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modified F-B splitting method by the same A and B in a 2-uniformly convex and
uniformly smooth Banach space.
On the other hand, Tseng [33] considered a monotone and Lipschitz continu-

ous mapping which is more general than an inverse-strongly-monotone mapping
and proposed the following forward-backward-forward (F-B-F for short) splitting
method by a maximal monotone operator A ⊂ H × H and a single valued mono-
tone operator B : H −→ H:

y1 = x ∈ C,
zn = JA

λn
(yn − λnByn),

yn+1 = PC(zn − λn(Bzn −Byn)),

(1.2)

for all n ∈ N, where C is nonempty closed convex subset of H, PC is the metric
projection of H onto C, A+B is maximal monotone and F = C ∩ (A+B)−10 ̸= ∅.
When B is Lipschitz continuous on C ∪ D(A), he proved {yn} generated by (1.2)
converges weakly to an element of F under some conditions.
In this paper, motivated by [14, 33], we consider strong convergence for a sum of a

maximal monotone operator and a monotone and Lipschitz continuous mapping in
a real 2-uniformly convex and uniformly smooth Banach space E. And we introduce
a modified F-B-F splitting method by a maximal monotone operator A ⊂ E × E∗

and a single valued monotone and Lipschitz continuous mapping B of C ∪ D(A)
into E∗ as follows:

x1 = x ∈ C ∪D(A),
yn = JA

λn
J−1(Jxn − λnBxn − αn(Jxn − Ju)),

Jzn = Jyn − λn(Byn −Bxn)
xn+1 = ΠCzn

for every n ∈ N, where u ∈ E, C is a nonempty closed convex subset of E, J is the
duality mapping of E, F = C ∩ (A+B)−10 ̸= ∅, ΠC is the generalized projection of
E onto C, {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1] such that αn → 0 and

∑∞
n=1 αn = ∞.

Then we prove {xn} converges strongly to ΠFu under some assumptions. From
this result, we get new strong convergence for a maximal monotone operator and a
monotone and Lipschitz continuous mapping and for variational inequality problems
in a 2-uniformly convex and uniformly smooth Banach space and a real Hilbert
space.

2. Preliminaries

We use xn → x to indicate that a sequence {xn} converges strongly to x and
xn ⇀ x will symbolize weak convergence. We define the modulus of convexity δE
of E as follows: δE is a function of [0, 2] into [0, 1] such that

δE(ε) = inf{1− ∥x+ y∥/2 : x, y ∈ E, ∥x∥ = 1, ∥y∥ = 1, ∥x− y∥ ≥ ε}

for every ε ∈ [0, 2]. For p > 1, E is said to be p-uniformly convex if there exists
a constant c > 0 with δE(ε) ≥ cεp for every ε ∈ [0, 2] and we know that Lp space
is p-uniformly convex if p > 2 and 2-uniformy convex if 1 < p ≤ 2, see [35]. We
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say E is uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2]. It is obvious that a p-
uniformly convex Banach space is uniformly convex. E is said to be strictly convex
if ∥x + y∥/2 < 1 for each x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. It is known
that a uniformly convex Banach space is strictly convex and reflexive. The duality
mapping J : E → 2E

∗
of E is defined by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 = ∥f∥2}

for every x ∈ E. We know that if E is strictly convex and reflexive, then, the duality
mapping J of E is bijective and J−1 : E∗ → 2E is the duality mapping of E∗. E is
said to be smooth if the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for every x, y ∈ S(E), where S(E) = {x ∈ E : ∥x∥ = 1}. E is said to be
uniformly smooth if the limit (2.1) is attained uniformly for (x, y) in S(E)× S(E).
It is known that the duality mapping J of E is single valued if and only if E is
smooth and if J is single valued, J is norm to weak* continuous. We also know that
if E is uniformly smooth, then the duality mapping J of E is uniformly continuous
on bounded subsets of E, that is, for any bounded subset B of E and ε > 0, there
exists δ > 0 such that for every x, y ∈ B, ∥x − y∥ < δ implies ∥Jx − Jy∥ < ε; see
[31, 32] for more details.
Let f : E → (−∞,∞] be a proper and convex function. Then, the subdifferential

∂f of f is defined by

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ f(x) + ⟨y − x, x∗⟩, ∀y ∈ E}

for every x ∈ E. It is known that if f(x) = 1
2∥x∥

2 for all x ∈ E, ∂f(x) = J(x) for
every x ∈ E. And let f : E → (−∞,∞] be a proper function. Then, the conjugate
function f∗ of f and the biconjugate function f∗∗ of f are defined by

f∗(x∗) = sup
x∈E

{⟨x, x∗⟩ − f(x)} (∀x∗ ∈ E∗)

f∗∗(x) = sup
x∗∈E∗

{⟨x, x∗⟩ − f∗(x∗)} (∀x ∈ E),

respectively. We know that if f : E → (−∞,∞] is a proper, lower semicontinuous
and convex function, f∗∗ = f . The following was proved by Zălinescu [37]; see also
[35].

