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Recall that a distance function (simply distance or called metric) on a set X is a
function d : X ×X → R+ satisfying that, for all x, y, z ∈ X,

(D1) d(x, y) ≥ 0; (Nonnegative)
(D2) d(x, y) = 0 ⇐⇒ x = y; (Identity of indiscernibles)
(D3) d(x, y) = d(y, x); (Symmetry)
(D4) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality)

There are several ways of relaxing the axioms of distance. For example, a semi-
distance is defined as a function that satisfies all axioms for a distance with the
possible exception of (D4). A quasi-distance is defined as a function that satisfies
all axioms for a distance with the exception of (D3).

The Bregman distance (also called Bregman divergence) was introduced by Breg-
man [5], whose definition is similar to a metric, but does not satisfy the triangle
inequality. More specifically, let ϕ : S ⊆ Rd → R be a real-valued convex function
with gradient ∇ϕ, the Bregman distance (or Bregman divergence) dϕ : S×ri(S) → R
is defined as

dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨x− y,∇ϕ(y)⟩.
Here ri(S) denotes the relative interior of S. In particular, when taking ϕ(x) = ∥x∥2,
the corresponding Bregman distance is

dϕ(x, y) = ∥x− y∥2.

For ϕ(x) =
∑n

i=1(xi lnxi − xi), the corresponding Bregman distance is

(1.1) dϕ(x, y) =

n∑
i=1

(
xi ln

xi
yi

− xi + yi

)
.

For a collection of popular Bregman distances, please refer to [3].

The definition in above can be naturally extended to the space Sn of n× n real
symmetric matrices. In other words, given a convex function ϕ : Sn → R, the
Bregman distance (or Bregman matrix divergence) is defined to be

dϕ(X,Y ) = ϕ(X)− ϕ(Y )− ⟨X − Y,∇ϕ(Y )⟩
= ϕ(X)− ϕ(Y )− tr(X − Y )∇ϕ(Y )

Again, when taking ϕ(X) = ∥X∥2F , the corresponding Bregman distance is exactly
the squared Frobenius norm ∥X − Y ∥2F . In addition, let X ∈ S with eigenvalues
λ1, λ2, . . . , λn, taking

ϕ(X) =
n∑

i=1

(λ1 lnλi − λi) , alternatively expressed as ϕ(X) = tr(X lnX −X),

leads to the resulting Bregman distance

dϕ(X,Y ) = tr (X lnX −X lnY −X + Y ) .



A SEMI-DISTANCE ASSOCIATED WITH SYMMETRIC CONE 423

The Bregman distance is widely used in clustering [3], co-clustering [4], low-rank
matrix approximation [12, 17, 20], online learning [27], probability measure [25],
and matrix nearness problem [13], etc.. Moreover, it is also employed to various
proximal point algorithms and proximal-like algorithms, see [6, 9, 10, 18, 23] and
references therein.

In the context of proximal methods, another kind of distance function, the so-
called φ-divergence proposed by Teboulle [26], was also considered. More specifi-
cally, this type of distance is based on some properties as below. Let φ : R++ → R
be a closed and proper convex function that satisfies the following properties:

(φ1) φ is twice continuously differentiable;
(φ2) φ is strictly convex;
(φ3) φ(1) = φ′(1) = 0 and φ′′(1) > 0
(φ4) limt→0+ φ′(t) = −∞.

The φ-divergence dφ : Rn
++ × Rn

++ → R is defined by

dφ(x, y) =
n∑

i=1

yiφ

(
xi
yi

)
,

where φ satisfies (i)-(iv). Note that, when φ(t) := t − ln t − 1, the corresponding
φ-divergence is

dφ(x, y) =

n∑
i=1

(
yi ln

yi
xi

+ xi − yi

)
(1.1)
= dϕ(y, x).

Both Bregman distances and φ-divergences satisfy (D1)-(D2), that is, they are the
pre-distances, but they do not satisfy the (D3)-(D4) in general. However, these
distance functions satisfy some other desirable properties, e.g., (φ1)-(φ2).

In this paper, we introduce a semi-distance function associated with symmetric
cone. In light of this semi-distance, we construct a proximal distance in the setting
of second-order cone. To our best knowledge, it may be the only proximal distance
which is not induced from Bregman distance, φ-divergence, or distance-like entropy
function. This provides a good contribution to the literature. As mentioned, some
algorithms based on proximal distance like proximal point algorithm and proximal-
like algorithm can be applied accordingly to solve second-order cone optimizations.
The outline of this paper is as follows. In section 2, we review some basic concepts
regarding symmetric cone and second-order cone, and then propose a new semi-
distance associated with symmetric cone and investigate its convexity. In section
3, according to the semi-distance, a proximal distance with respect to second-order
cone is constructed. Finally, we draw a conclusion in section 4.

