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Fix(f) := {x ∈ X | x = f(x)} - the set of all fixed points of f .

The concept of w-distance was introduced by Kada et. al. [11]) as follows.

Definition 1.1. Let (X, d) be a metric space. Then w : X ×X → [0,∞) is called
a weak distance (briefly w-distance) on X if the following axioms are satisfied :

(1) w(x, z) ≤ w(x, y) + w(y, z), for any x, y, z ∈ X;
(2) for any x ∈ X, w(x, ·) : X → [0,∞) is lower semicontinuous;
(3) for any ε > 0, exists δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ implies

d(x, y) ≤ ε.

In this case, the triple (X, d,w) is called KST -space. We say, the space (X, d,w)
is complete KST -space if the metric space (X, d) is complete.

Some examples of w-distance can be find in [11].

For our main results we need the following crucial result for w-distance. (see;
[11, 26]).

Lemma 1.2. Let (X, d) be a metric space and let w be a w-distance on X. Let (xn)
and (yn) be two sequences in X, let (αn), (βn) be sequences in [0,+∞[ converging
to zero and let x, y, z ∈ X. Then the following hold:

(1) If w(xn, y) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then y = z.
(2) If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then (yn) converges to

z.
(3) If w(xn, xm) ≤ αn for any n,m ∈ N with m > n, then (xn) is a Cauchy

sequence.
(4) If w(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

Much work has been done on the existence of fixed points for contraction with
respect to w- distance. For example, see [1, 7, 13, 14, 27] and references therein.

A mapping φ : [0,∞) → [0,∞) is called a comparison function if it is increasing
and φn(t) → 0, n → ∞, for any t ∈ [0,∞). We denote by Φ, the class of the
corporation function φ : [0,∞) → [0,∞). For more details and examples, see
[3, 22].

We recall the following essential result.

Lemma 1.3. [3, 22] If φ : [0,∞) → [0,∞) is a comparison function, then:

(1) each iterate φk of φ, k ≥ 1, is also a comparison function;
(2) φ is continuous at 0;
(3) φ(t) < t, for any t > 0.

Next, we present the definition of α-ψ-contractive and α-admissible mappings
introduced by Samet et al. [25].

We denote with Ψ the family of nondecreasing functions ψ : [0,∞) → [0,∞) such
that
sum∞

n=1ψ
n(t) <∞ for each t > 0, where ψn is the n-th iterate of ψ. It is clear that

if Ψ ⊂ Φ and hence, by Lemma 1.3 (3), for ψ ∈ Ψ we have ψ(t) < t, for any t > 0.
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Definition 1.4 ([25]). Let (X, d) be a metric space and f : X → X be a given
mapping. We say that f is an α-ψ-contractive mapping if there exist two functions
α : X ×X → [0,∞) and ψ ∈ Ψ such that

(1.1) α(x, y)d(f(x), f(y)) ≤ ψ(d(x, y)), for all x, y ∈ X.

Remark 1.5. If f : X → X satisfies the Banach contraction principle, then f is an
α-ψ-contractive mapping. In particular, if α(x, y) = 1 for all x, y ∈ X and ψ(t) = kt
for all t ≥ 0 and some k ∈ [0, 1), then α-ψ-contractive mapping reduces to classical
Banach contraction mapping..

Definition 1.6 ([25]). Let f : X → X and α : X ×X → [0,∞). We say that f is
α-admissible if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(f(x), f(y)) ≥ 1.

Next let us recall some important results concerning α-ψ-contractive mappings.

Theorem 1.7 ([25]). Let (X, d) be a complete metric space and f : X → X be an
α-ψ-contractive mapping satisfying the following conditions:

(i) f is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, f(x0)) ≥ 1;
(iii) f is continuous.

Then, f has a fixed point.

Theorem 1.8 ([25]). Let (X, d) be a complete metric space and f : X → X be an
α-ψ-contractive mapping satisfying the following conditions:

(i) f is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, f(x0)) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈ X as n→ ∞, then α(xn, x) ≥ 1 for all n.

Then, f has a fixed point.

2. Fixed points for α-ψ-weakly contractive operators

First, let us give the following definition as a generalization of Definition 2.1.

Definition 2.1. Let (X, d,w) be a KST -space and f : X → X be a given operator.
We say that f is an α-ψ-weakly contractive operator if there exist two functions
α : X ×X → [0,∞) and ψ ∈ Ψ such that

(2.1) α(x, y)w(f(x), f(y)) ≤ ψ(w(x, y)), for all x, y ∈ X.

