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STRONG CONVERGENCE THEOREMS BY A MODIFIED
FORWARD-BACKWARD-FORWARD SPLITTING METHOD IN
BANACH SPACES

KAZUHIDE NAKAJO

ABSTRACT. In this paper, we consider strong convergence for a sum of a maximal
monotone operator and a monotone and Lipschitz continuous mapping in a real
Banach space. And we propose a modified forward-backward-forward splitting
method and prove a new strong convergence theorem in a 2-uniformly convex
and uniformly smooth Banach space. Further, we get new results for variational
inequality problems, too.

1. INTRODUCTION

Throughout this paper, we denote by N the set of all positive integers. Let E
be a real Banach space with norm | - || and dual space E* and for x € E and
x* € E*, (z,z*) be the value of z* at . Let A C E x E* and B C E x E* be
maximal monotone operators such that A + B is a maximal monotone operator
with (A + B)710 # (). Finding an element of (A + B)~'0 contains many important
problems such as convex minimization problems, variational inequality problems,
complementary problems, and others.

In a real Hilbert space H, Lions and Mercier [16] and Passty [25] proposed the
following forward-backward (F-B for short) splitting method as one of the methods
of finding an element of (A + B)~10:

(1.1) x1=x € D(B), xp41= an (T — Apwy)

for every n € N, where D(B) C H is the domain of B, D(A) C D(B), w, € Bxy,,
{A\n} € (0,00) and J fn is the resolvent of A. Later, the splitting method was widely
studied by Gabay [11], Chen and Rockafellar [8], Moudafi and Théra [21] and Tseng
[33] and others.

Let @ > 0 and B be a single valued mapping of H into itself. B is called a-
inverse-strongly-monotone if (z — y, Bx — By) > «af| Bz — By||? for all z,y € H;
see [5, 10, 17, 38]. When o = 1, B is said to be firmly nonexpansive. Gabay
[11] and many researchers [4, 9, 22, 23, 24, 26, 30, 36] studied weak and strong
convergence for a F-B splitting method and modified F-B splitting methods by a
maximal monotone operator A and an inverse-strongly-monotone mapping B in a
real Hilbert space. In this way, F-B splitting method is considered as an algorithm
of convergence to an element of (A + B)~!0 for an inverse-strongly-monotone map-
ping B. And recently, Kimura and author [14] proved strong convergence for a
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modified F-B splitting method by the same A and B in a 2-uniformly convex and
uniformly smooth Banach space.

On the other hand, Tseng [33] considered a monotone and Lipschitz continu-
ous mapping which is more general than an inverse-strongly-monotone mapping
and proposed the following forward-backward-forward (F-B-F for short) splitting
method by a maximal monotone operator A C H x H and a single valued mono-
tone operator B : H — H:

y1=1z€C,
(1.2) Zn = J;fln (Yn — \nByn),
Yn+1 = PC(Zn - )\n(BZn - Byn))a

for all n € N, where C is nonempty closed convex subset of H, Pg is the metric
projection of H onto C, A+ B is maximal monotone and F' = C'N (A + B)~10 # 0.
When B is Lipschitz continuous on C'U D(A), he proved {y,} generated by (1.2)
converges weakly to an element of F' under some conditions.

In this paper, motivated by [14, 33], we consider strong convergence for a sum of a
maximal monotone operator and a monotone and Lipschitz continuous mapping in
a real 2-uniformly convex and uniformly smooth Banach space E. And we introduce
a modified F-B-F splitting method by a maximal monotone operator A C £ x E*
and a single valued monotone and Lipschitz continuous mapping B of C'U D(A)
into E* as follows:

z1=x € CUD(A),

Yn = J/{‘TLJ_l(an — MBzy, — an(Jx, — Ju)),
Jzn = Jyn — A (Byn — Bxy,)

Tpt+1l = ez,

for every n € N, where u € E, C is a nonempty closed convex subset of E, J is the
duality mapping of E, F = CN(A+ B)~'0 # 0, Il is the generalized projection of
E onto C, {\,} C (0,00) and {an} C (0,1] such that a;,, — 0 and > 7 | o, = 00.
Then we prove {z,} converges strongly to IIru under some assumptions. From
this result, we get new strong convergence for a maximal monotone operator and a
monotone and Lipschitz continuous mapping and for variational inequality problems
in a 2-uniformly convex and uniformly smooth Banach space and a real Hilbert
space.

