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method was introduced for solving pseudomonotone equilibrium problems instead
of the proximal point method. The extragradient method was first introduced by
Korpelevich [28] for solving saddle point problems and it was extended by Noor [36]
to pseudomonotone variational inequality problems. Later, Tran et al. [42] pro-
posed the following extragradient method for solving the equilibrium problem when
the bifunction f is pseudomonotone and Lipschitz-type continuous with positive
constants L1 and L2:

(1.3)


x0 ∈ C,

yk = argmin{ρf(xk, y) + 1
2∥xk − y∥2 : y ∈ C},

xk+1 = argmin{ρf(yk, y) + 1
2∥xk − y∥2 : y ∈ C},

where 0 < ρ < min{ 1
2L1

, 1
2L2

}. They proved that the sequence {xk} generated by

(1.3) converges weakly to a solution of the equilibrium problem (1.1).

On the other hand, for a nonempty closed convex subset C of H, and a mapping
T : C → C, the fixed point problem is a problem of finding a point x ∈ C such that
Tx = x. The set of fixed points of the mapping T will be denoted by Fix(T ).

A famous iterative method for finding fixed points of a nonexpansive mapping T
was proposed by Mann [29] as followed:

(1.4)

{
x0 ∈ C,

xk+1 = (1− αk)xk + αkTxk,

where {αk} ⊂ (0, 1). In [39], the author proved that if T has a fixed point and∑∞
k=0 αk(1−αk) = ∞, then the sequence {xk} generated by (1.4) converges weakly

to a fixed point of T . Besides, Park and Jeong [37] presented that if T is a quasi-
nonexpansive mapping with I − T demiclosed at 0, then the sequence which is
generated by (1.4) also converges weakly to a fixed point of T .

In order to obtain a strong convergence result for Mann iterative method (1.4),
Nakajo and Takahashi [35] proposed the following hybrid method for finding fixed
points of a nonexpansive mapping T :

(1.5)



x0 ∈ C,

yk = αkxk + (1− αk)Txk,

Ck = {x ∈ C : ∥yk − x∥ ≤ ∥xk − x∥},
Qk = {x ∈ C : ⟨x0 − xk, x− xk⟩ ≤ 0},
xk+1 = PCk∩Qk

(x0),

where {αk} ⊂ [0, 1] such that αk ≤ 1 − α, for some α ∈ (0, 1], and PCk∩Qk
is the

metric projection onto Ck ∩Qk. They proved that the sequence {xk} generated by
(1.5) converges strongly to PFix(T )(x0).
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Furthermore, Ishikawa [25] proposed the following method for finding fixed points
of a Lipschitz pseudocontractive mapping T :

(1.6)


x0 ∈ C,

yk = (1− αk)xk + αkTxk,

xk+1 = (1− βk)xk + βkTyk,

where 0 ≤ βk ≤ αk ≤ 1, limk→∞ αk = 0, and
∑∞

k=0 αkβk = ∞. In [25], the author
proved that if C is a convex compact subset of H, then the sequence {xk} generated
by (1.6) converges strongly to fixed points of T . It was noted that Mann iterative
method may not, in general, be applicable for finding fixed points of a Lipschitz
pseudocontractive mapping in a Hilbert space, for instance, see [12].

In recent years, many algorithms have been proposed for finding a point in the
intersection of the solution set of the equilibrium problems and the solution set of the
fixed point problems, for instance, see [1, 11, 18, 32] and the references therein. In
2016, by using the ideas of extragradient and hybrid methods together with Ishikawa
iterative method, Dinh and Kim [15] proposed the following algorithm for finding the
closest point to the intersection of the set of fixed points of a symmetric generalized
hybrid mapping T and the solution set of equilibrium problem, when a bifunction
f is pseudomonotone and Lipschitz-type continuous with positive constants L1, L2:

(1.7)



x0 ∈ C,

yk = argmin{ρkf(xk, y) + 1
2∥xk − y∥2 : y ∈ C},

zk = argmin{ρkf(yk, y) + 1
2∥xk − y∥2 : y ∈ C},

tk = αkxk + (1− αk)Txk,

uk = βktk + (1− βk)Tzk,

Ck = {x ∈ H : ∥x− uk∥ ≤ ∥x− xk∥},
Qk = {x ∈ H : ⟨x− xk, x0 − xk⟩ ≤ 0},
xk+1 = PCk∩Qk∩C(x0),

where {ρk} ⊂ [ρ, ρ] with 0 < ρ ≤ ρ < min{ 1
2L1

, 1
2L2

}, {αk} ⊂ [0, 1] such that

limk→∞ αk = 1, and {βk} ⊂ [0, 1 − β], for some β ∈ (0, 1). They proved that the
sequence {xk} generated by (1.7) converges strongly to PEP (f,C)∩Fix(T )(x0).

