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ORDERED VARIATIONAL INCLUSION PROBLEM

SHAKEEL AHMED, JAVID IQBAL, CHIN-TZONG PANG*, AND RAIS AHMAD

ABSTRACT. In this paper, we consider an ordered variational inclusion problem
involving bi-mappings. A resolvent operator is designed for bi-mappings with &
operation. We have shown that the resolvent operator is single-valued, compres-
sion as well as Lipschitz-type-continuous. An existence as well as a convergence
results are proved. The results of this paper are new and refinement of previous
results.

1. INTRODUCTION

The techniques based on variational inequalities methods are very useful to solve
many problems occurring in pure, applied and basic sciences. Hassouni and Moudafi
[17] studied a generalization of variational inequality problem, called variational
inclusion problem, which is application oriented and used as a powerful tool to
solve many problems related to optimization and control, non-linear programming,
engineering, elasticity theory, economics and game theory, etc..

Li et al.[18, 19, 20, 21]. and Ahmad et al.[3, 6] considered and solved some
problems related to ordered variational inclusions and ordered equations in Hilbert
spaces as well as in Banach spaces. Motivated by the above mentioned work due
to their applications, in this paper, we consider an ordered variational inclusion
problem involving bi-mappings with & operation. Some properties of resolvent
operator under consideration are proved and applied to solve ordered variational
inclusion problem in Hilbert spaces. Many previous known results related to ordered
variational inclusion problems can be obtained from our results easily.

2. PRELIMINARIES

Throughout this paper, we suppose that #, is a real ordered positive Hilbert space
with its norm || - || and an inner product (-, ), d is the metric induced by the norm
| - || and 2% is the family of all nonempty subsets of H,,.

For the presentation of the results of this paper, let us recall some known defini-
tions and results.

Definition 2.1. A nonempty closed convex subset C' of H,, is said to be:

(i) a cone, if for any x € C' and any A > 0, Az € C, and for x € C and —z € C,
then z = 0.

2010 Mathematics Subject Classification. 47J22, 49J21.
Key words and phrases. Convergence, resolvent, variation inclusion, XOR operation.
*Corresponding Author.



392 S. AHMED, J. IQBAL, C. T. PANG, AND R. AHMAD

(7i) a normal cone, if there exists a constant N > 0 such that for 0 < z <y, we
have |[[z|| < N|ly|.

Definition 2.2. Let C be a cone, then
(i) for any z,y € Hp, x <y if and only if y —z € C.
(ii)  and y are said to be comparative to each other if and only if, we have
either x <y or y < x and is denoted by = « y.

Definition 2.3. For arbitrary elements x,y € H,, lub{z,y} and glb{z,y}, we mean
least upper bound and greatest upper bound of the set {z,y}. Suppose lub{z,y}
and glb{x,y} exist, some binary operations are defined as follows:
(1) zVy=lub{z,y};

(i) @ Ay = glb{z, y};

(i) x@y = (z —y) V(y — x);

() 2Oy =(x-y)A(y— ).
The operations V, A, & and ® are called OR, AND, XOR and XNOR operations,
respectively.

Lemma 2.4. If v « y, then lub{z,y} and glb{z,y} exist, x —y x y — x and
0<(z—y)V(y—a).

Lemma 2.5. For any natural number n, x « y, and y, — y* as n — oo, then
T o y*.

Proposition 2.6. Let @& be an XOR operation and ® be an XNOR operation. Then
the following relations hold:
(1)) 202=0,20y=y0z=—(20y) = —(y D)
(73) if x <0, then —c®0 <2 <z &H0;
(112) (Az) & (Ay) = [A(z ® y);
(iv) 0<z®y, ifz oy
(v) if x xy, then x &y =0 if and only if x = y;
(vi) (z+y) O (u+v) = (zOu) +(y©v);
(vid) (z+y) O (utv) = (2Ov)+ (yOu);
(viii) if x,y and w are comparative to each other, then (x ®y) <z ®w+ w D y;
(iz) ax® pr=|a—Plz=(a® Bz, ifr x0,V z,y,u,v € Hp and o, B, € R.