The first our main result is the following.

Theorem 2.2. Let (X, d,w) be a complete KST -space. Let f : X → X be an
α-ψ-weakly contractive operator satisfying the following conditions:

(i) f is α-admissible;
(ii) there exists x0 ∈ X such that α(x0, f(x0)) ≥ 1;
(iii) f is continuous.

Then, f has a fixed point.
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Proof. Let x0 ∈ X such that α(x0, f(x0)) ≥ 1 (such a point exist from condition
(ii)). We define the sequence (xn)n∈N in X by

xn+1 = f(xn), for all n ∈ N.
If xn = xn+1 for some n ∈ N, then x∗ = xn is a fixed point for f and thus the

proof is done.
Now, we assume that:

(2.2) xn ̸= xn+1for all n ∈ N.
Since f is α-admissible, we have:

α(x0, x1) = α(x0, f(x0)) ≥ 1 =⇒ α(f(x0), f(x1)) = α(x1, x2) ≥ 1.

By induction, we get:

(2.3) α(xn, xn+1) ≥ 1, for all n ∈ N.
Applying the inequality (2.1) with x = xn−1 and y = xn, and using (2.3), we

obtain:

w(xn, xn+1) = w(f(xn−1), f(xn)) ≤ α(xn−1, xn)w(f(xn−1), f(xn)) ≤ ψ(w(xn−1, xn)).

Then w(xn, xn+1) ≤ ψ(w(xn−1, xn)).
By induction, we obtain a sequence (xn)n∈N ∈ X such that:

(i) xn+1 = f(xn), for any n ∈ N;
(ii) w(xn, xn+1) ≤ ψn(w(x0, x1)), for all n ∈ N.
For n, p ∈ N, using (2) and the triangular inequality, we have:

w(xn, xn+p) ≤ w(xn, xn+1) + w(xn+1, xn+2) + · · ·+ w(xn+p−1, xn+p)

≤ ψn(w(x0, x1)) + ψn+1(w(x0, x1)) + · · ·+ ψn+p−1(w(x0, x1))

≤
∞∑
n=k

ψk(w(x0, x1)).

Since ψ ⊂ Φ we have that ψn(t) → 0 as n → ∞. Thus, using Lemma 1.3 we
obtain:

(2.4) lim
n→∞

w(xn, xn+p) ≤ lim
n→∞

∞∑
n=k

ψk(w(x0, x1))
d→ 0.

By Lemma 1.2(3), the sequence (xn)n∈N is a Cauchy sequence.

Since (X, d,w) is complete, there exists x∗ ∈ X such that limn→∞ xn
d→ x∗ as

n→ ∞. From the continuity of f , it follows that xn+1 = f(xn)
d→ f(x∗) as n→ ∞.

By the uniqueness of the limit, we get x∗ = f(x∗), that is, x∗ is a fixed point of f .
□

Replacing the continuity condition on f of Theorem 2.2 with an other suitable
condition, we obtained the following result.

Theorem 2.3. Let (X, d,w) be a complete KST -space. Let f : X → X be an
α-ψ-weakly contractive operator satisfying the following conditions:

(i) f is α-admissible;
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(ii) there exists x0 ∈ X such that α(x0, f(x0)) ≥ 1;
(iii) if (xn)n∈N is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and

xn
d→ x ∈ X as n→ ∞, then α(xn, x) ≥ 1 for all n.

Then the fixed point equation (3.3) has a solution.

Proof. Following the proof of Theorem 2.2, we know that (xn)n∈N is a Cauchy
sequence in the complete KST -space (X, d,w). Then, there exists x∗ ∈ X such

that xn
d→ x∗ as n → ∞. On the other hand we have the inequality α(xn, xn+1) ≥

1, for all n ∈ N and by (2.3) and the hypothesis (iii), we have:

(2.5) α(xn, x
∗) ≥ 1, for all n ∈ N.

Form,n ∈ N withm > n, from the proof of Theorem 2.2 and using the triangular
inequality, we have:

w(xn, xm) ≤
∞∑
n=k

ψk(w(x0, x1)).

Since (xn)n∈N converge to x∗ and w(xn, ·) is lower semicontinuous we have:

w(xn, x
∗) ≤ lim

m→∞
inf w(xn, xm) ≤ lim

m→∞

∞∑
n=k

ψk(w(x0, x1)) ≤
∞∑
n=k

ψk(w(x0, x1)).