In 2016, Hieu et al. [20] considered the following problem:

(1.8)

{
find a point x∗ ∈ C such that Tjx

∗ = x∗, j = 1, . . . ,M,

and fi(x
∗, y) ≥ 0, ∀y ∈ C, i = 1, . . . , N,

where C is a nonempty closed convex subset of H, Tj : C → C, j = 1, . . . ,M , are
mappings, and fi : C×C → R, i = 1, . . . , N , are bifunctions satisfying fi(x, x) = 0,
for each x ∈ C. By using the ideas of extragradient and hybrid methods together
with Mann iterative method and parallel splitting-up techniques, see [2, 3], Hieu
et al. [20] proposed the following algorithm for finding the closest point to the
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solution set of problem (1.8), when mappings are nonexpansive, and bifunctions are
pseudomonotone and Lipschitz-type continuous with positive constants L1 and L2:

(1.9)



x0 ∈ C,

yik = argmin{ρfi(xk, y) + 1
2∥xk − y∥2 : y ∈ C}, i = 1, 2, . . . , N,

zik = argmin{ρfi(yik, y) +
1
2∥xk − y∥2 : y ∈ C}, i = 1, 2, . . . , N,

zk = argmax{∥zik − xk∥ : i = 1, 2, . . . , N},
ujk = αkxk + (1− αk)Tjzk, j = 1, 2, . . . ,M,

uk = argmax{∥ujk − xk∥ : j = 1, 2, . . . ,M},
Ck = {x ∈ C : ∥x− uk∥ ≤ ∥x− xk∥},
Qk = {x ∈ C : ⟨x− xk, x0 − xk⟩ ≤ 0},
xk+1 = PCk∩Qk

(x0),

where 0 < ρ < min{ 1
2L1

, 1
2L2

}, and {αk} ⊂ (0, 1) such that lim supk→∞ αk < 1.

They proved that the sequence {xk} generated by (1.9) converges strongly to PS(x0),
where S := (∩M

j=1Fix(Tj)) ∩ (∩N
i=1EP (fi, C)) is the solution set of problem (1.8).

From now on, the algorithm (1.9) will be called PHMEM.

In this paper, we will still focus to the methods for finding the solutions of prob-
lem (1.8). That is, we will introduce some new iterative algorithms for finding
the closest point to the intersection of the solution set of pseudomonotone equilib-
rium problems and the set of fixed points of quasi-nonexpansive mappings. Some
numerical examples and comparison of the introduced methods with well-known
algorithms will be considered.

This paper is organized as follows: In Section 2, some necessary definitions and
properties will be reviewed. Section 3, two hybrid extragradient algorithms and
prove their convergence will be considered. Finally, in Section 4, we discuss the per-
formance of introduced algorithms and compare it with some appeared algorithms
via the numerical experiments.

2. Preliminaries

This section will present the definitions and some important basic properties that
will be used in this work. Let H be a real Hilbert space with inner product ⟨· , · ⟩,
and norm ∥ · ∥. The symbols → and ⇀ will be denoted for the strong convergence
and the weak convergence in H, respectively.

First, we will recall the concerned definitions of nonlinear mappings.

Definition 2.1 ([9, 41]). A mapping T : C → C is said to be:

(i) pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

where I denotes the identity operator on C.
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(ii) Lipschitzian if there exists L ≥ 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ C.

In particular, if L = 1, then T is said to be nonexpansive.
(iii) quasi-nonexpansive if Fix(T ) is a nonempty set and

∥Tx− p∥ ≤ ∥x− p∥, ∀x ∈ C, p ∈ Fix(T ).