Lemma 2.1. Let f : E → (−∞,∞] be a proper, lower semicontinuous and convex
function and Ψ : [0,∞) → [0,∞] a proper, lower semicontinuous, nondecreasing
and convex function. Then, the following are equivalent;

(i) f(y) ≥ f(x) + ⟨y − x, x∗⟩ + Ψ(∥y − x∥) holds for every (x, x∗) ∈ ∂f and
y ∈ E;

(ii) f∗(y∗) ≤ f∗(x∗)+ ⟨x, y∗−x∗⟩+Ψ∗(∥y∗−x∗∥) holds for all (x, x∗) ∈ ∂f and
y∗ ∈ E∗.

The following was proved by Xu [35]; see also [37].
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Theorem 2.2. Let E be a smooth Banach space. Then, E is 2-uniformly convex
if and only if there exists a constant c > 0 such that for each x, y ∈ E, ∥x+ y∥2 ≥
∥x∥2 + 2⟨y, Jx⟩+ c∥y∥2 holds.

Remark 2.3. Let E be a reflexive Banach space and k > 0. The conjugate function
of k

2∥x∥
2 (x ∈ E) is 1

2k∥x
∗∥2 (x∗ ∈ E∗). Let c > 0. From Lemma 2.1, we have the

following are equivalent;

(i) 1
2∥y∥

2 ≥ 1
2∥x∥

2 + ⟨y − x, x∗⟩+ c
2∥y − x∥2 holds for every x, y ∈ E, x∗ ∈ Jx;

(ii) 1
2∥y

∗∥2 ≤ 1
2∥x

∗∥2 + ⟨x, y∗ − x∗⟩+ 1
2c∥y

∗ − x∗∥2 holds for all x ∈ E, x∗ ∈ Jx
and y∗ ∈ E∗.

Let E be a smooth Banach space. The function ϕ : E × E → R is defined by

ϕ(y, x) = ∥y∥2 − 2⟨y, Jx⟩+ ∥x∥2

for every x, y ∈ E. It is obvious that (∥y∥ − ∥x∥)2 ≤ ϕ(y, x) ≤ (∥y∥ + ∥x∥)2 for
each x, y ∈ E and ϕ(z, x) + ϕ(y, u) = ϕ(z, u) + ϕ(y, x) − 2⟨y − z, Ju − Jx⟩ for all
x, y, z, u ∈ E. We have the following result by Theorem 2.2 and Remark 2.3; see
also [13].

Theorem 2.4. Let E be a 2-uniformly convex and smooth Banach space. Then,
for each x, y ∈ E, c∥x − y∥2 ≤ ϕ(x, y) ≤ (1/c)∥Jx − Jy∥2 and c∥x − y∥2 ≤ ⟨x −
y, Jx− Jy⟩ ≤ (1/c)∥Jx− Jy∥2 hold, where c is the constant in Theorem 2.2.

Proof. Let x, y ∈ E. By Theorem 2.2, we have

∥x∥2 ≥ ∥y∥2 + 2⟨x− y, Jy⟩+ c∥x− y∥2,

where c is the constant in Theorem 2.2. So, we get ϕ(x, y) ≥ c∥x−y∥2. By Theorem
2.2 and Remark 2.3, we obtain

(1/2)∥Jy∥2 ≤ (1/2)∥Jx∥2 + ⟨x, Jy − Jx⟩+ (1/(2c))∥Jy − Jx∥2,

that is,

∥y∥2 − 2⟨x, Jy⟩+ ∥x∥2 ≤ (1/c)∥Jx− Jy∥2.
So, we have ϕ(x, y) ≤ (1/c)∥Jx−Jy∥2. From ⟨x−y, Jx−Jy⟩ = 1

2(ϕ(x, y)+ϕ(y, x)),

we get c∥x− y∥2 ≤ ⟨x− y, Jx− Jy⟩ ≤ (1/c)∥Jx− Jy∥2. □

Let C be a nonempty closed convex subset of a strictly convex, reflexive and
smooth Banach space E and let x ∈ E. Then, there exists a unique element x0 ∈ C
such that

ϕ(x0, x) = inf
y∈C

ϕ(y, x).

We denote x0 by ΠCx and call ΠC the generalized projection of E onto C; see
[1, 2, 12]. We have the following result [1, 2, 12] for the generalized projection.