Since ψ ⊂ Φ we have that ψn(t) → 0 as n→ ∞. Now, using Lemma 1.3 for every
n ∈ N we have that:

(2.6) w(xn, x
∗) ≤

∞∑
n=k

ψk(w(x0, x1))
d→ 0.

Let f(x∗) ∈ X and xn = f(xn−1). Then, by the definition of α-ψ-weakly con-
tractive operator and letting n→ ∞ we obtain the following result:

(2.7)

w(xn, f(x
∗)) = w(f(xn−1), f(x

∗))

≤ α(xn−1, x
∗)w(f(xn−1), f(x

∗))

≤ ψ(

∞∑
n=k

ψk(w(x0, x1)))

<

∞∑
n=k

ψk(w(x0, x1))
d→ 0.

Then, by (2.6) and (2.7), we have that w(xn, x
∗)

d→ 0 and w(xn, f(x
∗))

d→ 0.
Thus, using Lemma 1.2(1) we obtain that x∗ = f(x∗).

□

The following result assure the uniqueness of the fixed point on KST -spaces.

Theorem 2.4. Adding to the hypothesis of Theorem 2.2 (resp. Theorem 2.3) the
following condition:

(H) : for all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

we obtain uniqueness of the fixed point of f .
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Proof. Suppose that x∗ and y∗ are two fixed point of f . From the new condition
(H), there exists z ∈ X such that

(2.8) α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1.

Since f is α-admissible, from (2.8), we get:

(2.9) α(x∗, fn(z)) ≥ 1 and α(y∗, fn(z)) ≥ 1.

By the definition of α-ψ-weakly contractive operator and using (2.9) and (2.1),
we get:

w(x∗, fn(z)) = w(f(x∗), f(fn−1(z)))

≤ α(x∗, fn−1(z))w(f(x∗), f(fn−1(z)))

≤ ψ(w(x∗, fn−1(z))).

This imply that:

w(x∗, fn(z)) ≤ ψn−1(w(x∗, z)), for all n ∈ N.

Then, letting n→ ∞, we have:

(2.10) w(x∗, fn(z))
d→ 0.

For x∗ = f(x∗) we suppose that w(x∗, x∗) ̸= 0. Then we have:
w(x∗, x∗) = w(f(x∗), f(x∗)) ≤ α(x∗, x∗)w(f(x∗), f(x∗)) ≤ ψ(w(x∗, x∗)) < w(x∗, x∗).
Contradiction.

Then we have:

(2.11) w(x∗, x∗) = 0.

By (2.10) and (2.11) and using Lemma 1.2(1) we have that:

(2.12) fn(z)
d→ x∗.

Similarly, for y∗ = f(y∗) using (2.9) and (2.1), we get:

(2.13) fn(z)
d→ y∗ as n→ ∞.

Using (2.12) and (2.13), the uniqueness of the limit gives us x∗ = y∗. □

Now, we present some examples in support of our new results,

Example 2.5. Let (X, ∥ · ∥, w) be a KST-space, where X = R+ ∪ {0} is a normed
linear space. Let f : X → X be a mapping given by f(x) = 1

4x. Define a w-
distance on X by w(x, y) = ∥y∥. Let ψ : R+ → R+ be a nondecreasing function
such that ψ(t) = 1

2 t. We define the mapping α : X × X → R+ by α(x, y) ={
1, if x, y ∈ [0, 1],
0, otherwise.
Then all the hypotheses of Theorem 2.2 (respectively Theorem 2.3) are satisfied

and consequently, f has a fixed point.
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Proof. Clearly, (X, ∥·∥, w) is a completeKST space and, obviously, f is a continuous
mapping. We show that f is an α-admissible mapping. Let x, y ∈ X, if α(x, y) ≥ 1,
then x, y ∈ [0, 1]. On the other hand, for all x ∈ [0, 1] we have f(x) = 1

4x < x ≤ 1. It
follows that α(f(x), f(y)) ≥ 1. Hence, the assertion holds. Note that α(0, f(0)) ≥ 1.
Now, we check the validity of contractive condition (2.1). Let x, y ∈ X,then we have

α(x, y)w(f(x), f(y)) = w(f(x), f(y)) = ∥f(y)∥

=
∥∥∥1
4
y
∥∥∥ ≤ 1

2
∥y∥ =

1

2
w(x, y) = ψ(w(x, y)).

