
LNALNA ISSN 2188-8167 
2019



392 S. AHMED, J. IQBAL, C. T. PANG, AND R. AHMAD

(ii) a normal cone, if there exists a constant N > 0 such that for 0 ≤ x ≤ y, we
have ||x|| ≤ N ||y||.

Definition 2.2. Let C be a cone, then

(i) for any x, y ∈ Hp, x ≤ y if and only if y − x ∈ C.
(ii) x and y are said to be comparative to each other if and only if, we have

either x ≤ y or y ≤ x and is denoted by x ∝ y.

Definition 2.3. For arbitrary elements x, y ∈ Hp, lub{x, y} and glb{x, y}, we mean
least upper bound and greatest upper bound of the set {x, y}. Suppose lub{x, y}
and glb{x, y} exist, some binary operations are defined as follows:

(i) x ∨ y = lub{x, y};
(ii) x ∧ y = glb{x, y};
(iii) x⊕ y = (x− y) ∨ (y − x);
(iv) x⊙ y = (x− y) ∧ (y − x).

The operations ∨,∧, ⊕ and ⊙ are called OR, AND, XOR and XNOR operations,
respectively.

Lemma 2.4. If x ∝ y, then lub{x, y} and glb{x, y} exist, x − y ∝ y − x and
0 ≤ (x− y) ∨ (y − x).

Lemma 2.5. For any natural number n, x ∝ yn and yn → y∗ as n → ∞, then
x ∝ y∗.

Proposition 2.6. Let ⊕ be an XOR operation and ⊙ be an XNOR operation. Then
the following relations hold:

(i) x⊙ x = 0, x⊙ y = y ⊙ x = −(x⊕ y) = −(y ⊕ x);
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0;
(iii) (λx)⊕ (λy) = |λ|(x⊕ y);
(iv) 0 ≤ x⊕ y, if x ∝ y;
(v) if x ∝ y, then x⊕ y = 0 if and only if x = y;
(vi) (x+ y)⊙ (u+ v) ≥ (x⊙ u) + (y ⊙ v);
(vii) (x+ y)⊙ (u+ v) ≥ (x⊙ v) + (y ⊙ u);
(viii) if x, y and w are comparative to each other, then (x⊕ y) ≤ x⊕ w + w ⊕ y;
(ix) αx⊕ βx = |α− β|x = (α⊕ β)x, if x ∝ 0, ∀ x, y, u, v ∈ Hp and α, β, λ ∈ R.

Proposition 2.7. Let C be a normal cone in Hp with normal constant N, then for
each x, y ∈ Hp, the following relations hold:

(i) ∥0⊕ 0∥ = ∥0∥ = 0;
(ii) ∥x ∨ y∥ ≤ ∥x∥ ∨ ∥y∥ ≤ ∥x∥+ ∥y∥;
(iii) ∥x⊕ y∥ ≤ ∥x− y∥ ≤ N |x⊕ y∥;
(iv) if x ∝ y, then ∥x⊕ y∥ = ∥x− y∥.

Definition 2.8. Let A : Hp → Hp be a single-valued mapping, then

(i) A is said to be comparison mapping, if for each x, y ∈ Hp, x ∝ y then
A(x) ∝ A(y), x ∝ A(x) and y ∝ A(y).
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(ii) A is said to be strongly comparison mapping, if A is a comparison mapping
and A(x) ∝ A(y) if and only if x ∝ y, for any x, y ∈ Hp.

Definition 2.9. A mapping A : Hp → Hp is said to be β-ordered compression
mapping, if A is a comparison mapping and

A(x)⊕A(y) ≤ β(x⊕ y), for 0 < β < 1.

Definition 2.10. Let M : Hp → 2Hp be a set-valued mapping. Then

(i) M is said to be a comparison mapping, if for any vx ∈ M(x), x ∝ vx, and if
x ∝ y, then for any vx ∈ M(x) and any vy ∈ M(y), vx ∝ vy, ∀ x, y ∈ Hp;

(ii) a comparison mapping M is said to be α-non-ordinary difference mapping,
if for each x, y ∈ Hp, vx ∈ M(x) and vy ∈ M(y) such that

(vx ⊕ vy)⊕ α(x⊕ y) = 0;

(iii) a comparison mapping M is said to be θ-ordered rectangular, if there exists
a constant θ > 0, for any x, y ∈ Hp, there exist vx ∈ M(x) and vy ∈ M(y)
such that

⟨vx ⊙ vy,−(x⊕ y)⟩ ≥ θ∥x⊕ y∥2,
holds.