2. PRELIMINARIES

We use z, — z to indicate that a sequence {z,} converges strongly to x and
ry, — x will symbolize weak convergence. We define the modulus of convexity dg
of E as follows: dg is a function of [0, 2] into [0, 1] such that

op(e) =inf{l —[lz+yll/2: 2,y € E, [z =1, [yl =1, [lz -yl = e}

for every € € [0,2]. For p > 1, F is said to be p-uniformly convex if there exists
a constant ¢ > 0 with dg(e) > ceP for every € € [0,2] and we know that L, space
is p-uniformly convex if p > 2 and 2-uniformy convex if 1 < p < 2, see [35]. We
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say F is uniformly convex if dg(e) > 0 for all € € (0,2]. It is obvious that a p-
uniformly convex Banach space is uniformly convex. F is said to be strictly convex
if ||z + y||/2 < 1 for each x,y € F with ||z|| = |ly|| = 1 and = # y. It is known
that a uniformly convex Banach space is strictly convex and reflexive. The duality
mapping J : E — 2F" of E is defined by

J(x)={f e E :(z,f) = |«|* = IFI*}
for every x € E. We know that if F is strictly convex and reflexive, then, the duality
mapping J of E is bijective and J~! : E* — 2F is the duality mapping of E*. E is
said to be smooth if the limit
Ll ty] — el

2.1
( ) t—0 t

exists for every z,y € S(E), where S(E) = {x € E : ||z|]| = 1}. E is said to be
uniformly smooth if the limit (2.1) is attained uniformly for (z,y) in S(E) x S(E).
It is known that the duality mapping J of F is single valued if and only if E is
smooth and if J is single valued, J is norm to weak* continuous. We also know that
if E' is uniformly smooth, then the duality mapping J of F is uniformly continuous
on bounded subsets of F, that is, for any bounded subset B of E and ¢ > 0, there
exists § > 0 such that for every x,y € B, ||z — y|| < § implies ||Jz — Jy|| < &; see
[31, 32] for more details.

Let f: E — (—o00, 00| be a proper and convex function. Then, the subdifferential
df of f is defined by

Of (@) ={a" € E": f(y) = f(z) + (y — x,2"), Vy € E}

for every x € E. It is known that if f(z) = 1||z||? for all x € E, 0f(z) = J(z) for
every x € E. And let f: E — (—00, 00| be a proper function. Then, the conjugate
function f* of f and the biconjugate function f** of f are defined by

fr(@") = Sug{@c,x*) — f(z)} (Vz* € E7)
S
fh@) = sw {{e.2) — £} (o € B),
x*e *
respectively. We know that if f : E — (—o00,00] is a proper, lower semicontinuous

and convex function, f** = f. The following was proved by Zalinescu [37]; see also
[35].

Lemma 2.1. Let f : E — (—00, 00| be a proper, lower semicontinuous and convex
function and ¥ : [0,00) — [0,00] a proper, lower semicontinuous, nondecreasing
and convex function. Then, the following are equivalent;
(i) fly) > f(x) + (y — x,z*) + U(|ly — z||) holds for every (x,z*) € Of and
yek;
(i) F*(") < f*(@*)+ (25" —a*) + 0 (ly* —a*|) holds for all (v, *) € Of and
y* e B,

The following was proved by Xu [35]; see also [37].
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Theorem 2.2. Let E be a smooth Banach space. Then, E is 2-uniformly convex
if and only if there exists a constant ¢ > 0 such that for each x,y € E, ||z + y||*> >
(|2 + 2(y, Jx) + c|ly||* holds.

Remark 2.3. Let E be a reflexive Banach space and k& > 0. The conjugate function
of ngHQ (z € E) is 5-|z*||? (z* € E*). Let ¢ > 0. From Lemma 2.1, we have the
following are equivalent;
(i) 2”?/”2 2||»”CH2 (y — 2,2%) + §lly — z||* holds for every z,y € E, 2* € Ja;
(ii) 2”31 1% < 2”33 2 + (z,y* —z*) + i\ly* — 2*||? holds for all z € E, 2* € Jx
and y* € B*.
Let F be a smooth Banach space. The function ¢ : E x F — R is defined by

Sy, x) = |lylI* — 2y, Ja) + [l
for every z,y € E. Tt is obvious that (||y|| — [|z]))? < é(y, ) < (|ly|| + ||z]|)? for
each z,y € FE and ¢(z,2) + ¢(y,u) = é(z,u) + ¢(y,z) — 2(y — 2z, Ju — Jx) for all
x,y,z,u € E. We have the following result by Theorem 2.2 and Remark 2.3; see
also [13].