That is; the contractive condition satisfied. Now, if {xn} is a sequence on X such
that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n → +∞ then {xn} ⊂ [0, 1]
and hence x ∈ [0, 1]. This implies α(xn, x) ≤ 1 for all n ∈ N. Note that Theorem
(2.2) (also Theorem (2.3)) guarantees only the existence of a fixed point but not
the uniqueness. For x, y, z ∈ X such that α(x, z) ≥ 1, α(y, z) ≥ 1, result that
x, y, z ∈ [0, 1]. Then, on this example, is true the Theorem (2.4) and 0 is the only
fixed point of f . □

Example 2.6. Let (X, d,w) be a KST-space, where X = [0, 1] and d(x, y) =
|x − y| is the usual metric. Let w : X × X → R+ be a w-distance such that
w(x, y) = max{d(f(x), y), d(f(x), f(y))}. We define the mapping f : X → X by

f(x) =

{
1
3 , for x ∈ [0, 1).
0, for x = 1.

Let ψ : R+ → R+ be a nondecreasing function such that ψ(t) = 1
3 t. We define

the mapping α : X ×X → R+ by

α(x, y) =

{
1, if x, y ∈ ([0, 13 ]× [13 , 1]) ∪ [13 , 1]× [0, 13 ])
0, otherwise.

Then all the hypotheses of Theorem 2.2 (respectively Theorem 2.3) are satisfied
and consequently, f has a fixed point.

Proof. We observe that (X, d,w) is a complete KST space but f is not a continuous
mapping. Now we show that f is an admissible mapping. Let (x, y) ∈ X ×X such
that α(x, y) ≥ 1. From the definition of α there are two possibilities. First, if
(x, y) ∈ [0, 13 ] × [13 , 1] then we have (f(x), f(y)) ∈ [13 , 1] × [0, 13 ] which implies that

α(f(x), f(y)) = 1. And second, if (x, y) ∈ [13 , 1]× [0, 13 ], then we get (f(x), f(y)) ∈
[0, 13 ]× [13 , 1] which implies α(f(x), f(y)) = 1. Thus the mapping f is α-admissible.
In the view of the previous arguments taking x0 = 0, we have α(x0, f(x0)) =
α(0, 13) = 1. Now, we check the validity of the contraction condition (2.1).

Case I. Let x ∈ [0, 13 ] and y = 1. Then we have:

α(x, y)w(f(x), f(y)) ≤ w(f(x), f(y)) = max{d(f(f(x)), f(y)), d(f(f(x)), f(f(y)))}
= max{|f(f(x))− f(y)|, |f(f(x))− f(f(y))|}

= max
{∣∣∣f(1

3

)
− f(1)|,

∣∣∣f(1
3

)
− f(0

)∣∣∣}
= max

{∣∣∣1
3
− 0

∣∣∣, ∣∣∣1
3
− 1

3

∣∣∣}(2.14)
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≤ 1

3
max

{∣∣∣1
3
− 1

∣∣∣, ∣∣∣1
3
− 0

∣∣∣}
=

1

3
max{|f(x)− y|, |f(x)− f(y)|}

=
1

3
max{d(f(x), y), d(f(x), f(y))}

=
1

3
w(x, y) = ψ(w(x, y)).

Case II. Let x = 1 and y ∈ [0, 13 ]. Then we have:

(2.15)

α(x, y)w(f(x), f(y)) ≤ w(f(x), f(y))

= max{d(f(f(x)), f(y)), d(f(f(x)), f(f(y)))}
= max{|f(f(x))− f(y)|, |f(f(x))− f(f(y))|}

= max
{∣∣∣f(0)− f

(1
3

)∣∣∣, ∣∣∣f(0)− f
(1
3

)∣∣∣}
= max

{∣∣∣1
3
− 1

3

∣∣∣, ∣∣∣1
3
− 1

3

∣∣∣}
≤ 1

3
max

{∣∣∣0− 1

3

∣∣∣, ∣∣∣1
3
− 1

3

∣∣∣}
=

1

3
max{|f(x)− y|, |f(x)− f(y)|}

=
1

3
max{d(f(x), y), d(f(x), f(y))}

=
1

3
w(x, y)

= ψ(w(x, y)).