Definition 2.11. A mapping M : Hp → 2Hp is said to be λ-XOR-ordered strongly
monotone compression mapping, if x ∝ y, then there exists a constant λ > 0 such
that

λ(vx ⊕ vy) ≥ x⊕ y, ∀x, y ∈ Hp, vx ∈ M(x), vy ∈ M(y).

Note that a non-ordinary difference mapping which is also XOR-ordered strongly
monotone is called XOR-NODSM mapping.

Lemma 2.12. Let {χn} be a nonnegative real sequence and {ζn} be a real sequence

in [0, 1] such that
∞∑
n=0

ζn = ∞. If there exists a positive integer m such that

(2.1) χn ≤ (1− ζn)χn + ζnηn, ∀n ≥ m,

where ηn ≥ 0, for all n ≥ 0 and ηn → 0 (n → 0), then lim
n→∞

χn = 0.

Now, we extend the definitions of comparison and strongly comparison map-
ping, XOR-ordered strongly compression mapping, XOR-NODSM mapping for bi-
mappings and define a new resolvent operator associated with XOR-NODSM map-
ping.

Definition 2.13. Let A : Hp ×Hp → Hp be a bi-mapping.

(i) A is said to be comparison mapping, if for each (x, .), (y, .) ∈ Hp × Hp,
(x, .) ∝ (y, .) then A(x, .) ∝ A(y, .), (x, .) ∝ A(x, .) and (y, .) ∝ A(y, .).

(ii) A is said to be strongly comparison mapping, if A is a comparison mapping
and A(x, .) ∝ A(y, .) if and only if (x, .) ∝ (y, .), for any (x, .), (y, .) ∈
Hp ×Hp.
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Definition 2.14. A mapping A : Hp×Hp → Hp is said to be β-ordered compression
mapping, if A is a comparison mapping and

A(x, .)⊕A(y, .) ≤ β((x, .)⊕ (y, .)), for 0 < β < 1.

Definition 2.15. Let M : Hp ×Hp → 2Hp be a set-valued mapping. Then

(i) M is said to be a comparison mapping, if for any vx ∈ M(x, .), (x, .) ∝ vx,
and if (x, .) ∝ (y, .), then for any vx ∈ M(x, .) and any vy ∈ M(y, .), vx ∝
vy, ∀ (x, .), (y, .) ∈ Hp ×Hp;

(ii) a comparison mapping M is said to be α-non-ordinary difference mapping,
if for each (x, .), (y, .) ∈ Hp ×Hp, vx ∈ M(x, .) and vy ∈ M(y, .) such that

(vx ⊕ vy)⊕ α((x, .)⊕ (y, .)) = 0;

(iii) a comparison mapping M is said to be θ-ordered rectangular, if there exists
a constant θ > 0, for any (x, .), (y, .) ∈ Hp × Hp, there exist vx ∈ M(x, .)
and vy ∈ M(y, .) such that

⟨vx ⊙ vy,−((x, .)⊕ (y, .))⟩ ≥ θ∥(x, .)⊕ (y, .)∥2,

holds.

Definition 2.16. A mapping M : Hp × Hp → 2Hp is said to be λ-XOR-ordered
strongly monotone compression mapping, if (x, .) ∝ (y, .), then there exists a con-
stant λ > 0 such that

λ(vx ⊕ vy) ≥ ((x, .)⊕ (y, .)), ∀(x, .), (y, .) ∈ Hp ×Hp, vx ∈ M(x, .), vy ∈ M(y, .).