Throughout this paper, Rn denotes n-dimensional Euclidean space endowed with

the canonical inner product ⟨· , ·⟩ and the norm of x given by ∥x∥ = ⟨x, x⟩
1
2 is the

Euclidean norm. In addition, for any subset C of Rn, the interior of C is denoted
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by intC, the closure of C is denoted by C̄ and the boundary of C is denoted by
bdC. We also adopt the standard natation of convex analysis [24]. For a proper
convex and l.s.c. function F : Rn → R ∪ {+∞}, its effective domain is defined by
domF = {x |F (x) < +∞}, ∇F (x) denotes the gradient of F at x whenever F is
differentiable at x, and for ϵ ≥ 0 its ϵ-subdifferential at x is defined by

∂ϵF (X) = {ξ ∈ Rn | ∀z ∈ Rn, F (z) + ϵ ≥ F (x) + ⟨ξ, z − x⟩},

which coincides with the usual subdifferential ∂F ≡ ∂0F whenever ϵ = 0. In
addition, we denote dom ∂F := {x ∈ Rn | ∂F (x) ̸= ∅}.

2. A semi-distance associated with symmetric cone

In this section, we propose a new semi-distance function on a symmetric cone
and construct a proximal distance in the setting of second-order cone. To this end,
we review some basic concepts and properties on symmetric cones and second-order
cones, which are needed in the subsequent analysis.

A Euclidean Jordan algebra [15] is a finite dimensional inner product space
(V, ⟨·, ·⟩) (V for short) over the field of real numbers R equipped with a bilinear
map (x, y) 7→ x ◦ y : V× V → V, which satisfies the following conditions:

: (i) x ◦ y = y ◦ x for all x, y ∈ V;
: (ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V;
: (iii) ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x, y, z ∈ V,

where x2 := x ◦ x, and x ◦ y is called the Jordan product of x and y. If a Jordan
product only satisfies the conditions (i) and (ii) in the above definition, the algebra
V is said to be a Jordan algebra. Moreover, if there is an (unique) element e ∈ V
such that x ◦ e = x for all x ∈ V, the element e is called the identity element
in V. Note that a Jordan algebra does not necessarily have an identity element.
Throughout this paper, we assume that V is a Euclidean Jordan algebra with an
identity element e.

In a given Euclidean Jordan algebra V, the set of squares K := {x2 |x ∈ V}
is a symmetric cone [15, Theorem III.2.1]. This means that K is a self-dual closed
convex cone and, for any two elements x, y ∈ int(K), there exists an invertible linear
transformation Γ : V → V such that Γ(x) = y and Γ(K) = K. We introduce the
second-order cone in Rn, an important example of symmetric cones, which is defined
as follows:

Kn :=
{
x = (x0, x̄) ∈ R× Rn−1 | x0 ≥ ∥x̄∥

}
,

and the corresponding Jordan product of x and y in Rn with x = (x0, x̄), y =
(y0, ȳ) ∈ R× Rn−1 is given by

x ◦ y :=

[
xT y

x0ȳ + y0x̄

]
.
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We note that e = (1, 0) ∈ R× Rn−1 acts as the Jordan identity.

For any given x ∈ V, we denote m(x) the degree of the minimal polynomial of x,
that is,

m(x) :=
{
k > 0 | {e, x, . . . , xk} is linearly dependent

}
.

Since m(x) ≤ dim(V) where dim(V) is the dimension of V, the rank of V is well-
defined by r := max{m(x) |x ∈ V}. In Euclidean Jordan algebra V, an element
ei ∈ V is an idempotent if (ei)2 = ei, and it is a primitive idempotent if it is nonzero
and cannot be written as a sum of two nonzero idempotents. The idempotents ei

and ej are said to be orthogonal if ei ◦ ej = 0. In addition, we say that a finite set
{e1, e2, . . . , er} of primitive idempotents in V is a Jordan frame if

ei ◦ ej = 0 for i ̸= j, and

r∑
i=1

ei = e.

Note that ⟨ei, ej⟩ = ⟨ei ◦ ej , e⟩ whenever i ̸= j.

With the above, there have the spectral decomposition and Peirce decomposition
of an element x in V.