Lemma 2.5. Let C be a nonempty convex subset of a smooth Banach space E, x ∈
E and x0 ∈ C. Then, ϕ(x0, x) = infy∈C ϕ(y, x) if and only if ⟨x0− z, Jx−Jx0⟩ ≥ 0
for every z ∈ C, or equivalently, ϕ(z, x) ≥ ϕ(z, x0) + ϕ(x0, x) for all z ∈ C.
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An operator A ⊂ E ×E∗ is said to be monotone if ⟨x− y, x∗ − y∗⟩ ≥ 0 for every
(x, x∗), (y, y∗) ∈ A. A monotone operator A is said to be maximal if the graph
of A is not properly contained in the graph of any other monotone operator. We
know that a monotone operator A is maximal if and only if for (u, u∗) ∈ E × E∗,
⟨x−u, x∗−u∗⟩ ≥ 0 for every (x, x∗) ∈ A implies (u, u∗) ∈ A. Let f : E → (−∞,∞]
be a proper, lower semicontinuous and convex function. Then, it is known that the
subdifferential ∂f of f is a maximal monotone operator; see [27, 28]. Let A be a
single valued mapping of a nonempty convex subset C of E into E∗. A is called
hemicontinuous if the real valued function t 7→ ⟨w,A(tv + (1 − t)u)⟩ is continuous
on [0, 1] for all u, v ∈ C and w ∈ E. We know that a monotone and hemicontinuous
mapping A of a reflexive Banach space E into E∗ is maximal monotone. Rockafellar
[29] proved the following result; see also [7].

Theorem 2.6. Let E be a strictly convex, reflexive and smooth Banach space and let
A ⊂ E×E∗ be a monotone operator. Then, A is maximal if and only if R(J+rA) =
E∗ for all r > 0, where R(J + rA) is the range of J + rA.

Let E be a strictly convex, reflexive and smooth Banach space and let A ⊂ E×E∗

be a maximal monotone operator. By Theorem 2.6 and strict convexity of E, for
any x ∈ E and r > 0, there exists a unique element xr ∈ D(A) such that

J(x) ∈ J(xr) + rAxr.

We define JA
r by JA

r x = xr for every x ∈ E and r > 0 and such JA
r is called the

resolvent of A; see [6, 32] for more details.
A function i : N → N is said to be eventually increasing if limn→∞ i(n) = ∞ and

i(n) ≤ i(n+1) for all n ∈ N. The following was proved by Mainge [18, Lemma 3.1],
see also [3].

Lemma 2.7. Let {Γn} be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {Γnj} of {Γn} such that Γnj <
Γnj+1 for all j ∈ N. Then there exist n0 ∈ N and an eventually increasing function
i such that Γi(n) ≤ Γi(n)+1 and Γn ≤ Γi(n)+1 for every n ≥ n0.

3. Main result

At first, we show the following result.

Lemma 3.1. Let C be a nonempty closed convex subset of a 2-uniformly convex
and smooth Banach space E, A a maximal monotone operator in E × E∗, B a
monotone and Lipschitz continuous mapping of C ∪D(A) into E∗ with a Lipschitz
constant L > 0 such that F = C ∩ (A + B)−10 ̸= ∅. For every x ∈ C ∪D(A) and
λ > 0, let Sλx = JA

λ J−1(Jx − λBx) and Tλx = ΠCJ
−1(JSλx − λ(BSλx − Bx)).

Then, the following hold;

(i) ϕ(z, Tλx) ≤ ϕ(z, x)− (c− (λL)2/c)∥Sλx−x∥2 holds for every x ∈ C ∪D(A),
λ > 0 and z ∈ F , where c is the constant in Theorem 2.2;

(ii) if (c/L) > λ, F (Tλ) = F , where F (Tλ) is the set of all fixed points of Tλ;
(iii) F is closed convex.
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Proof. (i) Let z ∈ F , x ∈ C∪D(A), λ > 0, y = Sλx and u = J−1(Jy−λ(By−Bx)).
We have

ϕ(z, x) = ϕ(z, u)− ϕ(y, u) + ϕ(y, x)− 2⟨y − z, Ju− Jx⟩.(3.1)

From 1
λ(Jx− Jy)−Bx ∈ Ay and 1

λ(Jy− Ju) +Bx = By, 1
λ(Jx− Ju) ∈ (A+B)y.

Since 0 ∈ (A+B)z and (A+B) is monotone, we get

⟨y − z, Jx− Ju⟩ ≥ 0.(3.2)

By (3.1) and (3.2),

ϕ(z, x) ≥ ϕ(z, u)− ϕ(y, u) + ϕ(y, x).(3.3)

From Lemma 2.5,

]ϕ(z, Tλx) ≤ ϕ(z, u)− ϕ(Tλx, u).(3.4)

By (3.3) and (3.4) and Theorem 2.4, we get

ϕ(z, Tλx) ≤ ϕ(z, x) + ϕ(y, u)− ϕ(y, x)− ϕ(Tλx, u)

≤ ϕ(z, x) + ϕ(y, u)− ϕ(y, x)

≤ ϕ(z, x) + (1/c)∥Jy − Ju∥2 − c∥x− y∥2

= ϕ(z, x) + (λ2/c)∥By −Bx∥2 − c∥x− y∥2

≤ ϕ(z, x) + ((λ2L2)/c)∥x− y∥2 − c∥x− y∥2

= ϕ(z, x)− (c− (λ2L2)/c)∥x− y∥2.