Proposition 2.7. Let C be a normal cone in H, with normal constant N, then for
each x,y € H,, the following relations hold:
(2) 0@ 0] = [|o]| = 0;
(@) llz vyl < llzll Vilyll < =]l + llyll;
(1id) [lz @ yll < llz —yll < Nz S yl|;
() if x oy, then |z @ yl| = [lv -yl

Definition 2.8. Let A : H, — H, be a single-valued mapping, then

(i) A is said to be comparison mapping, if for each z,y € H,, v o« y then
A(z) x A(y), ¢ x A(x) and y o< A(y).
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(i) A is said to be strongly comparison mapping, if A is a comparison mapping
and A(z) < A(y) if and only if x o y, for any x,y € H,,.

Definition 2.9. A mapping A : H, — H, is said to be B-ordered compression
mapping, if A is a comparison mapping and

Alx) 8 Aly) < Bz y), for 0 < B < 1.

Definition 2.10. Let M : H, — 2M» be a set-valued mapping. Then
(i) M is said to be a comparison mapping, if for any v, € M(x), x < v, and if
x o< y, then for any v, € M(z) and any vy, € M(y), vz X vy, ¥V 2,y € Hp;
(7i) a comparison mapping M is said to be a-non-ordinary difference mapping,
if for each =,y € H,, v, € M(x) and v, € M(y) such that

(Ve @Uy) Salrdy) =0

(7i7) a comparison mapping M is said to be #-ordered rectangular, if there exists
a constant § > 0, for any x,y € H,, there exist v, € M(z) and vy, € M(y)
such that

(vz O vy, —(z @ y)) > 0|z D y|?,
holds.

Definition 2.11. A mapping M : H, — 2M» is said to be A-XOR-ordered strongly
monotone compression mapping, if x o« y, then there exists a constant A > 0 such
that

Avg ®vy) > @y, Vo, y € Hy,ve € M(x),vy € M(y).

Note that a non-ordinary difference mapping which is also XOR-ordered strongly
monotone is called XOR-NODSM mapping.

Lemma 2.12. Let {x,} be a nonnegative real sequence and {(,} be a real sequence
o

in [0,1] such that Y ¢, = co. If there exists a positive integer m such that

n=0
(2.1) Xn < (1= Cu)Xn + Caliny Y > m,
where n, >0, for alln >0 and n, — 0 (n — 0), then li_>m xn = 0.

Now, we extend the definitions of comparison and strongly comparison map-
ping, XOR-ordered strongly compression mapping, XOR-NODSM mapping for bi-
mappings and define a new resolvent operator associated with XOR-NODSM map-
ping.

Definition 2.13. Let A : H, x H, — H, be a bi-mapping.

(i) A is said to be comparison mapping, if for each (x,.),(y,.) € H, x Hp,
(z,.) x (y,.) then A(zx,.) < A(y,.), (z,.) < A(z,.) and (y,.) < A(y,.).

(i) A is said to be strongly comparison mapping, if A is a comparison mapping
and A(z,.) o< A(y,.) if and only if (z,.) x (y,.), for any (z,.),(y,.) €
Hp X Hp.



394 S. AHMED, J. IQBAL, C. T. PANG, AND R. AHMAD

Definition 2.14. A mapping A : H, xH,, — H, is said to be S-ordered compression
mapping, if A is a comparison mapping and

A(z,.) ® Aly,.) < B((z,.)® (y,.)), for 0 < g < 1.