Theorem 2.1 (The Spectral Decomposition Theorem [15, Theorem III.1.2]). Let
V be a Euclidean Jordan algebra. Then there is a number r such that, for every
x ∈ V, there exists a Jordan frame {e1, . . . , er} and real numbers λ1(x), . . . , λr(x)
with

x = λ1(x)e
1 + · · ·+ λr(x)e

r.

Here, the numbers λi(x) (i = 1, . . . , r) are the eigenvalues of x, the expression
λ1(x)e

1 + · · · + λr(x)e
r is the spectral decomposition of x. Moreover, tr x :=∑r

i=1 λi(x) is called the trace of x, and det(x) = λ1(x)λ2(x) . . . λr(x).

In the setting of second-order cone in Rn, the spectral decomposition of x =
(x0, x̄) ∈ R× Rn−1 with x̄ ̸= 0 reduces to

x = λ1(x)e
1 + λ2(x)e

2,

where λi(x) = x0 + (−1)i∥x̄∥ and ei = 1
2

(
1, (−1)i x̄

∥x̄∥

)
. Accordingly, we know that

tr x = λ1(x) + λ2(x) = 2x0 and det(x) = λ1(x)λ2(x) = x20 − ∥x̄∥2, see [8, 11, 14].

We point out that different elements x, y have their own Jordan frames in the
spectral decomposition, which are not easy to handle when we need to do operations
for x and y. Thus, we need another so-called Peirce decomposition to conquer such
difficulty. In other words, in the Peirce decomposition, two different elements x, y
share the same Jordan frame. We elaborate them more as below.

The Peirce decomposition: Fix a Jordan frame {e1, e2, . . . , er} in a Euclidean
Jordan algebra V. For i, j ∈ {1, 2, . . . , r}, we define the following eigen-spaces

Vii := {x ∈ V | x ◦ ei = x} = Rei
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and

Vij :=

{
x ∈ V | x ◦ ei = 1

2
x = x ◦ ej

}
for i ̸= j.

Theorem 2.2 ([15, Theorem IV.2.1]). The space V is the orthogonal direct sum of
spaces Vij(i ≤ j). Furthermore,

Vij ◦ Vij ⊂ Vii + Vjj ,

Vij ◦ Vjk ⊂ Vik, if i ̸= k,

Vij ◦ Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

Hence, given any Jordan frame {e1, e2, . . . , er}, we can write any element x ∈ V as

x =

r∑
i=1

xie
i +
∑
i<j

xij ,

where xi ∈ R and xij ∈ Vij. The expression
∑r

i=1 xie
i+
∑

i<j xij is called the Peirce
decomposition of x.

Given a Euclidean Jordan algebra V with dim(V) = n > 1, from Proposition
III 4.4-4.5 and Theorem V.3.7 in [15], we know that any Euclidean Jordan algebra
V and its corresponding symmetric cone K are, in a unique way, a direct sum
of simple Euclidean Jordan algebras and the constituent symmetric cones therein,
respectively, i.e.,

V = V1 × · · · × Vm and K = K1 × · · · × Km,

where every Vi is a simple Euclidean Jordan algebra (that cannot be a direct sum
of two Euclidean Jordan algebras) with the corresponding symmetric cone Ki for
i = 1, . . . ,m, and n =

∑m
i=1 ni (ni is the dimension of Vi). Therefore, for any

x = (x1, . . . , xm)T and y = (y1, . . . , ym)T ∈ V with xi, yi ∈ Vi, we have

x ◦ y = (x1 ◦ y1, . . . , xm ◦ ym)T ∈ V and ⟨x, y⟩ = ⟨x1, y1⟩+ · · ·+ ⟨xm, ym⟩.

For simplicity, we focus on the single symmetric cone K because all the analysis can
be carried over to the setting of Cartesian product.

In a Euclidean Jordan algebras V, for any x ∈ V, A linear transformation L(x) :
V → V is called Lyapunov transformation, which is defined as L(x)(y) := x ◦ y
for all y ∈ V. The so-called quadratic representation P (x) is define by P (x) :=
2L2(x)−L(x2). For any x ∈ V, the endomorphisms L(x) and P (x) are self-adjoint.
We say that two elements x and y of a Euclidean Jordan algebra V operator commute
if x◦ (y ◦z) = y ◦ (x◦z) for all z ∈ V, which is equivalent to stating that L(x)L(y) =
L(y)L(x). For the quadratic representation P (x), if x is invertible, then we have

P (x)K = K and P (x)int(K) = int(K).
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In the setting of second-order cone, for any x = (x0, x̄) ∈ R×Rn−1, we know that

L(x) =

[
x0 x̄T

x̄ x0I

]
with I being the identity matrix in R(n−1)×(n−1), and the quadratic representation
P (x) can be expressed as

P (x) = 2xxT − det(x)J,

where J :=

[
1 0T

0 −I

]
with I being the identity matrix in R(n−1)×(n−1), see [15, 21].