(ii) Let z ∈ F . We have z ∈ C and Jz−λBz ∈ Jz+λAz, that is, z = JA
λ J−1(Jz−

λBz) = Sλz. Hence, we get

Tλz = ΠCJ
−1(Jz − λ(Bz −Bz)) = ΠCz = z.

So, F ⊂ F (Tλ). Let z ∈ F and u ∈ F (Tλ). From (i), we obtain

ϕ(z, u) = ϕ(z, Tλu) ≤ ϕ(z, u)− (c− (λ2L2)/c)∥u− Sλu∥2.

By (c− (λ2L2)/c) > 0, we get

u = Sλu = JA
λ J−1(Ju− λBu)

which implies u ∈ F . So, we get F (Tλ) ⊂ F . Therefore, F = F (Tλ) holds.
(iii) If (c/L) > λ, ϕ(z, Tλx) ≤ ϕ(z, x) for every x ∈ C ∪D(A) and z ∈ F = F (Tλ)
from (i) and (ii). So, we have F is closed and convex from the result in [19, 20]. □

Now, we get the following strong convergence theorem.

Theorem 3.2. Let C be a nonempty closed convex subset of a 2-uniformly convex
and uniformly smooth Banach space E and assume that A, B, L and F are the
same as Lemma 3.1 such that for a bounded sequence {un} ⊂ C and {λn} ⊂ (0,∞)
with infn∈N λn > 0, ∥un − JA

λn
J−1(Jun − λnBun)∥ → 0 implies ωw(un) ⊂ F , where
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ωw(un) is the set of all weak cluster points of {un}. Let u ∈ E and {xn} be a
sequence generated by

x1 = x ∈ C ∪D(A),
yn = JA

λn
J−1(Jxn − λnBxn − αn(Jxn − Ju)),

Jzn = Jyn − λn(Byn −Bxn)
xn+1 = ΠCzn

for every n ∈ N, where 0 < infn∈N λn ≤ supn∈N λn < c/L where c is the constant in
Theorem 2.2 and 0 < αn ≤ 1 for all n ∈ N with αn → 0 and

∑∞
n=1 αn = ∞. Then,

{xn} converges strongly to ΠFu.

Proof. From Lemma 3.1 (iii), F is closed and convex and hence, ΠF is well defined.
Let z ∈ F . We have

ϕ(z, xn) = ϕ(z, zn)− ϕ(yn, zn) + ϕ(yn, xn)− 2⟨yn − z, Jzn − Jxn⟩.

By (1/λn)(Jxn−Jyn)−Bxn− (αn/λn)(Jxn−Ju) ∈ Ayn and (1/λn)(Jyn−Jzn)+
Bxn = Byn, (1/λn)(Jxn−Jzn)−(αn/λn)(Jxn−Ju) ∈ (A+B)yn. Since 0 ∈ (A+B)z
and A+B is monotone, we get

⟨yn − z, Jxn − Jzn − αn(Jxn − Ju)⟩ ≥ 0

for every n ∈ N. So we get,

ϕ(z, zn) ≤ ϕ(z, xn) + ϕ(yn, zn)− ϕ(yn, xn)− 2αn⟨yn − z, Jxn − Ju⟩(3.5)

for all n ∈ N. And

2⟨yn − z, Jxn − Ju⟩ = −ϕ(yn, xn) + ϕ(yn, u) + ϕ(z, xn)− ϕ(z, u)

holds. So, from (3.5),

ϕ(z, zn) ≤ ϕ(z, xn) + ϕ(yn, zn)− (1− αn)ϕ(yn, xn)(3.6)

−αn(ϕ(yn, u) + ϕ(z, xn)− ϕ(z, u))

for each n ∈ N. By Lemma 2.5, we have

ϕ(z, xn+1) ≤ ϕ(z, zn)− ϕ(xn+1, zn).(3.7)

And from Theorem 2.4,

ϕ(yn, xn) ≥ c∥yn − xn∥2

ϕ(yn, zn) ≤ (1/c)∥Jyn − Jzn∥2 = (λ2
n/c)∥Byn −Bxn∥2(3.8)

≤ ((λ2
nL

2)/c)∥yn − xn∥2.