Definition 2.17. Let A : Hp ×Hp → Hp be a strongly comparison and β-ordered
compression mapping. Then, a comparison set-valued mapping M : Hp×Hp → 2Hp

is said to be (α, λ)-XOR-NODSM, if M is a α-non-ordinary difference mapping and
λ-XOR-ordered strongly monotone mapping and [A ⊕ λM ](Hp ×Hp) = Hp ×Hp,
for λ, β, α > 0.

Definition 2.18. Let A : Hp ×Hp → Hp be a strongly comparison and β-ordered
compression mapping. Suppose that M : Hp × Hp → 2Hp is a set-valued, (α, λ)-
XOR-NODSM mapping. The resolvent operator J A

λ,M : Hp ×Hp → Hp associated
with A and M is defined by

(2.2) J A
λ,M (x, .) = [A(., y)⊕ λM(., y)]−1(x, .), ∀(x, .) ∈ Hp ×Hp,

where λ > 0 is a constant.

Proposition 2.19. Let A : Hp × Hp → Hp be a strongly comparison, β-ordered
compression mapping and M : Hp ×Hp → 2Hp be the set-valued θ-ordered rectan-
gular mapping with θλ > β. Then the resolvent operator J A

λ,M : Hp ×Hp → Hp is
a single-valued, for all λ > 0.

Proof. For any given (u, .) ∈ Hp × Hp and a constant λ > 0, let (x, .), (y, .) ∈
[A⊕ λM ]−1(u, .). Then, let

vx =
1

λ
((u, .)⊕A(x, .)) ∈ M(x, .),
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and

vy =
1

λ
((u, .)⊕A(y, .)) ∈ M(y, .).

Using (i) and (ii) of Proposition 2.6, we have

vx ⊙ vy =
1

λ
((u, .)⊕A(x, .))⊙ 1

λ
((u, .)⊕A(y, .))

=
1

λ
[((u, .)⊕A(x, .))⊙ ((x, .)⊕A(y, .))]

= − 1

λ
[((u, .)⊕A(x, .))⊕ ((u, .)⊕A(y, .))](2.3)

= − 1

λ
[((u, .)⊕ (u, .)⊕ (A(x, .)⊕A(y, .))]

= − 1

λ
[0⊕ (A(x, .)⊕A(y, .))]

≤ − 1

λ
[A(x, .)⊕A(y, .)].

Thus, we have

vx ⊙ vy ≤ − 1

λ
[A(x, .)⊕A(y, .)].(2.4)

Since M is θ-ordered rectangular mapping, A is β-ordered compression mapping
and using (2.4), we have

θ∥(x, .)⊕ (y, .)∥2 ≤ ⟨vx ⊙ vy,−((x, .)⊕ (y, .))⟩

≤ ⟨− 1

λ
[A(x, .)⊕A(y, .)],−((x, .)⊕ (y, .))⟩

≤ 1

λ
⟨A(x, .)⊕A(y, .), (x, .)⊕ (y, .)⟩

≤ 1

λ
⟨β((x, .)⊕ (y, .)), (x, .)⊕ (y, .)⟩

≤ β

λ
⟨(x, .)⊕ (y, .), (x, .)⊕ (y, .)⟩

=
β

λ
∥(x, .)⊕ (y, .)∥2,

i.e.,

θ∥(x, .)⊕ (y, .)∥2 ≤ β

λ
∥x⊕ y∥2,(

θ − β

λ

)
∥(x, .)⊕ (y, .)∥2 ≤ 0, for θλ > β,

which implies that

∥(x, .)⊕ (y, .)∥ = 0 ⇒ (x, .)⊕ (y, .) = 0.(2.5)

Therefore, (x, .) = (y, .). Hence the resolvent operator J A
λ,M is single-valued, for

θλ > β.
□
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Proposition 2.20. Let M : Hp ×Hp → 2Hp be a (α, λ)-XOR-NODSM set-valued
mapping with respect to J A

λ,M . Let A : Hp × Hp → Hp be a strongly comparison

mapping with respect to J A
λ,M . Then the resolvent operator J A

λ,M : Hp × Hp → Hp

is a comparison mapping.

Proof. Let M be a (α, λ)-XOR-NODSM set-valued mapping with respect to J A
λ,M .