Theorem 2.4. Let E be a 2-uniformly convex and smooth Banach space. Then,
for each x,y € B, cllz —y|* < ¢(z,y) < (/)| Jz — Jy|* and cl|lz — y|]* < (z -
y, Jx — Jy) < (1/c)||Jx — Jy||* hold, where c is the constant in Theorem 2.2.

Proof. Let x,y € E. By Theorem 2.2, we have
2]* = [lyl1* + 2(z — y. Jy) + cllz — y|*,

where c is the constant in Theorem 2.2. So, we get ¢(z,y) > c||z—y||?>. By Theorem
2.2 and Remark 2.3, we obtain

/2Tyl < /2 T2]|* + (a, Jy — Ja) + (1/(20) [Ty — J=||?,
that is,
lyl1* = 2{z, Jy) + ||=|* < (1/e)l| Tz — Tyl*.
So, we have ¢(z,y) < (1/c)||Jz—Jy|*. From (z—y, Jo—Jy) = 5(s(z,y) +o(y, x)),
we get cl|lz — y||* < (x —y, Jz — Jy) < (1/c)||Jx — Jy|*. O

Let C be a nonempty closed convex subset of a strictly convex, reflexive and
smooth Banach space F and let € E. Then, there exists a unique element xzg € C
such that

P(z0,7) = ;gﬁ(yw)-

We denote zg by Ilgx and call Il the generalized projection of E onto C; see
[1, 2, 12]. We have the following result [1, 2, 12] for the generalized projection.

Lemma 2.5. Let C be a nonempty convex subset of a smooth Banach space E, x €
E and xog € C. Then, ¢(xo,x) = infycc ¢y, x) if and only if (xo — 2z, Jo — Jxg) > 0
for every z € C, or equivalently, ¢(z,z) > ¢(z,x0) + ¢(xo,x) for all z € C.
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An operator A C E x E* is said to be monotone if (z —y,z* — y*) > 0 for every
(z,2%), (y,y*) € A. A monotone operator A is said to be maximal if the graph
of A is not properly contained in the graph of any other monotone operator. We
know that a monotone operator A is maximal if and only if for (u,u*) € E x E*,
(x —u,x* —u*) > 0 for every (z,z*) € A implies (u,u*) € A. Let f: E — (—o00, 0]
be a proper, lower semicontinuous and convex function. Then, it is known that the
subdifferential df of f is a maximal monotone operator; see [27, 28]. Let A be a
single valued mapping of a nonempty convex subset C' of E into E*. A is called
hemicontinuous if the real valued function ¢t — (w, A(tv + (1 — t)u)) is continuous
on [0, 1] for all u,v € C and w € E. We know that a monotone and hemicontinuous
mapping A of a reflexive Banach space F into E* is maximal monotone. Rockafellar
[29] proved the following result; see also [7].

Theorem 2.6. Let E be a strictly convex, reflexive and smooth Banach space and let
A C ExE* be a monotone operator. Then, A is maximal if and only if R(J+rA) =
E* for all v > 0, where R(J +rA) is the range of J + rA.

Let E be a strictly convex, reflexive and smooth Banach space and let A C Ex E*
be a maximal monotone operator. By Theorem 2.6 and strict convexity of E, for
any € E and r > 0, there exists a unique element x, € D(A) such that

J(z) € J(z,) + rAx,.

We define J4 by JAz = x, for every x € E and r > 0 and such J# is called the
resolvent of A; see [6, 32] for more details.

A function i : N — N is said to be eventually increasing if lim,,,~ i(n) = co and
i(n) <i(n+1) for all n € N. The following was proved by Mainge [18, Lemma 3.1],
see also [3].

Lemma 2.7. Let {I',} be a sequence of real numbers that does not decrease at
infinity, in the sense that there evists a subsequence {I'y;} of {I'y} such that I'y; <
[y 41 for all j € N. Then there exist ng € N and an eventually increasing function
i such that Uy < Ty and Iy, < Ty 41 for every n > ng.