In addition, it is easy to see that the vectors x and y with x = (x0, x̄) and y = (y0, ȳ)
operator commute if and only if either ȳ is a multiple of x̄ or x̄ is a multiple of ȳ.

Now, based on the symmetric cone trace function tr(·), we propose a new semi-
distance function associated with symmetric cone as bellow:

(2.1) d(x, y) := tr(x+ y)− 2 tr
(
P (x

1
2 )y
) 1

2
, for x, y ∈ K.

In fact, when the symmetric cone reduces to the semi-definite positive matrix cone,

the function d(A,B) := tr(A + B) − 2 tr(A
1
2BA

1
2 )

1
2 appears in the Wasserstein

distance between Gaussian measures [2, 16, 19].

The following theorem shows the properties of the function d(·, ·).

Theorem 2.3. Let d(·, ·) be defined as in (2.1). For any x, y ∈ K, assume that x
and y operator commute. Then, we have

(a): d(x, y) ≥ 0;
(b): d(x, y) = 0 if and only if x = y;
(c): d(x, y) = d(y, x).

Proof. (a) Since x, y ∈ K and x and y operator commute, it follows from [15,
Lemma X.2.2] that x and y have the same Jordan frame. In other words, there
exists a Jordan frame {e1, e2, . . . , er} and the spectral decomposition of x and y can
be expressed as below, respectively,

x = λ1(x) e
1 + · · ·+ λr(x) e

r,

y = µ1(y) e
1 + · · ·+ µr(y) e

r.

From this, we obtain x
1
2 =

√
λ1(x) e

1 + · · ·+
√

λr(x) e
r, which implies that

P (x
1
2 )(y) = x ◦ y = λ1(x)µ1(y)e

1 + · · ·+ λr(x)µr(y)e
r.

Thus, we have
(
P (x

1
2 )(y)

) 1
2
=
√
λ1(x)µ1(y) e

1+· · ·+
√

λr(x)µr(y) e
r, which further

leads to

tr
(
P (x

1
2 )(y)

) 1
2
=

r∑
i=1

√
λi(x)µi(y).
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Then, it follows that

d(x, y) = tr(x+ y)− 2 tr
(
P (x

1
2 )(y)

) 1
2

=

r∑
i=1

(λi + µi)− 2

r∑
i=1

√
λi(x)µi(y)

=

r∑
i=1

(√
λi(x)−

√
µi(y)

)2
=

∥∥∥x 1
2 − y

1
2

∥∥∥2 ,
which proves d(x, y) ≥ 0.

(b) From the proof of part (a), we know that d(x, y) =
∥∥∥x 1

2 − y
1
2

∥∥∥2. Hence, it is

clear to see that d(x, y) = 0 if and only if x = y.

(c) From the expression of d(x, y), d(x, y) = d(y, x) is obvious. 2

We make some remarks regarding Theorem 2.3 here.

(1) By the fundamental theorem for Jordan algebras [15, Proposition II. 3.3]),
the symmetric property in Theorem 2.3(c) holds for general x, y ∈ K.

Indeed, P (P (x
1
2 )y) = P (x

1
2 )P (y)P (x

1
2 ) is similar to P (y

1
2 )P (x)P (y

1
2 ) =

P (P (y
1
2 )x).

(2) For the cone of positive definite matrices of fixed size, the properties in
Theorem 2.3(a)-(b) hold from the following relation to the extremal problem
(see [2, Theorem 1]):

min
UU∗=I

∥A1/2 −B1/2U∥22 = d(A,B).

Nonetheless, in general, we do not know whether properties in Theorem
2.3(a)-(b) hold for a general symmetric cone (without assuming operator
commute).

Theorem 2.4. Let d(·, ·) be defined as in (2.1). Then, d(x, y) is convex, for any a
fixed x or y.