Thus f is α-ψ-weakly contractive operator on X. Now, let {xn} be a sequence on
X such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n→ +∞, for some x ∈ X.
Then, clearly α(xn, x) ≥ 1, for all n ∈ N. Further, note that for any (x, y) ∈ X ×X
there is and z = 1

3 ∈ X such that α(x, z) = α(y, z) = 1. Thus all the hypotheses of
Theorem 2.4 are satisfied and hence f has unique fixed point in X. Note that the
unique fixed point of f is x = 1

3 . □

3. Ulam-Hyers w-stability for fixed point problems

Definition 3.1. Let (X, d) be a metric space and f : X → X be an operator. By
definition, the fixed point equation

(3.1) x = f(x)

is called generalized Ulam-Hyers stable if and only if there exists increasing function
ψ : R+ → R+ which is continuous at 0 and ψ(0) = 0 such that for every ε > 0 and
for each u∗ ∈ X an ε-solution of the fixed point equation (3.3), i.e. u∗ satisfies the
inequality

(3.2) d(u∗, f(u∗)) ≤ ε
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there exists a solution x∗ ∈ X of the equation (3.3) such that

d(u∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) = c · t, for each t ∈ R+, then the fixed point
equation (3.3) is said to be Ulam-Hyers stable.

For Ulam-Hyers stability results concerning fixed point problems, see [4, 17, 21,
23] and references therein.

Now, we recall the notion of weakly Picard operator, see [21, 23].

Definition 3.2. Let (X,d) be a metric space. An operator f : X → X is weakly
Picard operator (briefly WPO) if the sequence (fn(x))n∈N of successive approxima-
tions for f starting from x ∈ X converges, for all x ∈ X and its limit is a fixed point
for f .

If f is WPO, then we consider the operator

f∞ : X → X defined by f∞(x) := lim
n→∞

fn(x).

Note that f∞(X) = Fix(f). Applications for such operator are given in [21, 23].

Recently, Guran in [6] defined the Ulam-Hyers stability of fixed point equations on
KST -spaces. Here, we define a general notion and called it generalized Ulam-Hyers
w-stability.

Definition 3.3. Let (X, d,w) be a KST -space and f : X → X be an operator.
The fixed point equation

(3.3) x = f(x)

is called generalized Ulam-Hyers w-stable (with respect to w-distance) if and only
if there exists ψ : R+ → R+ increasing, continuous at 0 and ψ(0) = 0 such that for
every ε > 0 and for each u∗ ∈ X an ε-solution of the fixed point equation (3.3), i.e.
u∗ satisfies the inequality

(3.4) w(u∗, f(u∗)) ≤ ε

there exists a solution x∗ ∈ X of the equation (3.3) such that

w(u∗, x∗) ≤ ψ(ε).

Motivated by the work of Petru et. al [19] about Ulam-Hyers stability problem,
we obtain the following result, which improve and generalize a number of known
results.

Theorem 3.4. Let (X, d,w) be a complete KST -space. Suppose that all the hy-
potheses of Theorem 2.4 hold and additionally that the function β : [0,∞) → [0,∞),
β(r) := r − ψ(r) is strictly increasing and onto. Then

(a) the fixed point equation (3.3) is generalized Ulam-Hyers w-stable.

(b) Fix(f) = {x∗} and if xn ∈ X, n ∈ N are such that w(xn, f(xn))
d→ 0, as

n→ ∞, then xn
d→ x∗, as n→ ∞, i.e. the fixed point equation (3.3) is well

posed with respect to w-distance.
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(c) If g : X → X is such that there exists η ∈ [0,∞) with

w(g(x), f(x)) ≤ η, for all x ∈ X,

then

y∗ ∈ Fix(g) =⇒ d(y∗, x∗) ≤ β−1(η).

Proof. (a) By the proof of Theorem 2.2 we get the conclusion that f : X → X is
a weakly Picard operator with respect to w-distance, so Fix(f) = {x∗}. Let ε > 0
and u∗ ∈ X be a solution of (3.3), i.e,

w(u∗, f(u∗)) ≤ ε.

Since f is α-ψ-weakly contractive operator and since x∗ ∈ Fix(f), from (H) there
exists u∗ ∈ X such that α(u∗, x∗) ≥ 1. We obtain

w(u∗, x∗) = w(u∗, f(x∗)) ≤ w(u∗, f(u∗)) + w(f(u∗), f(x∗))

≤ ε+ α(u∗, x∗)w(f(u∗), f(x∗))

≤ ε+ ψ(w(x∗, u∗)).