Hence, by (3.5), (3.7) and (3.8),

ϕ(z, xn+1) ≤ ϕ(z, zn)− ϕ(xn+1, zn)

≤ ϕ(z, xn)− ϕ(xn+1, zn)− (c− (λ2
nL

2)/c)∥yn − xn∥2(3.9)

− 2αn⟨yn − z, Jxn − Ju⟩

for every n ∈ N and by (3.6)-(3.8), we get

ϕ(z, xn+1) ≤ ϕ(z, xn)− ϕ(xn+1, zn)(3.10)
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− ((1− αn)c− (λ2
nL

2)/c)∥yn − xn∥2

− αn(ϕ(yn, u) + ϕ(z, xn)− ϕ(z, u))

for all n ∈ N. From 0 < infn∈N λn ≤ supn∈N λn < c/L and {αn} ⊂ (0, 1] with
αn → 0, there exist k1, k2 > 0 and n0 ∈ N such that c − (λ2

nL
2)/c > k1 for each

n ∈ N and (1− αn)c− (λ2
nL

2)/c > k2 for every n ≥ n0. Hence, by (3.9) and (3.10),
we obtain

ϕ(z, xn+1) ≤ ϕ(z, xn)− ϕ(xn+1, zn)− k1∥yn − xn∥2(3.11)

− 2αn⟨yn − z, Jxn − Ju⟩

for all n ∈ N and

ϕ(z, xn+1) ≤ ϕ(z, xn)− ϕ(xn+1, zn)− k2∥yn − xn∥2(3.12)

− αn(ϕ(yn, u) + ϕ(z, xn)− ϕ(z, u))

for each n ≥ n0. At first, we prove {xn} is bounded. If ϕ(z, xn) decreases, it is
trivial. If not so, by Lemma 2.7, there exist n1 ∈ N and an eventually increasing
function j such that ϕ(z, xj(n)) ≤ ϕ(z, xj(n)+1) and ϕ(z, xn) ≤ ϕ(z, xj(n)+1) for each
n ≥ n1. There exists N ∈ N with j(n) ≥ n0 (∀n ≥ N). From (3.12), we obtain

ϕ(yj(n), u) + ϕ(z, xj(n))− ϕ(z, u) ≤ 0

for all n ≥ max{n1, N} which implies that {xj(n)} is bounded. By ϕ(z, xn) ≤
ϕ(z, xj(n)+1) and (3.12), we have

ϕ(z, xn) ≤ ϕ(z, xj(n)+1) ≤ ϕ(z, xj(n)) + αj(n)ϕ(z, u) ≤ ϕ(z, xj(n)) + ϕ(z, u)

for each n ≥ max{n1, N}. So, we have {xn} is bounded. Next, we show {yn} is
bounded. From (3.12),

k2∥yn − xn∥2 ≤ ϕ(z, xn) + αnϕ(z, u) ≤ ϕ(z, xn) + ϕ(z, u)

for every n ≥ n0. Hence, {yn} is bounded.
(i). If {ϕ(ΠFu, xn)} is not decreasing, by Lemma 2.7, there exist n2 ∈ N and

an eventually increasing function i such that ϕ(ΠFu, xi(n)) ≤ ϕ(ΠFu, xi(n)+1) and
ϕ(ΠFu, xn) ≤ ϕ(ΠFu, xi(n)+1) for every n ≥ n2. There exists m ∈ N such that
i(n) ≥ n0 (∀n ≥ m) holds. From (3.12), we have

ϕ(ΠFu, xi(n)+1)

≤ ϕ(ΠFu, xi(n))− k2∥yi(n) − xi(n)∥2 + αi(n)ϕ(ΠFu, u)(3.13)

≤ ϕ(ΠFu, xi(n)+1)− k2∥yi(n) − xi(n)∥2 + αi(n)ϕ(ΠFu, u)

which implies

k2∥yi(n) − xi(n)∥2 ≤ αi(n)ϕ(ΠFu, u)

for all n ≥ max{n2,m}. From this and αn → 0, we get

∥xi(n) − yi(n)∥ → 0.(3.14)
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Let wn = JA
λn
J−1(Jxn−λnBxn). Since (1/λn)(Jxn−Jyn)−Bxn− (αn/λn)(Jxn−

Ju) ∈ Ayn, (1/λn)(Jxn − Jwn)−Bxn ∈ Awn and A is monotone,

⟨yn − wn, Jwn − Jyn − αn(Jxn − Ju)⟩ ≥ 0.