Proof. First, we fix the element x. From [7, Theorem 3.2], we know that for any

z ∈ K, the trace function tr(z)
1
2 is concave. Moreover, by [15, Proposition III 2.2],

we have that P (x
1
2 )(y) ∈ K for x, y ∈ K, and P (x

1
2 )(y) with respect to y is linear

mapping. Combining with the concavity of the trace function tr(·)
1
2 , it is easy to

verify that the trace function tr(P (x
1
2 )(y))

1
2 with respect to y is concave. Therefore,

−2 tr(P (x
1
2 )y)

1
2 with respect to y is convex. Since the trace function tr(x + y) is

convex, it is not hard to obtain that d(x, y) with respect to y is also convex.
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If we fix the element y, with the same arguments, we have that d(y, x) with respect
to y is convex. Applying part (c) of Theorem 2.3, we know that d(x, y) = d(y, x).
Hence, we obtain that d(x, y) with respect to y is also convex. 2

Next, we discuss the corresponding results in the setting of second-order cone
Kn. For any x ∈ Kn with x := (x0, x̄) ∈ R× Rn−1, we know

x
1
2 =

 √
x0−∥x̄∥+

√
x0+∥x̄∥

2√
x0+∥x̄∥−

√
x0−∥x̄∥

2
x̄

∥x̄∥

 =


√

x0+
√

x2
0−∥x̄∥2
2

1√
2
(
x0+

√
x2
0−∥x̄∥2

) x̄
 .

Since P (z) = 2zzT − det(z)J for any z ∈ Rn in the setting of second-order cone,

where J =

[
1 0
0 −I

]
, it follows that for any y ∈ Kn with y := (y0, ȳ) ∈ R×Rn−1,

P (x
1
2 )(y) =

(
2x

1
2 (x

1
2 )T − det(x

1
2 )J
)
(y)

=

[
x0y0 + x̄T ȳ

y0x̄+ x̄T ȳx̄

x0+
√

x2
0−∥x̄∥2

+
√

x20 − ∥x̄∥2ȳ

]

:=

[
x0y0 + x̄T ȳ

w̄

]
.

This yields that

(
P (x

1
2 )(y)

) 1
2
=


√

x0y0+x̄T ȳ+
√

(x0y0+x̄T ȳ)2−∥w̄∥2
2

1√
2
(
x0y0+x̄T ȳ+

√
(x0y0+x̄T ȳ)2−∥w̄∥2

) w̄
 .

Note that

∥w̄∥2

= ⟨w̄, w̄⟩

= y20∥x̄∥2 +
(x̄T ȳ)2∥x̄∥2

(x0 +
√
x20 − ∥x̄∥2)2

+ (x20 − ∥x̄∥2)∥ȳ∥2 + 2(x̄T ȳ)2
√
x20 − ∥x̄∥2

x0 +
√
x20 − ∥x̄∥2

+
2y0x̄

T ȳ∥x̄∥2

x0 +
√
x20 − ∥x̄∥2

+ 2y0x̄
T ȳ
√
x20 − ∥x̄∥2

= y20∥x̄∥2 + x20∥ȳ∥2 − ∥x̄∥2∥ȳ∥2 + 2y0x̄
T ȳ

(
∥x̄∥2

x0 +
√

x20 − ∥x̄∥2
+
√
x20 − ∥x̄∥2

)

+
(x̄T ȳ)2

x0 +
√
x20 − ∥x̄∥2

(
∥x̄∥2

x0 +
√

x20 − ∥x̄∥2
+ 2
√

x20 − ∥x̄∥2
)

= y20∥x̄∥2 + x20∥ȳ∥2 − ∥x̄∥2∥ȳ∥2 + 2x0y0x̄
T ȳ + (x̄T ȳ)2.
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Hence, we have

tr
(
P (x

1
2 )(y)

) 1
2

= 2

√
x0y0 + x̄T ȳ +

√
(x0y0 + x̄T ȳ)2 − ∥w̄∥2
2

=

√
2(x0y0 + x̄T ȳ) + 2

√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2).(2.2)

With the above expression (2.2), we show that the function d(·, ·) on the second-
order cone is a semi-distance.

Theorem 2.5. Let the function d(·, ·) be defined by (2.1). Then, for any x, y ∈ Kn,
we have

(a): d(x, y) ≥ 0;
(b): d(x, y) = 0 if and only if x = y;
(c): d(x, y) = d(y, x).