(iv) (α, β, γ, δ)-symmetric generalized hybrid if there exists α, β, γ, δ ∈ R such
that

α∥Tx− Ty∥2 + β(∥x− Ty∥2 + ∥y − Tx∥2) + γ∥x− y∥2

+δ(∥x− Tx∥2 + ∥y − Ty∥2) ≤ 0, ∀x, y ∈ C.

Remark 2.2. A nonexpansive mapping with at least one fixed point is a quasi-
nonexpansive mapping, but the converse is not true in general, for instance, see [16].
Moreover, Fix(T ) is closed and convex when T is a quasi-nonexpansive mapping,
see [24].

Definition 2.3 (see [8]). Let C be a nonempty closed convex subset of H. A
mapping T : C → H is said to be demiclosed at y ∈ H if for any sequence {xk} ⊂ C
with xk ⇀ x∗ ∈ C and Txk → y imply Tx∗ = y.

Remark 2.4. It is well-known that if T is an (α, β, γ, δ)-symmetric generalized
hybrid mapping satisfies (1) α + 2β + γ ≥ 0, (2) α + β > 0, and (3) δ ≥ 0, then T
is quasi-nonexpansive and I − T demiclosed at 0, see [21, 27].

Now, we will recall the facts that are related to the equilibrium problems.

Definition 2.5 ([7, 31, 34]). A bifunction f : C × C → R is said to be:

(i) monotone on C if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(ii) pseudomonotone on C if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) Lipshitz-type continuous on C with constants L1 > 0 and L2 > 0 if

f(x, y) + f(y, z) ≥ f(x, z)− L1∥x− y∥2 − L2∥y − z∥2, ∀x, y, z ∈ C.

Remark 2.6. From Definition 2.5, we note that a monotone bifunction is a pseu-
domonotone bifunction. However, the converses may not be true, for instance, see
[26].

Let C be a nonempty closed convex subset of H. The following assumptions on
the bifunction f : C × C → R will be considered in this paper:

(A1) f is weakly continuous on C × C in the sense that, if x ∈ C, y ∈ C,
and {xk} ⊂ C, {yk} ⊂ C are two sequences converge weakly to x and y
respectively, then f(xk, yk) converges to f(x, y);

(A2) f(x, · ) is convex and subdifferentiable on C for each fixed x ∈ C;
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(A3) f is psuedomonotone on C and f(x, x) = 0 for each x ∈ C;
(A4) f is Lipshitz-type continuous on C with constants L1 > 0 and L2 > 0.

Remark 2.7. It is well-known that the solution set EP (f, C) is closed and convex
when the bifunction f satisfies the assumptions (A1)− (A3), see [5, 38, 42] and the
references therein.

The following lemma will be useful in order to obtain the main results.

Lemma 2.8 ([1]). Let f : C × C → R be satisfied (A2) − (A4). Assume that
EP (f, C) is a nonempty set and 0 < ρ0 < min{ 1

2L1
, 1
2L2

}. Let x0 ∈ C, and construct
y0 and z0 by {

y0 = argmin{ρ0f(x0, w) + 1
2∥w − x0∥2 : w ∈ C},

z0 = argmin{ρ0f(y0, w) + 1
2∥w − x0∥2 : w ∈ C}.

Then,

(i) ρ0 [f(x0, w)− f(x0, y0)] ≥ ⟨y0 − x0, y0 − w⟩, ∀w ∈ C;
(ii) ∥z0 − q∥2 ≤ ∥x0 − q∥2 − (1 − 2ρ0L1)∥x0 − y0∥2 − (1 − 2ρ0L2)∥y0 − z0∥2,

∀q ∈ EP (f, C).

We end this section by recalling some basic facts in the functional analysis which
are needed in this paper.

Let C be a nonempty closed convex subset of H. For each x ∈ H, we denote the
metric projection of x onto C by PC(x), that is

∥x− PC(x)∥ ≤ ∥y − x∥,∀y ∈ C.

Lemma 2.9 (see [10, 16]). Let C be a nonempty closed convex subset of H. Then

(i) PC(x) is singleton and well-defined for each x ∈ H;
(ii) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

Now, the weak limit set of the sequence {xk} will be denoted by ωw(xk), that is,
ωw(xk) = {x ∈ H : there is a subsequence {xkn} of {xk} such that xkn ⇀ x}.