By Theorem 2.4,

αn∥yn − wn∥ · ∥Jxn − Ju∥ ≥ −αn⟨yn − wn, Jxn − Ju⟩
≥ ⟨yn − wn, Jyn − Jwn⟩
≥ c∥yn − wn∥2

for each n ∈ N. By αn → 0, we obtain

∥yn − wn∥ → 0.(3.15)

From (3.14) and (3.15), ∥xi(n)−wi(n)∥ → 0. By the assumption, we have ωw(xi(n)) ⊂
F . From (3.11),

ϕ(ΠFu, xi(n)+1) ≤ ϕ(ΠFu, xi(n))− 2αi(n)⟨yi(n) −ΠFu, Jxi(n) − Ju⟩
≤ ϕ(ΠFu, xi(n)+1)− 2αi(n)⟨yi(n) −ΠFu, Jxi(n) − Ju⟩

which implies

⟨yi(n) −ΠFu, Jxi(n) − Ju⟩ ≤ 0(3.16)

for every n ≥ n2. By Theorem 2.4,

⟨yi(n) −ΠFu, Jxi(n) − Ju⟩
= ⟨yi(n) −ΠFu, Jxi(n) − Jyi(n)⟩+ ⟨yi(n) −ΠFu, Jyi(n) − JΠFu⟩

+ ⟨yi(n) −ΠFu, JΠFu− Ju⟩
≥ −∥yi(n) −ΠFu∥ · ∥Jyi(n) − Jxi(n)∥+ c∥yi(n) −ΠFu∥2

+ ⟨yi(n) −ΠFu, JΠFu− Ju⟩.

So, from (3.16), we get

−∥yi(n) −ΠFu∥ · ∥Jyi(n) − Jxi(n)∥+ c∥yi(n) −ΠFu∥2

+⟨yi(n) −ΠFu, JΠFu− Ju⟩ ≤ 0(3.17)

for every n ≥ n2. Let {xnj} be a subsequence of {xi(n)} such that xnj ⇀ w. We
have w ∈ F . From (3.14), ynj ⇀ w. Since the duality mapping J of E is uniformly
continuous on bounded subsets of E and (3.14), ∥Jyi(n) − Jxi(n)∥ → 0. Hence, by
(3.17), lower-semicontinuity of norm and Lemma 2.5, we obtain

0 ≥ c lim inf
j→∞

∥ynj −ΠFu∥2 + lim inf
j→∞

⟨ynj −ΠFu, JΠFu− Ju⟩

≥ c∥w −ΠFu∥2 + ⟨w −ΠFu, JΠFu− Ju⟩ ≥ c∥w −ΠFu∥2

which implies w = ΠFu. Therefore, xi(n) ⇀ ΠFu and yi(n) ⇀ ΠFu. From (3.17),
we have

0 ≥ lim sup
n→∞

(−∥yi(n) −ΠFu∥ · ∥Jyi(n) − Jxi(n)∥+ c∥yi(n) −ΠFu∥2

+ ⟨yi(n) −ΠFu, JΠFu− Ju⟩)
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= c lim sup
n→∞

∥yi(n) −ΠFu∥2.

Hence, we get yi(n) → ΠFu. By (3.14),

xi(n) → ΠFu.

Since J is norm to weak* continuous,

ϕ(ΠFu, xi(n)) = ∥ΠFu∥2 − 2⟨ΠFu, Jxi(n)⟩+ ∥xi(n)∥2

→ ∥ΠFu∥2 − 2⟨ΠFu, JΠFu⟩+ ∥ΠFu∥2 = 0.

From (3.13) and αi(n) → 0, we obtain ϕ(ΠFu, xi(n)+1) → 0. By ϕ(ΠFu, xn) ≤
ϕ(ΠFu, xi(n)+1) for each n ≥ n2, we have

ϕ(ΠFu, xn) → 0

which implies xn → ΠFu from Theorem 2.4.
(ii). Suppose that ϕ(ΠFu, xn) is decreasing. There exists limn→∞ ϕ(ΠFu, xn).

By (3.12) and αn → 0, we get ∥xn − yn∥ → 0. On the other hand, we have (3.15).
So, from ∥xn − wn∥ → 0 and the assumption, ωw(xn) ⊂ F . We show that

lim sup
n→∞

⟨ΠFu− yn, Jxn − Ju⟩ ≥ 0.(3.18)

Suppose that lim supn→∞⟨ΠFu− yn, Jxn − Ju⟩ = l < 0. There exists n3 ∈ N such
that ⟨ΠFu− yn, Jxn − Ju⟩ ≤ 1

2 l for every n ≥ n3. By (3.11),

−lαn ≤ 2αn⟨yn −ΠFu, Jxn − Ju⟩ ≤ ϕ(ΠFu, xn)− ϕ(ΠFu, xn+1)

for each n ≥ n3 which implies

∞∑
n=n3

(−l)αn ≤ ϕ(ΠFu, xn3) < ∞.