Proof. (a) For any x, y ∈ Kn with x := (x0, x̄), y := (y0, ȳ) ∈ R×Rn−1, by expression
(2.2), we have

tr
(
P (x

1
2 )(y)

) 1
2

=

√
2(x0y0 + x̄T ȳ) + 2

√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2)

≤
√

2(x0y0 + ∥x̄∥∥ȳ∥) + 2
√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2)

=
√
(x0 + ∥x̄∥)(y0 + ∥ȳ∥) +

√
(x0 − ∥x̄∥)(y0 − ∥ȳ∥),

which gives

d(x, y) = tr(x+ y)− 2 tr
(
P (x

1
2 )(y)

) 1
2

≥ 2(x0 + y0)− 2
(√

(x0 + ∥x̄∥)(y0 + ∥ȳ∥) +
√

(x0 − ∥x̄∥)(y0 − ∥ȳ∥)
)

= (
√
x0 + ∥x̄∥ −

√
y0 + ∥ȳ∥)2 + (

√
x0 − ∥x̄∥ −

√
y0 − ∥ȳ∥)2

≥ 0.

(b) If x = y, it is easy to verify that d(x, y) = 0. It remains to show the other
direction. Suppose that d(x, y) = 0. From the proof of part (a), we see that

0 = d(x, y)

= 2(x0 + y0)− 2

√
2(x0y0 + x̄T ȳ) + 2

√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2)

≥ 2(x0 + y0)− 2

√
2(x0y0 + ∥x̄∥∥ȳ∥) + 2

√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2)

=
(√

x0 + ∥x̄∥ −
√
y0 + ∥ȳ∥

)2
+
(√

x0 − ∥x̄∥ −
√

y0 − ∥ȳ∥
)2

(2.3)

≥ 0.
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This says that x̄T ȳ = ∥x̄∥∥ȳ∥,
√
x0 + ∥x̄∥ =

√
y0 + ∥ȳ∥,

√
x0 − ∥x̄∥ =

√
y0 − ∥ȳ∥,

which leads to x̄ = ȳ. Combining with
√
x0 + ∥x̄∥ =

√
y0 + ∥ȳ∥, this yields that

x0 = y0. Then, it follows that x = y.

(c) From the expression of d(x, y), i.e.,

d(x, y) = 2(x0 + y0)− 2

√
2(x0y0 + x̄T ȳ) + 2

√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2),

it is obvious that d(x, y) = d(y, x). 2

Theorem 2.6. Let the function d(·, ·) be defined by (2.1). Then, for any a fixed x
or y, d(x, y) is convex.

Proof. The arguments are similar to those in Theorem 2.4. We omit them here.
2

In Theorem 2.5, we have shown that the function d(·, ·) on Kn satisfies (D1)-(D3),
and hence it is a semi-distance on the second-order cone Kn. However, in light of
the convexity of d (Theorem 2.4), we can verify that the triangle inequality fails. To
see this, given any x, y in symmetric cone K, taking z = λx+ (1− λ)y, 0 < λ < 1,
we have

d(x, z) = d(x, λx+ (1− λ)y) ≤ λd(x, x) + (1− λ)d(x, y) = (1− λ)d(x, y),(2.4)

d(z, y) = d(λx+ (1− λ)y, y) ≤ λd(x, y) + (1− λ)d(y, y) = λd(x, y).(2.5)

Then, adding (2.4) and (2.5) together yields

d(x, z) + d(z, y) ≤ d(x, y).

Moreover, in the setting of second-order cone, we hereby provide an example to
explain that the inequality holds strictly, and consequently the triangle inequality
fails. Consider x = (1, 1√

2
, 1√

2
), y = (1,− 1√

2
,− 1√

2
), and z = 1

2(x+ y) = (1, 0, 0). It

is clear that x, y, z ∈ K3, and

d(x, z) + d(z, y) = (4− 2
√
2) + (4− 2

√
2) < 4 = d(x, y).

3. A new proximal distance with respect to int(Kn)

In this section, we construct a new proximal distance associated with second-order
cone based on the aforementioned semi-distance. To proceed, we first present the
definition of proximal distance, which was introduced by Auslender and Teboulle
[1]. For more details of its properties, please refer to [1].

Definition 3.1. A function d : Rn ×Rn → R+ ∪ {+∞} is called proximal distance
with respect to an open nonempty convex set C ⊂ Rn if for each y ∈ C it satisfies
the following properties:

(P1) d(·, y) is proper, l.s.c., convex, continuously differentiable on C;
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(P2) dom d(·, y) ⊂ C̄ and dom∂1d(·, y) = C, where ∂1d(·, y) denotes the classical
subgradient map of the function d(·, y) with respect to the first variable;

(P3) d(·, y) is level bounded on Rn i.e., lim∥u∥→+∞ d(u, y) = +∞;
(P4) d(y, y) = 0.