The following lemmas are very important in order to obtain the main results.

Lemma 2.10 ([43]). Let C be a nonempty closed convex subset of H. Let {xk} be
a sequence of H and u ∈ H. If ∥xk − u∥ ≤ ∥u− PC(u)∥, ∀k ∈ N, and ωw(xk) ⊂ C,
then xk → PC(u).

For a function g : H → R, the subdifferential of g at z ∈ H is defined by
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∂g(z) = {w ∈ H : g(y)− g(z) ≥ ⟨w, y − z⟩, ∀y ∈ H}.
The function g is said to be subdifferentiable at z if ∂g(z) ̸= ∅.

Theorem 2.11 (see [10]). For any z ∈ H, the subdifferentiable ∂g(z) of a contin-
uous convex function g is a nonempty, weakly closed and bounded convex set.

3. Main results

In this section, we propose two hybrid extragradient algorithms for finding the
closest point to the solution set of problem (1.8), when each mapping Tj : C →
C, j = 1, 2, . . . ,M , is quasi-nonexpansive with I − Tj demiclosed at 0, and each
bifunction fi, i = 1, 2, . . . , N , satisfies the assumptions (A1)− (A4). We start with
some observations. If each bifunction fi, i = 1, 2, . . . , N , is Lipshitz-type continuous
on C with constants Li

1 > 0 and Li
2 > 0, then

fi(x, y) + fi(y, z) ≥ fi(x, z)− Li
1∥x− y∥2 − Li

2∥y − z∥2

≥ fi(x, z)− L1∥x− y∥2 − L2∥y − z∥2,

where L1 = max{Li
1 : i = 1, 2, . . . , N}, and L2 = max{Li

2 : i = 1, 2, . . . , N}. This
means the bifunctions fi, i = 1, 2, . . . , N , are Lipshitz-type continuous on C with
constants L1 > 0 and L2 > 0.

From now on, for each N ∈ N and k ∈ N ∪ {0}, a modulo function at k with
respect to N will be denoted by [k]N , that is,

[k]N = k(mod N) + 1.

Now, the cyclic method is presented as following:

Cyclic Hybrid Extragradient Method (CHEM)

Initialization. Choose parameters {ρk} with 0 < inf ρk ≤ sup ρk < min{ 1
2L1

, 1
2L2

},
{αk} ⊂ [0, 1] such that limk→∞ αk = 1, and {βk} ⊂ [0, 1) with 0 ≤ inf βk ≤ supβk <
1. Pick x0 ∈ C.

Step 1. Solve the strongly convex program

yk = argmin{ρkf[k]N (xk, y) +
1

2
∥y − xk∥2 : y ∈ C}.

Step 2. Solve the strongly convex program

zk = argmin{ρkf[k]N (yk, y) +
1

2
∥y − xk∥2 : y ∈ C}.

Step 3. Compute

tk = αkxk + (1− αk)T[k]Mxk,

uk = βktk + (1− βk)T[k]M zk.

Step 4. Construct two closed convex subsets of C

Ck = {x ∈ C : ∥x− uk∥ ≤ ∥x− xk∥},
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Qk = {x ∈ C : ⟨x0 − xk, x− xk⟩ ≤ 0}.

Step 5. The next approximation xk+1 is defined as the projection of x0 onto
Ck ∩Qk, i.e.,

xk+1 = PCk∩Qk
(x0).

Step 6. Put k := k + 1 and go to Step 1.

Before going to prove the strong convergence of the CHEM Algorithm, we guar-
antee the well-definedness of the constructed sequence by the following lemma.

Lemma 3.1. Suppose that the solution set S is nonempty. Then, the sequence {xk}
which is generated by CHEM Algorithm is well-defined.

Proof. To get the conclusion, it suffices to show that Ck ∩Qk is a nonempty closed
convex subset of H, for each k ∈ N ∪ {0}. First, we will assert the non-emptiness
by showing that S ⊂ Ck ∩Qk, for each k ∈ N ∪ {0}.

Let k ∈ N ∪ {0} be fixed and let q ∈ S. Then, by Lemma 2.8 (ii), we have

∥zk − q∥2 ≤ ∥xk − q∥2 − (1− 2ρkL1)∥xk − yk∥2 − (1− 2ρkL2)∥yk − zk∥2.