3. MAIN RESULT
At first, we show the following result.

Lemma 3.1. Let C be a nonempty closed convex subset of a 2-uniformly convex
and smooth Banach space E, A a maximal monotone operator in E x E*, B a
monotone and Lipschitz continuous mapping of C'U D(A) into E* with a Lipschitz
constant L > 0 such that F = C N (A+ B)7'0 # (). For every x € C U D(A) and
A >0, let S\e = JAJ N (Jz — ABz) and Tha = HoJ 1(JS\x — AN(BS)\z — Bx)).
Then, the following hold;

(i) ¢(z, Thr) < ¢(z,2) — (c— (AL)?/c)||Sax — x||? holds for every x € CUD(A),

A> 0 and z € F, where c is the constant in Theorem 2.2;
(i) if (¢/L) > X, F(T\) = F, where F(Ty) is the set of all fized points of T;
(iii) F is closed convex.
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Proof. (i)Let z € F, 2z € CUD(A), A\ >0,y = Syz and v = J~}(Jy— A\(By— Bx)).
We have

(3'1) gb(z,x) = ¢(Z7u) - ¢(y7u) + <Z>(y,x) - 2<y — 2 Ju — JJ:‘)

From 3 (Jz — Jy) — Bz € Ay and 3 (Jy — Ju) + Bz = By, 1(Jx — Ju) € (A+ B)y.
Since 0 € (A + B)z and (A + B) is monotone, we get

(3.2) (y—z,Jr — Ju) > 0.
By (3.1) and (3.2),

(3'3) d’(zv 33) > ¢(zv u) - ¢(ya ’LL) + ¢(ya :E)
From Lemma 2.5,
(3.4) [o(z, Taz) < ¢(z,u) — p(Trz, u).

By (3.3) and (3.4) and Theorem 2.4, we get

oz, Thz) < ¢(z,2) + 9(y,u) — ¢(y,z) — ¢(Thz,u)
< 9(z,2) + 9y, u) — ¢y, )
< ¢lz,2)+ (/)| Ty — Jul]® — cl|lz —y|?
= ¢(z,2)+ (X\/¢)|| By — Bz|* — cl|lz — y?
< ¢(z,) + (VL) /o)||z — yl* — cllz — |
= ¢(z,2) = (c— (VL) /o)l — y|*.

(ii) Let z € F. We have 2z € C and Jz — ABz € Jz + A\Az, that is, z = J3J " H(Jz —
ABz) = S)z. Hence, we get

Tz =MeJ Y(Jz — MN(Bz — Bz)) =Tlgz = z.
So, F C F(Ty). Let z € F and u € F(T)). From (i), we obtain
B(2,1) = B2, Tyu) < 6(2 1) — (= (A2L2) /) u — Syull®
By (c — (AN2L?)/c) > 0, we get
uw=Syu=J{J(Ju— A\Bu)

which implies u € F. So, we get F(T)\) C F. Therefore, F' = F(T)) holds.
(iii) If (¢/L) > A, ¢(z,Thx) < ¢(z,x) for every x € CU D(A) and z € F = F(T))
from (i) and (ii). So, we have F is closed and convex from the result in [19, 20]. O

Now, we get the following strong convergence theorem.

Theorem 3.2. Let C' be a nonempty closed convexr subset of a 2-uniformly convex
and uniformly smooth Banach space E and assume that A, B, L and F are the
same as Lemma 3.1 such that for a bounded sequence {u,} C C' and {\,} C (0,00)
with inf,en A > 0, [Jupy — anJ_l(Jun — A Buy)|| — 0 implies wy,(u,) C F, where



STRONG CONVERGENCE THEOREMS 445

wy(uy) is the set of all weak cluster points of {u,}. Let w € E and {x,} be a
sequence generated by

z1 =2 € CUD(A),

Yn = anJ_l(an — \Bzy, — ap(Jx, — Ju)),
Jzn = JYyn — M (By, — Bxy,)

Tn+1 =llcz,

for every n € N, where 0 < inf ey Ay, < sup,en An < ¢/L where c is the constant in
Theorem 2.2 and 0 < o, < 1 for alln € N with o, — 0 and 22021 ay = 00. Then,
{zn} converges strongly to llpu.