Definition 2.15. Let M : H, x H, — 2Mr be a set-valued mapping. Then
(1) M is said to be a comparison mapping, if for any v, € M(x,.), (x,.) X v,
and if (z,.) « (y,.), then for any v, € M(z,.) and any v, € M(y,.), vy x
vy, Y (2,.), (y,.) € Hp X Hyp;
(#i) a comparison mapping M is said to be a-non-ordinary difference mapping,
if for each (z,.), (y,.) € Hp X Hyp, v, € M(z,.) and v, € M(y,.) such that

(vz B vy) © af(z,.) ® (y,.)) = 0;
(7i1) a comparison mapping M is said to be #-ordered rectangular, if there exists

a constant § > 0, for any (z,.),(y,.) € Hp X Hp, there exist v, € M(z,.)
and vy, € M(y,.) such that

(v © vy, —((2,.) ® (y,.))) = 0ll(2,.) ® (v, )%,
holds.

Definition 2.16. A mapping M : H, x H, — 2% is said to be A-XOR-ordered
strongly monotone compression mapping, if (z,.) & (y,.), then there exists a con-
stant A > 0 such that

Ave ®vy) > ((x,.) ® (y,.),V(x,.), (y,.) € Hp x Hp,vs € M(x,.),vy € M(y,.).

Definition 2.17. Let A : H, x H,, = H, be a strongly comparison and 3-ordered
compression mapping. Then, a comparison set-valued mapping M : H, x H, — 2Hp
is said to be (o, A)-XOR-NODSM, if M is a a-non-ordinary difference mapping and
A-XOR-ordered strongly monotone mapping and [A & AM|(H, X H,) = Hp X Hyp,
for A, 5,a > 0.

Definition 2.18. Let A : H, x H, — H, be a strongly comparison and -ordered
compression mapping. Suppose that M : H, x H, — 2 is a set-valued, (a, \)-
XOR-NODSM mapping. The resolvent operator 7. S\AM : Hp x Hp — H,, associated
with A and M is defined by ’

(2:2) T, ) = [AC,y) @ AM(,y)] " (@,.),¥(@,.) € Hp x Hy,
where A > 0 is a constant.

Proposition 2.19. Let A : H, x H, — H, be a strongly comparison, (-ordered
compression mapping and M : H, x H, — 2Mr be the set-valued 0-ordered rectan-
gular mapping with OX > . Then the resolvent operator j)f‘M cHp X Hyp — Hp is
a single-valued, for all A > 0. 7

Proof. For any given (u,.) € H, x H, and a constant A > 0, let (z,.),(y,.) €
[A® AM]~(u,.). Then, let

vy = %((u, V@ Alx, ) € M(x,.),
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and .
vy =5 ((w,.) ® Ay, ) € M(y, .).
Using (7) and (éi) of Proposition 2.6, we have

0 v, = 3 (1) & Al, ) © 3 (1) ® Ay, )
(0. ® A, ) © () ® Aly,.)
(0, ® A, ) ® () ® Aly, )]

[((u,) ® (u,.) @ (A(z,.) © Aly, )]

M= > =

Thus, we have

(2.4) Ve © vy < —%[A(:v, Yo Ay, )]

Since M is f-ordered rectangular mapping, A is S-ordered compression mapping
and using (2.4), we have

0w, )® )P < (e © = (@) @ (3:.))
< (314G © Al L (@) © (v,.)
< LA B A, ), @) @ (5,.)
< S0 ® (4)), (5,0 @ (5,.)
< Y@ o) @) o)
= Sl ) I,
Ol )& I < Sleeyl,
(v~ ?) I(z, )@ (5, )2 < 0, for OA > B,

which implies that

(2.5) Iz, ) @ (y, ) = 0= (2,) @ (y,.) = 0.

Therefore, (z,.) = (y,.). Hence the resolvent operator j;f‘M is single-valued, for
o > 6.
O
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Proposition 2.20. Let M : H, x H, — 27 be a (o, \)-XOR-NODSM set-valued
mapping with respect to jf}M. Let A : H, x H, — H,p be a strongly comparison
mapping with respect to j)‘\AM. Then the resolvent operator j)‘\AM Hp X Hp — Hyp
1S @ comparison mapping. ’ ’

Proof. Let M be a (a, A\)-XOR-NODSM set-valued mapping with respect to j/\AM.
That is, M is a-non-ordinary difference and A-XOR-ordered strongly monotone
comparison mapping with respect to ij so that (z,.) j/(‘}M(m, .). For any
(x,.),(y,.) € Hp x Hp, let (x,.) x (y,.) and

(26) 0t = 1((5,) 8 ATy (,.)) € M(Tihy(z,.)
and
(27) 0p = 1 (5, @ AT (y:))) € M(T{as ().