That is, M is α-non-ordinary difference and λ-XOR-ordered strongly monotone
comparison mapping with respect to J A

λ,M so that (x, .) ∝ J A
λ,M (x, .). For any

(x, .), (y, .) ∈ Hp ×Hp, let (x, .) ∝ (y, .) and

(2.6) v∗x =
1

λ
((x, .)⊕A(J A

λ,M (x, .))) ∈ M(J A
λ,M (x, .))

and

(2.7) v∗y =
1

λ
((y, .)⊕A(J A

λ,M (y, .))) ∈ M(J A
λ,M (y, .)).

Since M is λ-XOR-ordered strongly monotone mapping, using (2.6) and (2.7), we
have

(x, .)⊕ (y, .) ≤ λ[(v∗x ⊕ v∗y ]

(x, .)⊕ (y, .) ≤
(
(x, .)⊕A(J A

λ,M (x, .))
)
⊕
(
(y, .)⊕A(J A

λ,M (y, .))
)

(x, .)⊕ (y, .) ≤
(
(x, .)⊕ (y, .))

)
⊕
(
A(J A

λ,M (x, .))⊕A(J A
λ,M (y, .))

)
0 ≤ A(J A

λ,M (x, .))⊕A(J A
λ,M (y, .))

0 ≤
[
A(J A

λ,M (x, .))−A(J A
λ,M (y, .))

]
∨
[
A(J A

λ,M (y, .))−A(J A
λ,M (x, .))

]
0 ≤

[
A(J A

λ,M (x, .))−A(J A
λ,M (y, .))

]
or 0 ≤

[
A(J A

λ,M (y, .))−A(J A
λ,M (x, .))

]
.

Thus, we have

A(J A
λ,M (x, .)) ≥ A(J A

λ,M (y, .)) or A(J A
λ,M (y, .)) ≥ A(J A

λ,M (x, .)),

which implies that

A(J A
λ,M (x, .)) ∝ A(J A

λ,M (y, .)).

SinceA is strongly comparison mapping with respect to J A
λ,M . Therefore, J A

λ,M (x, .) ∝
J A
λ,M (y, .). That is, the resolvent operator J A

λ,M is a comparison mapping. □

Proposition 2.21. Let M : Hp ×Hp → 2Hp be a (α, λ)-XOR-NODSM set-valued
mapping with respect to J A

λ,M . Let A : Hp × Hp → Hp be a comparison and β-

ordered compression mapping with respect to J A
λ,M , for αλ > β. Then the following

condition holds:

(2.8) J A
λ,M (x, .)⊕ J A

λ,M (y, .) ≤ 1

(αλ⊕ β)
(x, .)⊕ (y, .), ∀(x, .), (y, .) ∈ Hp ×Hp.

Proof. Let (x, .), (y, .) ∈ Hp ×Hp,

vx∗ =
1

λ

(
(x, .)⊕A(J A

λ,M (x, .))
)
∈ M(J A

λ,M (x, .))
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and

vy∗ =
1

λ

(
(y, .)⊕A(J A

λ,M (y, .))
)
∈ M(J A

λ,M (y, .)).

As M be an (α, λ)-XOR-NODSM set-valued mapping with respect to J A
λ,M and A

is β-ordered compression mapping with respect to J A
λ,M . It follows that M is also

an α-non-ordinary difference mapping with respect to J A
λ,M , we have

(2.9) (vx∗ ⊕ vy∗)⊕ α(J A
λ,M (x, .)⊕ J A

λ,M (y, .)) = 0,

and

vx∗ ⊕ vy∗ =
1

λ
[((x, .)⊕A(J A

λ,M (x, .)))⊕ ((y, .)⊕A(J A
λ,M (y, .)))]

=
1

λ
[((x, .)⊕ (y, .))⊕ (A(J A

λ,M (x, .))⊕A(J A
λ,M (y, .)))]

≤ 1

λ
[((x, .)⊕ (y, .))⊕ β(J A

λ,M (x, .)⊕ J A
λ,M (y, .))].