This implies that

(3.1) ∥zk − q∥ ≤ ∥xk − q∥.

Since for each j ∈ {1, 2, . . . ,M}, we also have q ∈ Fix(Tj), it follows from the
quasi-nonexpansivity of each Tj that

∥tk − q∥ ≤ αk∥xk − q∥+ (1− αk)∥T[k]Mxk − q∥
≤ αk∥xk − q∥+ (1− αk)∥xk − q∥
= ∥xk − q∥,(3.2)

and

∥uk − q∥ ≤ βk∥tk − q∥+ (1− βk)∥T[k]M zk − q∥
≤ βk∥tk − q∥+ (1− βk)∥zk − q∥.

Thus, in view of (3.1) and (3.2), we get

∥uk − q∥ ≤ βk∥xk − q∥+ (1− βk)∥xk − q∥
= ∥xk − q∥.(3.3)

Using this relation, in view of the definition of Ck, we see that q ∈ Ck. Since
k ∈ N ∪ {0} is arbitrary, we can conclude that S ⊂ Ck, for each k ∈ N ∪ {0}.

Next, we will show that S ⊂ Qk, for each k ∈ N ∪ {0}, by induction. Let q ∈ S.
It is obvious S ⊂ Q0 = C. Now, suppose that S ⊂ Qk. Observe that, since
xk+1 = PCk∩Qk

(x0), by Lemma 2.9 (ii), we have

⟨x0 − xk+1, x− xk+1⟩ ≤ 0, ∀x ∈ Ck ∩Qk.

It follows that



SOME ALGORITHMS FOR THE CLOSEST POINT TO THE COMMON SOLUTION SET 463

⟨x0 − xk+1, q − xk+1⟩ ≤ 0, ∀q ∈ S.

This implies that q ∈ Qk+1, and so S ⊂ Qk+1. Thus, by induction, we conclude
that S ⊂ Qk, for each k ∈ N∪ {0}. Then, since S is a nonempty set, it follows that
Ck ∩ Qk is a nonempty closed convex subset, for each k ∈ N ∪ {0}. Consequently,
we can guarantee that {xk} is well-defined. □

Now, we are ready to prove the strong convergence theorem of the sequence {xk}
which is generated by the CHEM Algorithm.

Theorem 3.2. If the solution set S is nonempty, then the sequence {xk} which is
generated by CHEM Algorithm converges strongly to PS(x0).

Proof. Let q ∈ S be picked. By the definition of Qk and Lemma 2.9 (ii), we observe
that xk = PQk

(x0), for each k ∈ N ∪ {0}. Thus, since S ⊂ Qk, we have

(3.4) ∥xk − x0∥ ≤ ∥q − x0∥,

for each k ∈ N ∪ {0}. This implies that the sequence {xk} is bounded. Thus, by
the relations (3.1), (3.2), and (3.3), we have {zk}, {tk}, and {uk} are also bounded.

Next, consider,

∥xk+1 − xk∥2 = ∥xk+1 − x0∥2 + ∥x0 − xk∥2 + 2⟨xk+1 − x0, x0 − xk⟩
= ∥xk+1 − x0∥2 + ∥x0 − xk∥2 + 2⟨xk+1 − xk, x0 − xk⟩ − 2∥x0 − xk∥2

= ∥xk+1 − x0∥2 − ∥x0 − xk∥2 + 2⟨xk+1 − xk, x0 − xk⟩,(3.5)

for each k ∈ N ∪ {0}. Note that, since xk = PQk
(x0) and xk+1 ∈ Qk, we have

⟨xk+1 − xk, x0 − xk⟩ ≤ 0,

for each k ∈ N ∪ {0}. Thus, from (3.5), we have

(3.6) ∥xk+1 − xk∥2 ≤ ∥xk+1 − x0∥2 − ∥x0 − xk∥2,

for each k ∈ N ∪ {0}. This implies that

∥xk − x0∥ ≤ ∥xk+1 − x0∥,

for each k ∈ N ∪ {0}. This means that {∥xk − x0∥} is a nondecreasing sequence.
Consequently, by using this one together with the boundness property of {∥xk−x0∥},
we can conclude that {∥xk − x0∥} is a convergent sequence. Thus, in view of (3.6),
we also have

(3.7) lim
k→∞

∥xk+1 − xk∥ = 0.