Proof. From Lemma 3.1 (iii), F' is closed and convex and hence, ITr is well defined.
Let z € F. We have

¢(Z, mn) = ¢(za Zn) - ¢(yna Zn) + ¢(yn7$n) - 2<yn — 2,2y — an>

By (1/A\n)(Jxy — Jypn) — Bry — (an/An) (Jxn — Ju) € Ay, and (1/A,) (Jyn — J2n) +
Bz, = Byn, (1/An)(Jxn—J z)—(an/An) (Jrn—Ju) € (A+B)yy. Since 0 € (A+B)z
and A+B is monotone, we get

(yn — 2, Jxy — J 25y — an(Jzp, — Ju)) >0
for every n € N. So we get,
(3'5) ¢(Z, Zn) < ¢(Z, xn) + ¢(yna Zn) - ¢(yn7 xn) - 2an<yn -z, Jx, — JU>
for all n € N. And
2<yn -z, Jr, — JU> = _(b(yn»xn) =+ ¢(ynvu) + ¢(za :En) - ¢(Z,u)
holds. So, from (3.5),
(3.6) (2,2n) < O(2,20) + O(Yn, 2n) — (1 — an)(Yn, )
—an(A(Yn, u) + ¢(2,2n) — ¢(2, 1))

for each n € N. By Lemma 2.5, we have

(3'7) ¢(z, xn—i—l) < ¢(Za Zn) - ¢($n+17 zn)
And from Theorem 2.4,
(Y Tn) = cllyn — anQ
(3.8) (Y, 2m) < (L) Tyn = Jzal® = (X3 /)| Byn — Banl|?
< ((RL)/O)llyn — zal*.
Hence, by (3.5), (3.7) and (3.8),
P2, Tnt1) < (2, 2n) — P(Tnt1, 2n)

(3.9) < 0(z,20) = P@nt1, z) = (€ = (ALL)/0)|lyn —

(

— 20, (yn, — 2z, Jxp — Ju)
for every n € N and by (3.6)-(3.8), we get
(3'10) ¢(Z, xn—O—l) < (Z)(Z, wn) - ¢(xn+17 Zn)
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— (A= an)e = (AL*)/)lyn — all?

- an(¢(yna ’LL) + ¢(Zv xn) - ¢(Za ’LL))
for all n € N. From 0 < inf ey A, < sup,eyAn < ¢/L and {a,} C (0,1] with
an — 0, there exist k1,k2 > 0 and ng € N such that ¢ — (\2L?)/c > k; for each
n € Nand (1 —ay)c— (M\2L?)/c > ky for every n > ng. Hence, by (3.9) and (3.10),
we obtain
(3.11) P2, Tpt1) < O(2,2n) — Q(Tnt1, 2n) — killyn — 3771“2

— 2ap(yn — 2z, Jxy — Ju)

for all n € N and

(3.12) O(z,2n11) < O(2,20) — O(@nt1, 2n) — ka2llyn — znl?
- an(¢(yna U) + ¢(z7 xn) - ¢(Z, u))

for each n > ng. At first, we prove {z,} is bounded. If ¢(z,z,) decreases, it is
trivial. If not so, by Lemma 2.7, there exist n; € N and an eventually increasing
function j such that ¢(2, () < é(2,2jn)+1) and (2, zn) < é(2, Tj(n)41) for each
n > nj. There exists N € N with j(n) > ng (Yn > N). From (3.12), we obtain

O(Yjny 1) + D2 () — P2, u) <0

for all n > max{ni, N} which implies that {z;} is bounded. By ¢é(z,z,) <

¢(2, Tjn)4+1) and (3.12), we have

¢(Z,1En) < ¢(zaxj(n)+1) < gb(zaxj(n)) + aj(n)¢(zau) < gb(zvl'j(n)) + qf)(Z,U)

for each n > max{n;, N}. So, we have {z,} is bounded. Next, we show {y,} is
bounded. From (3.12),

k2llyn — @nll* < (2, 2n) + and(z,u) < ¢(z,20) + (2, u)

for every n > ng. Hence, {y,} is bounded.