Since M is A-XOR-ordered strongly monotone mapping, using (2.6) and (2.7), we
have

(2,) @ () < Al(v ®]]
(@)@ (1) < (@) ® ATy (@) & () ® AT w.)
(2,08 (1,) < (@)@ ) @ (AT, ) © AT, )
0 < AT () ® AT (v, )
0 < [AT () = AT )| v AT, ) = AT (@, )]
0 <[4 () = AT (5, )] or 0 < [AT () = ATy (.))]-

Thus, we have

AT (@) = ATy, ) or AT (v, ) = AT (2, ),
which implies that

)
)

A A
A(jA,M(% ) o A(j)\,M(ya ))-
Since A is strongly comparison mapping with respect to 7, )‘\AM. Therefore, 7. )‘\AM(a:, )
J f}M(y, .). That is, the resolvent operator J. {"M is a comparison mapping. O

Proposition 2.21. Let M : H, x H, — 27 be a (o, \)-XOR-NODSM set-valued
mapping with respect to ij. Let A : Hp, x Hp, — Hp be a comparison and (-
ordered compression mapping with respect to ij, for a\ > B. Then the following
condition holds:

1
(2.8)  Tiy(z.) e Ty, <

(aX @ B)
Proof. Let (z,.),(y,.) € Hp x Hp,

(x,.) @ (y,.),Y(z,.), (y,.) € Hp x Hp.

ver = 5 ((2,) 8 ATy (2,.))) € M(Thy(2,.)
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and
o = 3 () © AT 0,) € M (5,.))

As M be an (a, \)-XOR-NODSM set-valued mapping with respect to Jf}M and A
is S-ordered compression mapping with respect to j/{“M. It follows that M is also
an a-non-ordinary difference mapping with respect to J /\AM, we have

(29 (12 @ 0y2) & (T (0) @ Ty () =
and
_ 1 A A
v vy = 31,0 ® AT ) @ (5,) @ AT (0, )
= 3@ )8 (1) @ (AT (@) ® AT 0, D)
< U@ ® 4, @ BT, ) © Ty, )

From (2.9), we have
a(j)éM(xﬂ) @ij(y7)) = Ugx @Uy*

(210) S @ (1) © BT © Ty )

IN

oM Tih (@, ) @ T, ) < () @ (y,.) © BTy (2, ) @ Ty, )]
Now,
(AT (@, ) & T (. ) @ (BT (2, ) & T (v, )
<((@)@@.)e0=(z.)a <.>

(ak@ﬁ)(]jflM( @JA (¥, ) Y, .)-
It follows that J. )‘f}M( JeId (@ ( ) @ (y, .) and consequently, we
have
(211) T, ) © T, ) < = () ® (3,
. A, M\ - A\M\Y - _(oz)\@ﬂ) 5 y o).

3. FORMULATION OF THE PROBLEM AND EXISTENCE RESULTS

Let C C H, be a normal cone with constant N. Let P : H, x H, — H, be a
bi-mapping and M : H, x H, — 2Mr be a set-valued mapping. We consider the
following problem:

Find (z,.) € H, x H, such that
(3.1) 0 € P(z,y) & M(z,y),

for some fixed y € H,.



398 S. AHMED, J. IQBAL, C. T. PANG, AND R. AHMAD
We call problem (3.1) as ordered variational inclusion problem involving XOR
operation (in short, OVIP).

Below we list some special cases of problem (3.1).