By the definition of Ck and xk+1 ∈ Ck, we see that

∥xk+1 − uk∥ ≤ ∥xk+1 − xk∥,

for each k ∈ N ∪ {0}. It follows that

∥uk − xk∥ ≤ ∥uk − xk+1∥+ ∥xk+1 − xk∥
≤ ∥xk+1 − xk∥+ ∥xk+1 − xk∥
= 2∥xk+1 − xk∥,
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for each k ∈ N ∪ {0}. Thus, by applying (3.7) to the above inequality, we get

(3.8) lim
k→∞

∥uk − xk∥ = 0.

Next, for each j ∈ {1, 2, . . . ,M}, by (3.2) and the quasi-nonexpansivity of Tj , we
see that

∥uk − q∥2 = ∥βk(tk − q) + (1− βk)(T[k]M zk − q)∥2

= βk∥tk − q∥2 + (1− βk)∥T[k]M zk − q∥2 − βk(1− βk)∥tk − T[k]M zk∥2

≤ βk∥tk − q∥2 + (1− βk)∥T[k]M zk − q∥2,
≤ βk∥xk − q∥2 + (1− βk)∥zk − q∥2,

for each k ∈ N ∪ {0}. So, by applying Lemma 2.8 (ii) to the vector zk, we have

∥uk − q∥2 ≤ βk∥xk − q∥2 + (1− βk)[∥xk − q∥2 − (1− 2ρkL1)∥xk − yk∥2

−(1− 2ρkL2)∥yk − zk∥2]
≤ ∥xk − q∥2 − (1− βk)[(1− 2ρkL1)∥xk − yk∥2

+(1− 2ρkL2)∥yk − zk∥2],(3.9)

for each k ∈ N ∪ {0}. This means

(1− βk)[(1− 2ρkL1)∥xk − yk∥2 + (1− 2ρkL2)∥yk − zk∥2] ≤ ∥xk − uk∥(∥xk − q∥
+∥uk − q∥),

for each k ∈ N ∪ {0}. Then, by (3.8) and the properties of the control sequences
{βk}, {ρk}, we obtain

(3.10) lim
k→∞

∥xk − yk∥ = 0,

and

(3.11) lim
k→∞

∥yk − zk∥ = 0.

These imply that

(3.12) lim
k→∞

∥xk − zk∥ = 0.

Using this one together with (3.7), we have

(3.13) lim
k→∞

∥zk+1 − zk∥ = 0.

Now, for each fixed j ∈ {1, 2, . . . ,M}, we consider

∥zk+j − zk∥ ≤ ∥zk+j − zk+(j−1)∥+ ∥zk+(j−1) − zk+(j−2)∥+ . . .+ ∥zk+1 − zk∥,

for each k ∈ N ∪ {0}. Thus, by using (3.13), we have

(3.14) lim
k→∞

∥zk+j − zk∥ = 0,

for each fixed j ∈ {1, 2, . . . ,M}.
From the definition of uk, we see that

(1− βk)∥T[k]M zk − zk∥ = ∥uk − zk − βk(tk − zk)∥
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≤ ∥uk − zk∥+ βk∥tk − zk∥
≤ ∥uk − xk∥+ βk∥tk − xk∥+ (1 + βk)∥xk − zk∥
= ∥uk − xk∥+ βk∥αkxk + (1− αk)T[k]Mxk − xk∥

+(1 + βk)∥xk − zk∥
= ∥uk − xk∥+ βk(1− αk)∥xk − T[k]Mxk∥

+(1 + βk)∥xk − zk∥,

for each k ∈ N ∪ {0}. Then, by using the assumption on {αk} together with (3.8),
and (3.12), we get

(3.15) lim
k→∞

∥T[k]M zk − zk∥ = 0.

Next, since {xk} is a bounded sequence, we can find a subsequence {xkm} of {xk}
and p ∈ H such that xkm ⇀ p, as m → ∞. We now show that p ∈ S.