(i). If {¢p(IIpu,x,)} is not decreasing, by Lemma 2.7, there exist ny € N and
an eventually increasing function i such that ¢(I1pu,xy)) < ¢(Ipu, vipn)41) and
¢l pu, v,) < ¢(IFpu, v5n)41) for every n > ng. There exists m € N such that
i(n) > ng (¥Yn > m) holds. From (3.12), we have

i(n

P(ITFu, Ty 41)
(3.13) < OUIpu, xim)) — kallYin) — TigyII” + iy S (I pu, )
< G(Iru, Tiny+1) — k2llYim) — Tig)lI” + @iy @(ITpu, u)
which implies
k2 |Yign) — @iy II” < ignyd (I pu, w)

for all n > max{ng, m}. From this and «a,, — 0, we get

(3.14) [%:(n) — Yignyll = 0.
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Let wy, = anJ_l(Jmn — M Bxy,). Since (1/A)(Jxy — Jyn) — Bxy — (o /An) (Jxm —
Ju) € Ayy, (1/\n)(Jzy — Jwy,) — By, € Aw, and A is monotone,
(Yn — Wy, Jwy, — Jyp — an(Jzy — Ju)) > 0.
By Theorem 2.4,
an||lyn — wpl| - || Jxn — Jull —an(Yn — Wy, JTn — Ju)
(Yn — wp, Jyn — Jwy)

cllyn — wnll?

AVARLAYAR LY,

for each n € N. By «,, — 0, we obtain
(3.15) |y — wn|| — 0.

From (3.14) and (3.15), ||Z;() —wj(n) || — 0. By the assumption, we have wy, (7;(,)) C
F. From (3.11),

QUIFU, Ti(ny) — 20i(n) (Yi(n) — LTFU, JTi(n) — Ju)
QUIIFpU, Ti(n)41) = 20i(n) (Yi(n) — LIFu, JTi(n) — Ju)

P Fu, Tiny41) <
<

which implies
(3.16) (Yitn) — Hpu, Ja;my — Ju) <0
for every n > ny. By Theorem 2.4,
Yitn) — HTpu, Jai(ny — Ju)
= (Yitn) — Hru, JTim) — JYim)) + Witn) — HLFu, JYin) — JFu)
+ Wity — pu, JHpu — Ju)
> —\itny — Teull - 1 Tyin) — Joio) | + cllyiny — Hpull®
+ Wity — rpu, JHpu — Ju).
So, from (3.16), we get
~Nitny — Hrull - 1TYitny — Tyl + €llyigny — Trul?
(3.17) —i—(yz(n) — pu, Jlpu — Ju) <0

for every n > na. Let {zn;} be a subsequence of {z;,} such that z,;, — w. We
have w € F. From (3.14), y,,, — w. Since the duality mapping J of E is uniformly
continuous on bounded subsets of E and (3.14), |[Jy;(n) — JZin) || — 0. Hence, by
(3.17), lower-semicontinuity of norm and Lemma 2.5, we obtain

0 > climinf |y, — Hrul? + liminf(y,, — Tpu, JIIpu — Ju)
j—o0 j—o0

> cllw— Hpul]® + (w — Hpu, JIpu — Ju) > cl|w — Hpul|?

which implies w = ITpu. Therefore, z;,y — IIru and y;,) — pu. From (3.17),
we have

0 > 1ifn_>sup(—||yi(n) — Hpul| - | Jyiny = Jimy | + cllyiny — Hrull?
+ Wity — rpu, JHpu — Ju))
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. 2
= climsup ) — rul
n— oo

Hence, we get y;,) — IIpu. By (3.14),
Since J is norm to weak* continuous,
QI pu, i) = | Hpul® = 20Tpu, Jaim)) + [l2im |1
- |[ITpul|* = 2(Hpu, JHpu) + || ITpul* = 0.
From (3.13) and i,y — 0, we obtain ¢(/1pu,xipn)41) — 0. By o(Illpu,z,) <
¢(Ipu, T5(n)41) for each n > nay, we have
¢(HFU, xn) —0

which implies xz,, — IIpu from Theorem 2.4.

(ii). Suppose that ¢(Ilpu,x,) is decreasing. There exists limy, oo ¢(Ipu, x,).
By (3.12) and «,, — 0, we get ||z, — yn|| — 0. On the other hand, we have (3.15).
So, from ||z, — wy,|| — 0 and the assumption, wy,(x,) C F. We show that

(3.18) lim sup(ITpu — yp, Jx,, — Ju) > 0.

n—oo
Suppose that limsup,, . (IIpu — ypn, Jo, — Ju) =1 < 0. There exists nz € N such
that (IIpu — yp, Ja, — Ju) < 31 for every n > ng. By (3.11),
—lay, < 200 (yn — Hpu, Jz, — Ju) < ¢(Ipu,xy,) — ¢(Ipu, Tpi1)

for each n > ng which implies

o

Z (=Dan < ¢(Hpu, zn,) < 00.

n=ng
From > > | ay, = 00, this is a contradiction. So, we obtain (3.18). Next,
<HFU — Yn, STy — JU> = (HFU — Yns STy — Jyn> + <HFU — Yns JYn — JHF“)
+(IIpu — yp, JIpu — Ju)
1
HTpu = yoll - | Jan = Jynll = SO(TFu, yn)
+(IIpu — yp, J I pu — Ju)

IN

for all n € N. Since J is uniformly continuous on bounded subsets of E and
|zrn, — ynll| = 0, we have

(3.19) | Jxn — Jyn| — 0.