From (2.9), we have

α(J A
λ,M (x, .)⊕ J A

λ,M (y, .)) = vx∗ ⊕ vy∗

≤ 1

λ
[((x, .)⊕ (y, .))⊕ β(J A

λ,M (x, .)⊕ J A
λ,M (y, .))],(2.10)

i.e.,

αλ(J A
λ,M (x, .)⊕ J A

λ,M (y, .)) ≤ [((x, .)⊕ (y, .))⊕ β(J A
λ,M (x, .)⊕ J A

λ,M (y, .))].

Now, (
αλ(J A

λ,M (x, .)⊕ J A
λ,M (y, .)

)
⊕
(
β(J A

λ,M (x, .)⊕ J A
λ,M (y, .)

)
≤ ((x, .)⊕ (y, .))⊕ 0 = (x, .)⊕ (y, .)(

αλ⊕ β
)(
J A
λ,M (x, .)⊕ J A

λ,M (y, .)
)
≤ (x, .)⊕ (y, .).

It follows that J A
λ,M (x, .)⊕J A

λ,M (x, .) ≤
(

1
(αλ⊕β)

)
(x, .)⊕ (y, .) and consequently, we

have

(2.11) J A
λ,M (x, .)⊕ J A

λ,M (y, .) ≤ 1

(αλ⊕ β)
(x, .)⊕ (y, .).

□

3. Formulation of the problem and existence results

Let C ⊆ Hp be a normal cone with constant N. Let P : Hp × Hp → Hp be a
bi-mapping and M : Hp × Hp → 2Hp be a set-valued mapping. We consider the
following problem:

Find (x, .) ∈ Hp ×Hp such that

(3.1) 0 ∈ P (x, y)⊕M(x, y),

for some fixed y ∈ Hp.
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We call problem (3.1) as ordered variational inclusion problem involving XOR
operation (in short, OVIP).

Below we list some special cases of problem (3.1).

(i) If P = 0, and M(x, y) = M(x) then OVIP (3.1) reduces to the problem of
finding x ∈ Hp such that

(3.2) 0 ∈ M(x).

Problem (3.2) is introduced and studied by Li [20].
(ii) If P (x, y) = P (x) , M(x, y) = M(x), then problem (3.1) becomes the prob-

lem of finding x ∈ Hp such that

(3.3) 0 ∈ P (x)⊕M(x)

Problem (3.3) is introduced and studied by Iqbal et al. [7].

Hence, we claim that our problem is much more general than many existing
problems in the literature. The following lemma is a fixed point formulation of
OVIP (3.1).

Lemma 3.1. The OVIP (3.1) admits a solution (x, .) ∈ Hp ×Hp if and only if it
satisfies the following equation:

(3.4) (x, .) = J A
λ,M [λP (x, y)⊕A(x, y)],

where λ > 0 is constant.

Proof. Proof is a direct consequence of the definition of resolvent operator (2.2). □

Theorem 3.2. Let P,A : Hp × Hp → Hp be the bi-mappings such that P is a
comparison, γ-ordered compression mapping and A is a comparison and β-ordered
compression mapping, respectively. Suppose that M : Hp × Hp → 2Hp is a (α, λ)-
XOR-NODSM set-valued mapping. In addition, if for all λ, α > 0, the following
conditions are satisfied:

(3.5)

{
|(|λ|γ ⊕ β)| < |αλ⊕β|

N ;

αλ > β,

then, OVIP (3.1) admits a solution (x∗, .) ∈ Hp × Hp, which is a fixed point of
J A
λ,M [λP (x∗, .)⊕A(x∗, .)].

Proof. By Proposition 2.20, if (x1, .) ∝ (x2, .), then

J A
λ,M [λP (x1, y)⊕A(x1, y)] ∝ J A

λ,M [λP (x2, y)⊕A(x2, y)].