From
∑∞

n=1 αn = ∞, this is a contradiction. So, we obtain (3.18). Next,

⟨ΠFu− yn, Jxn − Ju⟩ = ⟨ΠFu− yn, Jxn − Jyn⟩+ ⟨ΠFu− yn, Jyn − JΠFu⟩
+⟨ΠFu− yn, JΠFu− Ju⟩

≤ ∥ΠFu− yn∥ · ∥Jxn − Jyn∥ −
1

2
ϕ(ΠFu, yn)

+⟨ΠFu− yn, JΠFu− Ju⟩

for all n ∈ N. Since J is uniformly continuous on bounded subsets of E and
∥xn − yn∥ → 0, we have

∥Jxn − Jyn∥ → 0.(3.19)

So, we have

0 ≤ lim sup
n→∞

⟨ΠFu− yn, Jxn − Ju⟩

≤ −1

2
lim inf
n→∞

ϕ(ΠFu, yn) + lim sup
n→∞

⟨ΠFu− yn, JΠFu− Ju⟩.
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And there exists a subsequence {ynj} of {yn} such that ynj ⇀ w ∈ F and

lim sup
n→∞

⟨ΠFu− yn, JΠFu− Ju⟩ = lim
j→∞

⟨ΠFu− ynj , JΠFu− Ju⟩.

From Lemma 2.5,

lim
j→∞

⟨ΠFu− ynj , JΠFu− Ju⟩ = ⟨ΠFu− w, JΠFu− Ju⟩ ≤ 0

holds. Hence, we get

lim inf
n→∞

ϕ(ΠFu, yn) = 0.

From ∥xn − yn∥ → 0, (3.19) and

|ϕ(ΠFu, xn)− ϕ(ΠFu, yn)|
≤ 2∥ΠFu∥ · ∥Jxn − Jyn∥+ |∥xn∥2 − ∥yn∥2|
≤ 2∥ΠFu∥ · ∥Jxn − Jyn∥+ ∥xn − yn∥ · (∥xn∥+ ∥yn∥),

we obtain lim infn→∞ ϕ(ΠFu, xn) = 0 which implies limn→∞ ϕ(ΠFu, xn) = 0. There-
fore, {xn} converges strongly to ΠFu from Theorem 2.4. □

4. Deduced results

To begin with, we get a new strong convergence theorem for a sum of maximal
monotone operators by Theorem 3.2.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space,
A a maximal monotone operator in E×E∗, B a monotone and Lipschitz continuous
mapping of E into E∗ with a Lipschitz constant L > 0 such that F = (A+B)−10 ̸= ∅.
Let u ∈ E and {xn} be a sequence generated by

x1 = x ∈ E,
yn = JA

λn
J−1(Jxn − λnBxn − αn(Jxn − Ju)),

xn+1 = J−1(Jyn − λn(Byn −Bxn))

for every n ∈ N, where 0 < infn∈N λn ≤ supn∈N λn < c/L where c is the constant in
Theorem 2.2 and 0 < αn ≤ 1 for all n ∈ N with αn → 0 and

∑∞
n=1 αn = ∞. Then,

{xn} converges strongly to ΠFu.

Proof. It is known that A+B is a maximal monotone operator, see [29]. We show
the assumption in Theorem 3.2. Let {un} be a bounded sequence and {λn} ⊂
(0,∞) with infn∈N λn > 0 such that ∥un − JA

λn
J−1(Jun − λnBun)∥ → 0 and {uni}

a subsequence of {un} with uni ⇀ u. Let vn = JA
λn
J−1(Jun − λnBun). Since

1
λni

(Juni − Jvni)−Buni +Bvni ∈ (A+B)vni and A+B is monotone, we have

⟨vni − w,
1

λni

(Juni − Jvni)−Buni +Bvni − w∗⟩ ≥ 0

for every ⟨w,w∗⟩ ∈ (A+B). Hence, we get

⟨vni − w,−w∗⟩ ≥ ⟨vni − w,
1

λni

(Jvni − Juni) +Buni −Bvni⟩



450 KAZUHIDE NAKAJO

≥ − 1

λni

∥vni − w∥ · ∥Jvni − Juni∥ − ∥vni − w∥ · ∥Buni −Bvni∥

≥ − 1

λni

∥vni − w∥ · ∥Jvni − Juni∥ − ∥vni − w∥ · L∥uni − vni∥

for all i ∈ N. Since J is uniformly continuous on bounded subsets of E and ∥uni −
vni∥ → 0, ∥Juni − Jvni∥ → 0. By vni ⇀ u and infn∈N λn > 0, we obtain

⟨u− w,−w∗⟩ ≥ 0.

From maximality of A + B, we get u ∈ (A + B)−10 = F . So, ωw(un) ⊂ F holds.
Therefore, the proof is complete by Theorem 3.2. □

Let C be a nonempty closed convex subset of E and A a single valued mapping
of C into E∗. We consider the variational inequality problem [15] for A, that is, the
problem of finding an element z ∈ C such that

⟨x− z,Az⟩ ≥ 0 for all x ∈ C.

The set of all solutions of the variational inequality problem for A is denoted by
V I(C,A). Tufa and Zegeye [34] proved the strong convergence theorem of varia-
tional inequality problems for a monotone and Lipschitz continuous mapping in a
2-uniformly convex and uniformly smooth Banach sapce. From Theorem 3.2, we
have a new result which is defferent from that.