So, we have

0 < limsup{lIpu— yn, Jz, — Ju)
n—oo
1
< ——liminf (I pu,y,) + imsup(Ilpu — yp, JIpu — Ju).
2 n—oo n—oo
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And there exists a subsequence {yn;} of {y,} such that y,, — w € F' and
lim sup(I1pu — ypn, JHpu — Ju) = im (IIpu — yy,, J Il pu — Ju).
j—o0

n—oo

From Lemma 2.5,

lim (ITpu — yp;, JHpu — Ju) = (pu — w, JlTpu — Ju) <0

j—o00
holds. Hence, we get
lim inf ¢(Ilpu, y,) = 0.
n—oo
From ||z, — yn|| = 0, (3.19) and

|¢(HFUa fEn) - ¢(HFuayn)|
< 2Tpull - [ Jzn = Jyall + llznll* = lynll?]
< 2([Hpul - [[Jzn = Jynll + 20 — yull - (2ol + [[ynl),

we obtain lim inf,,_,~ ¢(IIpu, z,) = 0 which implies lim,,_, o ¢(IIpu, x,) = 0. There-
fore, {z,} converges strongly to ITpu from Theorem 2.4. O

4. DEDUCED RESULTS

To begin with, we get a new strong convergence theorem for a sum of maximal
monotone operators by Theorem 3.2.

Theorem 4.1. Let E be a 2-uniformly convexr and uniformly smooth Banach space,
A a mazimal monotone operator in E X E*, B a monotone and Lipschitz continuous
mapping of E into E* with a Lipschitz constant L > 0 such that F = (A+B)~10 # 0.
Let uw € E and {x,} be a sequence generated by

r1=x €k,
Yn = Ji T Tz — Ay By, — an(Jzn — Ju)),
Tpi1 = J H(JYn — M(Byn — Bzy))
for every n € N, where 0 < inf,,eny Ay, < sup,,eny An < ¢/L where c is the constant in

Theorem 2.2 and 0 < ay, < 1 for all n € N with a, — 0 and 22021 oy = 00. Then,
{zn} converges strongly to pu.

Proof. 1t is known that A + B is a maximal monotone operator, see [29]. We show
the assumption in Theorem 3.2. Let {u,} be a bounded sequence and {\,} C
(0,00) with inf,en A, > 0 such that ||u, — anJfl(Jun — MBuy)| — 0 and {up,}
a subsequence of {u,} with u,, — u. Let v, = anJ_l(Jun — ApBuy). Since
%W(Jum — Jup,) — Bup, + Bu,, € (A+ B)v,, and A + B is monotone, we have

1

(Un; —w, )\—(Juni — Jup,) — Buy, + Bv,, —w*) >0

ni

for every (w,w*) € (A + B). Hence, we get

1
(Jop, — Jup,) + Buyp, — Buy,)

(Un, —w, —w*) > (vp, —w, SV
n;
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1

> _THUM - w” ' HJ’Um - Juan - ”vnz - w” : HBUM - BUMH
U
1

2 =y lon = wll - [|Jvn; = Jun|| = llvn; = wll - Lliun; — vn,ll
U

for all 7 € N. Since J is uniformly continuous on bounded subsets of E and ||u,, —
Un, || = 0, || Jupn, — Jop,|| = 0. By vp, = uw and inf,ey Ay, > 0, we obtain

(u—w,—w*)y > 0.

From maximality of A + B, we get u € (A + B)7'0 = F. So, wy(u,) C F holds.
Therefore, the proof is complete by Theorem 3.2. O

Let C be a nonempty closed convex subset of F and A a single valued mapping
of C into E*. We consider the variational inequality problem [15] for A, that is, the
problem of finding an element z € C' such that

(x —2z,Az) > 0 forall z € C.