Since P is γ-ordered compression, A is β-ordered compression mapping and using
Proposition 2.21, we have

0 ≤ J A
λ,M [λP (x1, y)⊕A(x1, y)]⊕ J A

λ,M [λP (x2, y)⊕A(x2, y)]

≤ 1

(αλ⊕ β)

(
[λP (x1, y)⊕A(x1, y)]⊕ [λP (x2, y)⊕A(x2, y)]

)
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=
1

(αλ⊕ β)

(
[|λ|(P (x1, y)⊕ P (x2, y))]⊕ [A(x1, y)⊕A(x2, y)]

)
≤ 1

(αλ⊕ β)

(
[|λ|γ(x1, y)⊕ (x2, y))]⊕ [β((x1, y))⊕ (x2, y))]

)
=

1

(αλ⊕ β)

(
[|λ|γ ⊕ β](x1, y)⊕ (x2, y)

)
=

(|λ|γ ⊕ β)

(αλ⊕ β)

(
(x1, y)⊕ (x2, y)

)
,

i.e.,

0 ≤ J A
λ,M [λP (x1, y)⊕A(x1, y)]⊕ J A

λ,M [λP (x2, y)⊕A(x2, y)](3.6)

≤ Θ(x1, y)⊕ x2, y),

where Θ =
(|λ|γ ⊕ β)

(αλ⊕ β)
.

Now by using the definition of normal cone and Proposition 2.7, from (3.6), we have∥∥∥J A
λ,M [λP (x1, y)⊕A(x1, y)]−J A

λ,M [λP (x2, y)⊕A(x2, y)]
∥∥∥ ≤ N |Θ|∥(x1, y)−(x2, y)∥.

It is clear from (3.5), that |Θ| < 1
N . It follows that J A

λ,M [λP (., .) ⊕ A(., .)] is con-

traction mapping. Therefore, there exists a unique (x∗, .) ∈ Hp ×Hp such that

(x∗, .) = J A
λ,M [λP (x∗, .)⊕A(x∗, .)].

By Lemma 3.1, (x∗, .) is a unique solution of OVIP (3.1), which is a fixed point of
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]. □

4. Convergence Analysis

First we establish an Ishikawa type iterative algorithm based on Lemma 3.1 for
finding the approximate solution of OVIP (3.1), and then we prove a convergence
result. If (xn, .) → (x∗, .), we mean xn → x∗ and vice versa.

Iterative Algorithm 4.1. Let A,P : Hp × Hp → Hp be the bi-mappings and
M : Hp × Hp → 2Hp be a set-valued mapping. Given any (x0, .) ∈ Hp × Hp,
compute the sequence {xn} converges to x∗ such that (xn, .) converges to (x∗, .) and
defined by the following iterative scheme:

(4.1)

(xn+1, .) = (1− an)(xn, .) + an

(
J A
λ,M [λP (yn, .)⊕A(yn, .)]

)
+ anαn,

(yn, .) = (1− bn)(xn, .) + bn

(
J A
λ,M [λP (xn, .)⊕A(xn, .)]

)
+ bnβn.

where 0 ≤ an, bn ≤ 1,
∞∑
n=0

an = ∞,∀ n ≥ 0, {αn} and {βn} are two sequences in

Hp×Hp introduced to take into account the possible inexact computation provided
that αn ⊕ 0 = αn and βn ⊕ 0 = βn, ∀ n ≥ 0.
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Remark 4.1. If P (xn, .) = P (xn), P (yn, .) = P (yn), A(xn, .) = A(xn), A(yn, .) =
A(yn), bn = 0,∀ n ≥ 0, then Algorithm 4.1 becomes Mann type iterative algorithm.
Also, we remark that for suitable choices of operators involved in Algorithm 4.1,
we can easily obtain many more algorithms studied by several authors for solving
ordered variational inclusion problems.

Theorem 4.2. Let M,A and P be the same as in Theorem 3.2 such that all the
conditions of Theorem 3.2 are satisfied. Additionally, if the following conditions are
satisfied:

(4.2)

{
|(|λ|γ ⊕ β)| < |αλ⊕ β|
αλ > β,

and lim
n→∞

∥αn ∨ (−αn)∥ = lim
n→∞

∥βn ∨ (−βn)∥ = 0, then the sequence {xn} generated

by Algorithm 4.1 converges strongly to the unique solution x∗ of OVIP (3.1).