We denote by D(C) the family of functions d satisfying Definition 3.1. Property
(P1) is needed to preserve convexity of d(·, y), (P2) will force the iterate xk to stay
in C, and (P3) is used to guarantee the existence of such an iterate. For each y ∈ C,
let ∇1d(·, y) denote the gradient map of the function d(·, y) with respect to the first
variable. Note that by definition d(·, ·) ≥ 0, and from (P4) the global minimum of
d(·, y) is obtained at y, which shows that ∇1d(y, y) = 0.

Definition 3.2. Given C ⊂ Rn, open and convex, and d ∈ D(C), a function
H : Rn × Rn → R+ ∪ {+∞} is called the induced proximal distance to d if H is
finite valued on C × C and for each a, b ∈ C satisfies

(H1) H(a, a) = 0;
(H2) ⟨c− b,∇1d(b, a)⟩ ≤ H(c, a)−H(c, b) for each c ∈ C.

We write (d,H) ∈ F(C) to quantify the triple [C, d,H] that satisfies the premises
of Definition 3.2. We also denote (d,H) ∈ F(C̄) if there exists H such that

(H3) H is finite valued on C̄ × C satisfying (H1) and (H2), for each c ∈ C̄;
(H4) For each c ∈ C̄, H(c, ·) has bounded level set on C.

Finally, we write (d,H) ∈ F+(C̄) if (d,H) ∈ F(C̄) and

(H5) for all y ∈ C̄ and any {yk} ⊂ C bounded with limk→+∞H(y, yk) = 0, then
limk→+∞ yk = y;

(H6) for all y ∈ C̄ and any {yk} ⊂ C converges to y, we have limk→+∞H(y, yk) =
0.

Clearly, we have F+(C̄) ⊂ F(C̄) ⊂ F(C). According to the proximal distances,
Auslender and Teboulle [1] also proposed some algorithms and derived global conver-
gence. In particular, they demonstrated several examples of proximal distances, in-
cluding Bregman distances, proximal distances based on φ-divergence, self-proximal
distances, and distances based on second order homogeneous proximal distances, for
more details, please see [1, Section 3].

In view of the distance function d defined as in (2.1), we now construct a new
type of proximal distance which is different from the ones given in [1]. To our best
knowledge, it may be the only proximal distance which is not induced from Bregman
distance, φ-divergence, or distance-like entropy function. For any x, y ∈ Rn, we
define d : Rn × Rn → R+ ∪ {+∞} by

(3.1) d(x, y) :=

 tr(x+ y)− 2 tr
(
P (x

1
2 )y
) 1

2 ∀x ∈ int(Kn), y ∈ Kn,

+∞ otherwise.
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This function, as will be shown below, is a proximal distance with respect to int(Kn).
First, we note that the function d satisfies Property (P4) by Theorem 2.5. Next,
we discuss the differentiability of d with respect to the first variable.

Proposition 3.3. Let d be defined as in (3.1). Then, for any y ∈ int(Kn), d(·, y)
is continuously differentiable on int(Kn).

Proof. Given any x ∈ int(Kn), let x := (x0, x̄), y := (y0, ȳ) ∈ R × Rn−1, we know
that

d(x, y) = 2(x0 + y0)− 2

√
2(x0y0 + x̄T ȳ) + 2

√
(x20 − ∥x̄∥2)(y20 − ∥ȳ∥2).

Here we use expression (2.2), and x0y0 + x̄T ȳ > 0, x0 > ∥x̄∥, y0 > ∥ȳ∥ so that
the terms inside the square root is positive. Besides, note that the following three
functions

x 7→ x0,

x 7→ x0y0 + x̄T ȳ,

x 7→ x20 − ∥x̄∥2,

are continuously differentiable on Rn, and the function t 7→
√
t is continuously

differentiable on R++. Thus, we conclude that the distance function d(·, y) is also
continuously differentiable on int(Kn) because it is a composition of continuously
differentiable functions.

