk,) and ¥ € wy(yg,). Since limy_,o ||2g,+1 — 2k, || = 0, use Lemma 3.4 to
choose a subsequence {m;} C {k;} (depending on i), for any (fixed) i € {1,2,--- ,p},
such that x,,, — 2 and i(m;) = ¢ for all [. And by (3.19) we have u,,, — Z. It turns
out that

ll_lglo ”uml - Uiumz H = ll_lfgo Humz - Ui(ml)umzH =0.

Since I — Uj; is demiclosed at the origin, we have z € F(U;) for all 1 < i < p, that is,
T € Nt_F(U;). Similarly, we can prove that § € ﬂ;’:lF(Tj). On the other hand, it
follows from (Z,y) € wy(xk,, yk,) and Lemma 2.9 that Az — By € wy,(ATk, — By, ),
and the weakly lower semicontinuity of the norm imply

|AZ — By|| < liminf ||Azy, — Byy,|| = 0.
l—o0
Hence (z,9) € T, i.e., wy (@K, yk,) C T It is easy to see that limy_,oo (1—(1—t5)p?) =

1 — p? and limg_yo0 ti (|| f1(zk) — 2*[|* + || fo(yx) — v*||?) = 0. Finally, completing
lim sup;_,, 05, < 0, we only need to prove

i sup((/o(2") =, %) + (aly) = 9" Ty =97) <00
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Indeed, from (3.16)-(3.20), for any ¢ € {1,2,--- ,p},5 € {1,2,--- ,q}, we have
Jn (Uigyur, = 2 | = Hm {1700y 0 = yrll = 0,

furthermore, we obtain

li?ﬂ sup[(fi(z™) — 2, U, — ) + (fo(y") — ¥, Uk, — ¥")]
— 1i§nsup[<f1(f'3*) — ", agup, + (1 — g ) Uiy ur, — 7)
+(f2(y") =y, Bryvr, + (1 = Br) i)y Ve, — 7))
S llgnsup[<f1($*) - 117 aaklxk‘l + (1 - ak‘l)$k‘l - ‘T*>
+<f2(y*) - y*vﬁklykl + (1 - 5kl)ykl - y*>]
+ 11?1 sup(fi(z*) — 7, ag, (ug, — z,) + (1 — ag,) (Uir uty — Txy))
+h§n sup(fg(y*) - y*’ﬁkz (Ukz - yk‘z) ( ﬁkz)( 5 (k) Yk, — ykz)>
(3.21) = limsup((fi(z*) — " 2k, — ) + (f2(¥") = ¥" yk, — ¥"))-

l—o00

By the boundedness of {(xy,,yr,)} in H*, there exists a point (p,q) € H* and a
subsequence {(zx/, yir)} of {(wk,,yr,)} in H* such that (z,yx) — (p,q) and

limsup[(fi(z*) — 2", xp, — ") + (fo(v") — v", yk, — V)]

l—o0

(322) = Jm[(Ae") -2 ag o)+ (B(r") vy — )

Since (p,q) € wuw(@hs Yry) C wu(Th, yr,) C T, it directly follows from (3.3), (3.21)
and (3.22) that

limsup[(fi(z*) — *, ap, — &%) + (fo(y*) — y*, 0, — y*)]

l—00
Jim [(fy(2%) = 2%, agy — 27) + (f2(y") = y"  ypy — y7)]
= <f1( ) =2t p—a2") + (fo(y") — ¥ a—y)
= —((I—-fu)z" = (I — f)y" (p,q) — (x",y")) <0,

i.e., limsup; ,., 0, < 0. Therefore it follows from Lemma 2.8 that limj_,, s = 0,
that is

IN

lim ([|lzy, — 2> + [y — y*|1%) =
k—o00

which implies that {(x,yr)} generated by Algorithm 3.1 converges strongly to
(z*,y*) € I' which is the unique solution of the VIP (3.3). O

Taking Uy = Uy =---=U, =U, Ty =Ty = --- =T, =T, the Algorithm 3.1
reduces to the following algorithm:

Algorithm 3.6. Let x¢ € Hy, yo € Hs be arbitrary given and p, ¢ > 1 be integers.
Let f1 : Hi — Hy and fo : Ho — Hs be two contractions with constants pi, p2 €
[0,1). Let the sequences {ax},{Br},{tx} C [0,1]. Assume that the kth iterate
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(zk,yr) € H* has been constructed and Az, — By # 0, then we calculate (k+ 1)th
iterate (zx41, Yk+1) in H* via the formula
up =z — WA (Azg — Byg),
Tyl = tkfl(xk) + (1 — tk)(akuk + (1 — ak)Uuk),
Ok = Yk + 1B (Azr — Byg),
Yrr1 = tefa(yr) + (1 — ) (Bevx + (1 — Bp)Tox), Yk >0,
Assume the stepsize 7 is chosen in such a way that
- 2|| Ay, — By |®
r € (€, minqn, —€
e € (e e~ By P + 1B (Ase — B2~
for all k£ € Q and small enough € > 0, where the index set = {k : Az — By # 0},
n— 2||Az; — Byi?
|A*(Az; — By)||* + || B*(Az; — By)||*’
otherwise, 74 = 7 (7 being any nonnegative value). If Axp = By = 0, then
U = Tk, Vi = Yg and
{ Tr1 = tefr(zn) + (1 — tg) (arwr + (1 — ag)Usy),
Yrtr = tefa(yr) + (1 — 1) (Bryr + (L = Br) Tyi)-

By Theorem 3.5, we have the following result.

| = min{k
min{k},

Corollary 3.7. Let Hi, Ho, H3 be real Hilbert spaces. Given two bounded linear
operators A : Hy — H3,B : Hy — Hs, let U : HH — Hy and T : Hy — Hy be
T-demicontractive and p-demicontractive, respectively. Suppose that I —U , I —T
are demiclosed at origin and the solution set I' of the SEFP (1.1) is nonempty.
Assume that the following conditions are satisfied:

(i) p1, p2 €0, 75);

(i) img_yoo ty = 0 and Y ;2 oty = 00;

(iii) 7 < liminfg oo o < limsupy_,o, o < 1;

(iv) v < liminfy_, o0 B < limsupy_,o Bk < 1.

Then the sequence {(zk,yr)} generated by Algorithm 3.6 converges strongly to
a solution (x*,y*) of the the SEFP (1.1) which is the unique solution of the VIP

(3.3).

Let ay = B = wg, tx, = ax(k > 0) and v = 7 = 0. Since every 0-demicontractive
mapping is quasi-nonexpansive, from Corollary 3.7, we also have the following corol-
lary.

Corollary 3.8. Let Hy, Ho, H3 be real Hilbert spaces. Given two bounded linear
operators A: Hy — H3,B: Hy — Hs, let U : H — Hy and T : Hy — Hy (1 <j <
q) be quasi-nonexpansive with the solution set I' of the SEFP (1.1) is nonempty.
Assume that the following conditions are satisfied:

(i) p1, p2 €0, 75);

(i) limg—yoo ap = 0 and >3~ o = 00;

(iii) I = U , I =T are demiclosed at origin;
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(iv) wg € (0,1) such that 0 < liminfy_, wi < limsupy_, ., wr < 1.
Then the sequence {(xk,yr)} generated by Algorithm 3.6 converges strongly to
a solution (x*,y*) of the the SEFP (1.1) which is the unique solution of the VIP

(3.3).

Remark 3.9. Theorem 3.5 extends and develops Theorem 3.2 in [17] from the
following aspects:

(a) Two quasi-nonexpansive mappings U and T are extended to two finite family
of demicontractive mappings {U; }!_; and {7} };1-:1, then the split equality fixed point
problem is extended to the multiple-set split equality common fixed-point problem.

(b) The parameter sequence {wy } is replaced by two different parameter sequences
{ax} and {f}.

(c) The advantage of our choice (3.2) of the stepsizes {7} lies in the fact that
no prior information about the operator norms of A and B is required, and still
convergence is guaranteed.

(d) In [17], the authors didn’t give the unique solution proof of the VIP (3.3),
which leads to an incomplete result. In this paper we prove it; see Step 1 in the
proof of Theorem 3.5.

Firstly we shall give an example which satisfies all the conditions of the solution
set I' of the MSECFP (1.3), the mappings {U;};_,, and {T;}j_; in Theorem 3.5.

Example 3.10. Let Hy = Hy = H3z = /{5 and let i € {1,2,--- ,p} and j €
{1,2,--- ,q} be arbitrarily fixed. Let U;, T} : {3 — {5 be defined by Ujz = —2iz
and Tjz = —(2j + 1)x for all x € £5. Then it is easy to see that Nt_, F(U;) = {0} =
ﬁ?le(Tj) and A0 =0 = B0. Thus I' = {(0,0)} # 0. Also U; is 7;-demicontractive

and Tj is vj-demicontractive by Example 2.5 in [11], where 7; = 32—3 and v; =

then I — U; and I — T are demiclosed at 0 by Remark 2.12 in [11].

J .
L
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