Proof. We show that the sequence {xn} converges strongly to the unique solution
x∗ of OVIP (3.1). Theorem 3.2 implies that (x∗, .) i.e x∗ is a unique solution of
OVIP (3.1). Then, we have(x∗, .) = (1− an)(x

∗, .) + an

(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)
= (1− bn)(x

∗, .) + bn

(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)
.

(4.3)

Using Algorithm 4.1, (4.3), Proposition 2.6 and Proposition 2.21, it follows that

0 ≤ (xn+1, .)⊕ (x∗, .)

=
[
(1− an)(xn, .) + an

(
J A
λ,M [λP (yn, .)⊕A(yn, .)]

)
+ anαn

]
⊕
[
(1− an)(x

∗, .) + an

(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)
+ an0

]
≤ (1− an)(xn, .)⊕ (x∗, .) + an(αn ⊕ 0)

+an

[(
J A
λ,M [λP (yn, .)⊕A(yn, .)]

)
⊕
(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)]
≤ (1− an)(xn ⊕ x∗) + an(αn ⊕ 0)

+an

[(
J A
λ,M [λP (yn, .)⊕A(yn, .)]

)
⊕
(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)]
≤ (1− an)(xn ⊕ x∗) + an(αn ⊕ 0) + Θan((yn, .)⊕ (x∗, .))

≤ (1− an)(xn ⊕ x∗) + an(αn ⊕ 0) + Θan(yn ⊕ x∗).(4.4)

where Θ =
(|λ|γ ⊕ β)

(αλ⊕ β)
.

Now we evaluate,

0 ≤ (yn, .)⊕ (x∗, .)

=
[
(1− bn)(xn, .) + bn

(
J A
λ,M [λP (xn, .)⊕A(xn, .)]

)
+ bnβn

]
⊕
[
(1− bn)(x

∗, .) + bn

(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)
+ bn0

]
≤ (1− bn)(xn, .)⊕ (x∗, .) + bn(βn ⊕ 0)
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+bn

[(
J A
λ,M [λP (xn, .)⊕A(xn, .)]

)
⊕
(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)]
≤ (1− bn)(xn ⊕ x∗) + bn(βn ⊕ 0)

+bn

[(
J A
λ,M [λP (xn, .)⊕A(xn, .)]

)
⊕
(
J A
λ,M [λP (x∗, .)⊕A(x∗, .)]

)]
≤ (1− bn)(xn ⊕ x∗) + bn(βn ⊕ 0) + Θbn((xn, .)⊕ (x∗, .))

≤ (1− bn)(xn ⊕ x∗) + bn(βn ⊕ 0) + Θbn(xn ⊕ x∗).(4.5)

Combining (4.4) and (4.5), it follows that

0 ≤ (xn+1, .)⊕ (x∗, .)

≤ (1− an)(xn ⊕ x∗) + Θan
[
(1− bn)(xn ⊕ x∗) + Θbn(xn ⊕ x∗)

+bn(βn ⊕ 0)
]
+ an(αn ⊕ 0)

≤ (1− an(1− 2Θ))(xn ⊕ x∗) + an
[
Θbn(βn ⊕ 0) + (αn ⊕ 0)

]
.(4.6)

Using definition of normal cone and Proposition 2.7, we have

∥xn+1 − x∗∥ ≤ N(1− an(1− 2Θ))∥xn − x∗∥

+Nan(1− 2Θ)

(
Θbn∥βn ∨ (−βn)∥+ ∥αn ∨ (−αn)∥

(1− 2Θ)

)
.

(4.7)

By setting ηn = Θbn∥βn∨(−βn)∥+∥αn∨(−αn)∥
(1−2Θ) , χn = ∥xn − x∗∥, ζn = Nan(1 − 2Θ),

inequality (4.7) can be rewritten as

(4.8) χn ≤ (1− ζn)χn + ζnηn.

From Lemma 2.12 and using the hypothesis lim
n→∞

∥αn ∨ (−αn)∥ = lim
n→∞

∥βn ∨
(−βn)∥ = 0, we deduce that χn → 0, as n → ∞, and so {xn} converges strongly to
a unique solution x∗ of OVIP (3.1). □
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