Moreover, by the direct calculation, we have

∇1d(x, y) = 2e− 2√
2⟨x, y⟩+ 2

√
det(x)det(y)

(
y +

det(y)√
det(x)det(y)

[
x0
−x̄

])

where e = (1, 0) ∈ R × Rn−1, det(x) = x20 − ∥x̄∥2, and det(y) = y20 − ∥ȳ∥2. Then,
the proof is complete. 2

For any y ∈ int(Kn), it is clear that d(·, y) is proper, lower semicontinuous on
int(Kn) by the definition of d. In addition, it is convex and continuously differ-
entiable on int(Kn) by Theorem 2.6 and Proposition 3.3, respectively. Thus, the
distance function d satisfies the Property (P1).

Remark 3.4. Proposition 3.3 still holds for any symmetric cone without assuming
operator commute since

d(x, y) = d(y, x) = tr(y + x)− 2 tr
(
P (y

1
2 )x
) 1

2
,

the map x 7→ P (y
1
2 )x is smooth on the cone, the map tr(·)

1
2 is smooth on the interior

of the cone by [7, Lemma 3.1], and trace functional is the inner product with the
Jordan identity.
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Proposition 3.5. Let d be defined as in (3.1). Then, the distance function d
satisfies the Property (P2).

Proof. For any y ∈ int(Kn), it is clear that domd(·, y) = int(Kn) ⊂ Kn from the
definition of d. In addition, since d(·, y) is convex and continuously differentiable
on int(Kn), applying [24, Theorem 25.1] gives ∂1d(x, y) = {∇1d(x, y)} ̸= ∅ for any
x ∈ int(Kn). Thus, it remains to show that ∂1d(x, y) = ∅ for any x ∈ bd(Kn).
Indeed, there is no ξ ∈ Rn satisfying

d(z, y) ≥ d(x, y) + ⟨ξ, z − x⟩ ∀z ∈ Rn

because d(x, y) = +∞. Therefore, we conclude dom ∂1d(·, y) = int(Kn). 2

Proposition 3.6. Let d be defined as in (3.1). Then, the distance function d
satisfies the Property (P3).

Proof. Suppose y ∈ int(Kn), we first note that for u ∈ int(Kn), u0+∥ū∥ ≥ ∥u∥, and
from inequality (2.3),

d(u, y) ≥
(√

u0 + ∥ū∥ −
√

y0 + ∥ȳ∥
)2

+
(√

u0 − ∥ū∥ −
√
y0 − ∥ȳ∥

)2
≥

(√
u0 + ∥ū∥ −

√
y0 + ∥ȳ∥

)2
,

we have

(3.2) d(u, y) ≥
(√

∥u∥ −
√
y0 + ∥ȳ∥

)2
whenever

√
∥u∥ ≥

√
y0 + ∥ȳ∥. In fact, the inequality (3.2) holds for all u ∈ Rn

since d(u, y) = +∞ if u /∈ int(Kn). Then, we conclude that d(u, y) → +∞ as
∥u∥ → +∞, that is, d(·, y) is level bounded on Rn. 2

Theorem 3.7. Let d be defined as in (3.1). Then, the function d is a proximal
distance with respect to int(Kn).

Proof. This is an immediate consequence of Props. 3.3-3.6. 2

4. Concluding remarks

In this paper, we propose a semi-distance associated with symmetric cone, which
is further proved a proximal distance with respect to int(Kn). However, we do
not know whether or not the distance function d can become a proximal distance
with respect to symmetric cone. The main difficulty is that the differentiability of
eigenvalues λi(x) of x associated with symmetric cone is unknown yet if we regard
λi(x) as a function of x.
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Figure 1. Relationship between these distance-like function.

There are a few future research directions based on the new discovery of the
proximal distance d in this paper. For example, consider the following convex
second-order cone programming (CSOCP):

min f(x)
s.t. x ∈ Kn,

where f : Rn → R∪{+∞} is a proper, l.s.c., convex function. Pan and Chen [22] pro-
posed a class of interior proximal-like algorithms for the (CSOCP) via distance-like
functions. One direction is employing this proximal distance d to the proximal-like
algorithms and doing the numerical comparison. Of course, analyzing the conver-
gence rate is also desirable. There are some other questions to be answered in the
future:

• Is the distance function d also a proximal distance in the setting of sym-
metric cone (without assuming operator commute)?

• Can the distance function d further become a Bregman distance or φ-
divergence? In other words, does there exist a ϕ or φ so that d corresponds
to dϕ or dφ?

• Can the distance function d be extended to nonsymmetric cone setting? In
particular, for circular cone Lθ, we have already known one type of spectral
decomposition of x and some differentiabilities of λi(x), see [28]. By using
these facts, we may consider to construct an analogous distance function d
in the setting of circular cone.

We leave all the above as our future works.
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