(1) If P =0, and M(z,y) = M(z) then OVIP (3.1) reduces to the problem of
finding x € H,, such that

(3.2) 0e M(z).
Problem (3.2) is introduced and studied by Li [20].
(ii) If P(x,y) = P(x) , M(x,y) = M(z), then problem (3.1) becomes the prob-
lem of finding = € H,, such that
(3.3) 0€ P(x)® M(x)
Problem (3.3) is introduced and studied by Igbal et al. [7].
Hence, we claim that our problem is much more general than many existing

problems in the literature. The following lemma is a fixed point formulation of

OVIP (3.1).
Lemma 3.1. The OVIP (3.1) admits a solution (x,.) € H, x H, if and only if it

satisfies the following equation:

(3-4) (,.) = Tiu AP, y) @ Az, y)],

where A > 0 is constant.
Proof. Proof is a direct consequence of the definition of resolvent operator (2.2). O

Theorem 3.2. Let P,A : H, x H, — Hp be the bi-mappings such that P is a
comparison, y-ordered compression mapping and A is a comparison and B-ordered
compression mapping, respectively. Suppose that M : H, X H, — 2" s a (o, \)-
XOR-NODSM set-valued mapping. In addition, if for all \,a > 0, the following
conditions are satisfied:

(3.5) {I(Wv@ﬁ) < s,

aX > f,
then, OVIP (3.1) admits a solution (x*,.) € Hp X Hp, which is a fized point of
TP, ) & A(a*, ).
Proof. By Proposition 2.20, if (z1,.)  (z2,.), then
Ti AP (21, y) Az, y)] o Ty AP (22,y) © Alea, y)].

Since P is y-ordered compression, A is f-ordered compression mapping and using
Proposition 2.21, we have

0 < ThuAP(1,y) © Az, 9)] © Ty NP (22, 9) © Alea, y)]

=5 (WP@1) @ A1) & WPa2.1) © Aez.0)])

< -
~ (a®p
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= o (MPELY & Pea )] @ Ay © Aw.v)))
< ars g (A1) © @)l @ [3((e0) © @)
= ey (Mo Ay @)
_ (Mhes)
= W((ﬂfl,y) ® ($2,y))7
(3.6) 0 < JiuAP(a1,y) @ Az1,9)] © Tia[AP(22,y) © A2, )]
< O(z1,y) B 2,Y),
_ (e
where © = (@r&B)

Now by using the definition of normal cone and Proposition 2.7, from (3.6), we have
|7 NP1, 9)® Ay, )]~ T NP (2,9) @ Aw2, )| < NIOl(21,9) — (22, 9)].

It is clear from (3.5), that |©| < +. It follows that J,,[AP(.,.) & A(.,.)] is con-
traction mapping. Therefore, there exists a unique (z*,.) € H, x H, such that

(x*,.) = j/{‘}M[AP(x*, )@ Az, ).

By Lemma 3.1, (z*,.) is a unique solution of OVIP (3.1), which is a fixed point of
TP (x*, ) & Az, ). O

4. CONVERGENCE ANALYSIS

First we establish an Ishikawa type iterative algorithm based on Lemma 3.1 for
finding the approximate solution of OVIP (3.1), and then we prove a convergence
result. If (x,,.) = (2*,.), we mean z,, — x* and vice versa.

Iterative Algorithm 4.1. Let A, P : H, x H, — H, be the bi-mappings and
M : Hy, xH, — 2%» be a set-valued mapping. Given any (z9,.) € Hp X Hyp,
compute the sequence {z,} converges to x* such that (z,,.) converges to (z*,.) and
defined by the following iterative scheme:

(@nr1s) = (1= @) @ns )+ an (T2 AP Ws ) © Ay, )]) + ann,

(4.1)
(gns) = (1= bu)(@ns ) + b (T AP (0,) @ Az, )]) + b

oo
where 0 < ay,b, <1, > ap, =00,V n >0, {a,} and {5,} are two sequences in
n=0
H, X H,, introduced to take into account the possible inexact computation provided
that a,, ®0 =, and 38, 0= B,, ¥V n > 0.
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Remark 4.1. If P(z,,.) = P(zyn), P(yn,.) = P(yn), A(zn,.) = A(xn), A(Yn,.) =
A(yn),bn = 0,¥ n > 0, then Algorithm 4.1 becomes Mann type iterative algorithm.
Also, we remark that for suitable choices of operators involved in Algorithm 4.1,
we can easily obtain many more algorithms studied by several authors for solving
ordered variational inclusion problems.