The set of all solutions of the variational inequality problem for A is denoted by
VI(C,A). Tufa and Zegeye [34] proved the strong convergence theorem of varia-
tional inequality problems for a monotone and Lipschitz continuous mapping in a
2-uniformly convex and uniformly smooth Banach sapce. From Theorem 3.2, we
have a new result which is defferent from that.

Theorem 4.2. Let C be a nonempty closed convexr subset of a 2-uniformly convex
and uniformly smooth Banach space E. Let B be a monotone and Lipschitz contin-
uous mapping of C into E* with a Lipschitz constant L > 0 such that VI(C, B) # ().
Let u € E and {x,} a sequence generated by

r1=x € C,
Yn = o J Y(Jznm — MBrp — an(Jz, — Ju))
Zny1 = Hod " (Jyn — An(Byn — By))

for every n € N, where {\,} C (0,00) and {a,,} C (0,1] are real sequences. Suppose
that 0 < infpeny Ay, < sup,eny An < ¢/L, where ¢ is the constant in Theorem 2.2,
an — 0 and )2 | ay = 0o. Then, {x,} converges strongly to Ty pyu.

Proof. Let i¢ be the indicator function of C. We have that i¢ : E — (—o00, o0] is
a proper lower semicontinuous and convex function and hence, the subdifferential
Jic is maximal monotone. Let A = dic. Then, it is easy to see that D(di¢) = C,
J{z = Ilcx for every A >0 and z € E and (A + B)~'0=VI(C, B).

We prove the assumption in Theorem 3.2. Let {u,} be a bounded sequence in C
and {\,} C (0,00) with inf,en Ap, > 0 such that ||u, — IToJ 1 (Jup — ApBuy)|| — 0
and {un,} a subsequence of {u,} with u,, — u. Let v, = HcJ 1 (Ju, — A\, Buy,).
We have

(Un; — @, Jup, — Jop, — A\p, Buy,) >0

for every ¢ € N and « € C' which implies

1
(Un; —x,—Bz) > A—(vnl —x, Jup, — Juy,) + (vn, — z, Buy, — Boy,)
ni
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+ (vp, — z, Bu,, — Bx)
-1

4.1 >
(1) >

ani - :UH : ”‘]Um - Jum” + <Um- - x7Buni - ani)

for every i € N and z € C. Since J is uniformly continuous on bounded subsets of
E and |up; — vn,|| = 0, ||Jtn;, — Jop,|| — 0. And we get

|<Un¢ -, Buni - anz>| < ”vnz - fL‘” ’ HBum - va”

< lon, — @l - Lltn, = v, ]| = 0.
So, from vy, — u, inf,en A, > 0 and (4.1), we obtain
(u—2z,—Bz) >0
for every x € C. Since B is hemicontinuous, we have
(x —u,Bu) >0

for all x € C, that is, u € VI(C, B). So, wy(u,) C VI(C, B). Hence, the proof is
complete by Theorem 3.2. U

In a real Hilbert space H, we have ¢ = 1 in Theorem 2.2, J = J~! = I, where I
is the identity mapping and Il = Pg, where P¢ is the metric projection of H onto
C. So, we get new results in a real Hilbert space by Theorems 4.1 and 4.2.

Theorem 4.3. Let A be a mazimal monotone operator in H x H and B a monotone
and Lipschitz continuous mapping of H into H with a Lipschitz constant L > 0 such
that F = (A+ B)7'0# 0. Let u € H and {x,} be a sequence generated by

ry=x € H,
Yn = J)f‘n(xn — Bz, — ap(x, —u)),
Tn+l = Yn — )\n(Byn - an)

for every n € N, where 0 < inf,en Ay, < sup,enyAn < 1/L and 0 < oy, < 1 for all
n €N with o, — 0 and > .2 | o, = 00. Then, {z,} converges strongly to Pru.

Theorem 4.4. Let C be a nonempty closed convex subset of H and B a monotone
and Lipschitz continuous mapping of C into H with a Lipschitz constant L > 0 such
that VI(C,B) # 0. Let u € H and {x,} a sequence generated by

r1=x € C,
Yn = PC(ﬂjn - )\nB-Tn - O‘n(xn - U))
Tny1 = Po(yn — An(Byn — Bxy))

for every n € N, where {\,} C (0,00) and {a,,} C (0,1] are real sequences. Suppose
that 0 < infpen Ap < supp,ey M < 1/L, o — 0 and Y07 oy, = 00. Then, {xy,}
converges strongly to Py o, pu.
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