Theorem 4.2. Let C be a nonempty closed convex subset of a 2-uniformly convex
and uniformly smooth Banach space E. Let B be a monotone and Lipschitz contin-
uous mapping of C into E∗ with a Lipschitz constant L > 0 such that V I(C,B) ≠ ∅.
Let u ∈ E and {xn} a sequence generated by

x1 = x ∈ C,
yn = ΠCJ

−1(Jxn − λnBxn − αn(Jxn − Ju))
xn+1 = ΠCJ

−1(Jyn − λn(Byn −Bxn))

for every n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1] are real sequences. Suppose
that 0 < infn∈N λn ≤ supn∈N λn < c/L, where c is the constant in Theorem 2.2,
αn → 0 and

∑∞
n=1 αn = ∞. Then, {xn} converges strongly to ΠV I(C,B)u.

Proof. Let iC be the indicator function of C. We have that iC : E → (−∞, ∞] is
a proper lower semicontinuous and convex function and hence, the subdifferential
∂iC is maximal monotone. Let A = ∂iC . Then, it is easy to see that D(∂iC) = C,
JA
λ x = ΠCx for every λ > 0 and x ∈ E and (A+B)−10 = V I(C,B).
We prove the assumption in Theorem 3.2. Let {un} be a bounded sequence in C

and {λn} ⊂ (0,∞) with infn∈N λn > 0 such that ∥un−ΠCJ
−1(Jun−λnBun)∥ → 0

and {uni} a subsequence of {un} with uni ⇀ u. Let vn = ΠCJ
−1(Jun − λnBun).

We have

⟨vni − x, Juni − Jvni − λniBuni⟩ ≥ 0

for every i ∈ N and x ∈ C which implies

⟨vni − x,−Bx⟩ ≥ 1

λni

⟨vni − x, Jvni − Juni⟩+ ⟨vni − x,Buni −Bvni⟩



STRONG CONVERGENCE THEOREMS 451

+ ⟨vni − x,Bvni −Bx⟩

≥ −1

λni

∥vni − x∥ · ∥Jvni − Juni∥+ ⟨vni − x,Buni −Bvni⟩(4.1)

for every i ∈ N and x ∈ C. Since J is uniformly continuous on bounded subsets of
E and ∥uni − vni∥ → 0, ∥Juni − Jvni∥ → 0. And we get

|⟨vni − x,Buni −Bvni⟩| ≤ ∥vni − x∥ · ∥Buni −Bvni∥
≤ ∥vni − x∥ · L∥uni − vni∥ → 0.

So, from vni ⇀ u, infn∈N λn > 0 and (4.1), we obtain

⟨u− x,−Bx⟩ ≥ 0

for every x ∈ C. Since B is hemicontinuous, we have

⟨x− u,Bu⟩ ≥ 0

for all x ∈ C, that is, u ∈ V I(C,B). So, ωw(un) ⊂ V I(C,B). Hence, the proof is
complete by Theorem 3.2. □

In a real Hilbert space H, we have c = 1 in Theorem 2.2, J = J−1 = I, where I
is the identity mapping and ΠC = PC , where PC is the metric projection of H onto
C. So, we get new results in a real Hilbert space by Theorems 4.1 and 4.2.

Theorem 4.3. Let A be a maximal monotone operator in H×H and B a monotone
and Lipschitz continuous mapping of H into H with a Lipschitz constant L > 0 such
that F = (A+B)−10 ̸= ∅. Let u ∈ H and {xn} be a sequence generated by

x1 = x ∈ H,
yn = JA

λn
(xn − λnBxn − αn(xn − u)),

xn+1 = yn − λn(Byn −Bxn)

for every n ∈ N, where 0 < infn∈N λn ≤ supn∈N λn < 1/L and 0 < αn ≤ 1 for all
n ∈ N with αn → 0 and

∑∞
n=1 αn = ∞. Then, {xn} converges strongly to PFu.

Theorem 4.4. Let C be a nonempty closed convex subset of H and B a monotone
and Lipschitz continuous mapping of C into H with a Lipschitz constant L > 0 such
that V I(C,B) ̸= ∅. Let u ∈ H and {xn} a sequence generated by

x1 = x ∈ C,
yn = PC(xn − λnBxn − αn(xn − u))
xn+1 = PC(yn − λn(Byn −Bxn))

for every n ∈ N, where {λn} ⊂ (0,∞) and {αn} ⊂ (0, 1] are real sequences. Suppose
that 0 < infn∈N λn ≤ supn∈N λn < 1/L, αn → 0 and

∑∞
n=1 αn = ∞. Then, {xn}

converges strongly to PV I(C,B)u.
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