Theorem 4.2. Let M, A and P be the same as in Theorem 3.2 such that all the
conditions of Theorem 3.2 are satisfied. Additionally, if the following conditions are
satisfied:

) (A ®8)] < aro )
ai > f3,
and li_}rn lan V (—an)|| = li_>m 18n V (=Bn)|| = 0, then the sequence {x,} generated

by Algorithm 4.1 converges strongly to the unique solution x* of OVIP (3.1).

Proof. We show that the sequence {z,} converges strongly to the unique solution
x* of OVIP (3.1). Theorem 3.2 implies that (z*,.) i.e 2* is a unique solution of
OVIP (3.1). Then, we have

(2%,) = (1= an) (", ) + an (T AP, ) @ A", )]
= (1= ba)(@",) + b (TP, ) @ A", )]
Using Algorithm 4.1, (
0 < (Tnt1,)®
= (1= aw)(@n, )+ an (T AP, ) @ Alga, )]) + anan

O[(1 = an)(@",) + an (T P@E*, ) @ A@",.)]) + an0)

(4.3)

4.3), Proposition 2.6 and Proposition 2.21, it follows that
("

2,.)

< (1= an)(@n, ) @ (") + an(an © 0)
tn | (T AP G ) & Alyns )]) & (FuDP@", ) @ A", )] )|
< (I —an)(@xn®2")+ an(on, ®0)
tn | (T AP G ) & Alyns )]) & (TP, ) @ A", )] )|
< (1= an)(@n ") + an(0n  0) + Oan((y, ) @ (2", )
(44) < (I—ap)(zyp ®2") + an(an, ®0) 4+ Oay(y, & x*).
e 6~ (A ®8)

(ar@ B)

Now we evaluate,
0 < (Yn,.) ® (2%,.)
= [0 = b (@, ) + b (T AP (@, ) @ A, )]) + bafa]
@ [(1 ~ b)) (@, )+ by (j;}M[AP(x*, )@ Az, .)]) + bno}
(1 =bn)(@p,.) & (2%,.) + bn(Bn © 0)

IA
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bo | (T AP (2, ) @ Alen, )]) @ (TP, ) @ A, )]

< (1= bp)(@n @ x") + by (Bn @ 0)
bo | (T s NP (@0, ) © Alwn, )]) & (WP, ) @ A", )] )|
< (T=bp)(zn ®2") + 0n(Bn & 0) + Oby((zn, ) & (27, .))
45) < (1=bp)(@n &%) + bn(Bu @ 0) + Obn (& 7).

Combining (4.4) and (4.5), it follows that
0 < (Tng1,.) @ (2%,.)
(1= an)(zn ® 2*) + Oan[(1 — by) (zn, & z*) + Oby(z, ® z*)
bn(Bn ®0)] + an(cay, ® 0)
(4.6) < (1=an(1—20))(zn ®2*) + an[Obn(B, ® 0) + (a, & 0)].
Using definition of normal cone and Proposition 2.7, we have

lzne1 =2 < N(1—an(l-26))||lz, — 2"
+Nan(1 —20) <@bn\lﬂn V (=Ba)|l + llan v (—an)H)_

IN

(1-20)
(4.7)
By setting 7, = eb"Hﬁ"v(fff_)ggganv(w")u, Xn = ||z — 2%, (o = Nay(l — 20),
inequality (4.7) can be rewritten as
(4.8) Xn < (1 - Cn)Xn + Cnnn'
From Lemma 2.12 and using the hypothesis lim |, V (—a)|| = lim ||5, V
n—00 n—00
(—=Bn)|l = 0, we deduce that x, — 0, as n — oo, and so {x,} converges strongly to
a unique solution z* of OVIP (3.1). O
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