Therefore,

β(w(u∗, x∗)) := w(u∗, x∗)− ψ(w(u∗, x∗))

≤ ε+ ψ(w(u∗, x∗))− ψ(w(u∗, x∗))

≤ ε.

and thus w(u∗, x∗) ≤ β−1(ε). Consequently, the fixed point equation (3.3) is gener-
alized Ulam-Hyers w-stable.

(b) Using similarly steps as in the proof of Theorem 2.2 for α(xn−2, xn−1) ≥ 1
we obtain for xn−1 = f(xn−2) the following inequality:

(3.5)

w(xn−1, xn) ≤ w(f(xn−2, f(xn−1))) ≤ α(xn−2, xn−1)w(f(xn−2), f(xn−1))

≤ ψ(
∞∑
n=k

ψk−2(w(x0, x1)))

<
∞∑
n=k

ψk−2(w(x0, x1))
d→ 0.

Since f is α-ψ-contractive operator and since x∗ ∈ Fix(f), from (H) there exists
xn ∈ X such that α(x∗, xn) ≥ 1. By Theorem 2.3, for m,n ∈ N, with m > n
we obtain: w(xn, xm) ≤

∑∞
n=k ψ

k(w(x0, x1)). Since (xm)m∈N converge to x∗ and
w(xn, ·) is lower semicontinuous we have

w(xn−1, x
∗) ≤ lim

m→∞
inf(xn, xm) ≤ lim

m→∞

∞∑
n=k

ψk(w(x0, x1)) ≤
∞∑
n=k

ψk(w(x0, x1)).

By the properties of function ψ, using Lemma 1.3 and letting n→ ∞ we obtain:

(3.6) w(xn−1, x
∗) ≤

∞∑
n=k

ψk(w(x0, x1))
d→ 0.
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Then, by (3.5) and (3.6) we have: w(xn−1, xn)
d→ 0 and w(xn−1, x

∗)
d→ 0. Using

Lemma 1.2(2) we get that xn
d→ x∗. So, the fixed point equation (3.3) is well posed

with respect to w-distance.

(c) Since f is α-ψ-contractive operator and since x∗ ∈ Fix(f), from (H), there
exists x ∈ X such that α(x∗, x) ≥ 1. Using the triangle inequality we obtain:

w(x, x∗) ≤ w(x, f(x)) + w(f(x), x∗)

= w(x, f(x)) + w(f(x), f(x∗))

≤ w(x, f(x)) + α(x, x∗)w(f(x), f(x∗))

≤ w(x, f(x)) + ψ(w(x, x∗)).

Therefore

β(w(x, x∗)) := w(x, x∗)− ψ(w(x, x∗))

≤ w(x, f(x))− ψ(w(x, x∗)) + ψ(w(x, x∗))

≤ w(x, f(x)).

We have the following estimation:

(3.7) w(x, x∗) ≤ β−1(w(x, f(x))).

For any operator g : X → X with y ∈ Fix(g) if we denote x := y∗, there exists
η ∈ [0,∞) with w(g(x), f(x)) < η such that:

w(y∗, x∗) ≤ β−1(w(y∗), f(y∗)) ≤ β−1(w(g(y∗), f(y∗))) ≤ β−1(η).

□
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Birkhäuser, Basel, Proc. Am. Math. Soc. 126 (1998), 425–430.

[11] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point
theorems in complete metric spaces, Math. Japonica 44 (1996), 381–391.



390 A. LATIF, L. GURAN, AND M.-F. BOTA

[12] M. Kikkawa and T. Suzuki, Fixed point theorems for Ciric type contractions and others in
complete metric spaces, Linear Nonlinear Anal. 3 (2017), 111–120.

[13] A. Latif, B. A. Bin Dehaish and A. Al Rwaily, Metric fixed point results for generalized con-
tractive mappings and applications, J. Nonlinear Convex Anal. 19 (2018), 2177–2188.

[14] A. Latif and Afrah A. N. Abdou, Multivalued generalized nonlinear contractive maps and fixed
points, Nonlinear Anal. 74 (2011), 1436–1444.

[15] A. Latif, B. Bin Dehaish and A. Al Rwaily, Metric fixed point results for generalized contractive
mapping and applications, J. Nonlinear Convex Anal. 19 (2018), 2177–2188.

[16] A. Latif, M. E. Gorgji, E. Karapinar and W. Sintunavarat, Fixed point results for generalized
(α− ψ)-Meir-Keeler contractive mappings and applications, J. Ineq. Appl. 2014, 2014:68
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