First, we show that p ∈ ∩M
j=1Fix(Tj). We know that, by using (3.12), the sub-

sequence {zkm} of {zk} also weakly converges to p. This together with (3.14), for
each j ∈ {1, 2, . . . ,M}, we have zkm+j ⇀ p, as m → ∞.

Now, let j ∈ {1, 2, . . . ,M} be fixed. For m = 0, we see that there is △j
0∈

{1, 2, . . . ,M} such that [k0+ △j
0]M = j. Put rj0 = k0+ △j

0. Again, for m ≥ 1,

there is △j
m∈ {1, 2, . . . ,M} such that [km+ △j

m]M = j. Put rjm = minAj
m−1, where

Aj
m−1 = {kl+ △j

l : kl+ △j
l> rjm−1 and l > m− 1}. Then, for each j ∈ {1, 2, . . . ,M},

we can choose a subsequence {rjm} such that [rjm]M = j, and z
rjm

⇀ p, as m → ∞.

This together with (3.15) implies that

0 = lim
m→∞

∥T
[rjm]M

z
rjm

− z
rjm

∥ = lim
m→∞

∥Tjzrjm − z
rjm

∥,(3.16)

for each j ∈ {1, 2, . . . ,M}. Combining with z
rjm

⇀ p, as m → ∞, by the demi-

closedness at 0 of I − Tj , implies that

Tjp = p,

for each j = 1, 2, . . . ,M .
Next, we show that p ∈ ∩N

i=1EP (fi, C). Similarly, by using (3.7), for each fixed
i ∈ {1, 2, . . . , N}, we get that limk→∞ ∥xk+i − xk∥ = 0. It follows from xkm ⇀ p,
as m → ∞, that for each i ∈ {1, 2, . . . , N}, we have xkm+i ⇀ p, as m → ∞.
Then, for each i ∈ {1, 2, . . . , N}, we can choose a subsequence {rin} such that
[rin]N = i, and xrin ⇀ p, as n → ∞. This together with (3.10) implies that for

each i ∈ {1, 2, . . . , N}, we obtain yrin ⇀ p, as n → ∞. By Lemma 2.8 (i), for each

i ∈ {1, 2, . . . , N}, we have

ρrin [f[rin]N (xrin , y)− f[rin]N (xrin , yrin)] ≥ ⟨yrin − xrin , yrin − y⟩, ∀y ∈ C.

This implies that, for each i ∈ {1, 2, . . . , N}, we have

f[rin]N (xrin , y)− f[rin]N (xrin , yrin) ≥ − 1

ρrin
∥yrin − xrin∥∥yrin − y∥,∀y ∈ C.



466 M. KHONCHALIEW, A. FARAJZADEH, AND N. PETROT

By using (3.10) and the weak continuity of each fi (i ∈ {1, 2, . . . , N}), we obtain
that

fi(p, y) ≥ 0, ∀y ∈ C,

for each i = 1, 2, . . . , N . Then, we had shown that p ∈ S, and so ωw(xk) ⊂ S.
Finally, we show that the sequence {xk} converges strongly to PS(x0).
In fact, since xk = PQk

(x0), it follows from PS(x0) ∈ S ⊂ Qk that

∥xk − x0∥ ≤ ∥PS(x0)− x0∥,

for each k ∈ N ∪ {0}. Then, by Lemma 2.10, we can conclude that the sequence
{xk} converges strongly to PS(x0). This completes the proof. □

Next, we consider the parallel type method as following:

Parallel Hybrid Extragradient Method (PHEM)

Initialization. Choose parameters {ρik} with 0 < inf ρik ≤ sup ρik < min{ 1
2L1

, 1
2L2

},
i = 1, 2, . . . , N , {αk} ⊂ [0, 1] such that limk→∞ αk = 1, and {βk} ⊂ [0, 1) with
0 ≤ inf βk ≤ supβk < 1. Pick x0 ∈ C.

Step 1. Solve N strongly convex programs

yik = argmin{ρikfi(xk, y) +
1

2
∥y − xk∥2 : y ∈ C}, i = 1, 2, . . . , N.

Step 2. Solve N strongly convex programs

zik = argmin{ρikfi(yik, y) +
1

2
∥y − xk∥2 : y ∈ C}, i = 1, 2, . . . , N.

Step 3. Find the farthest element from xk among zik, i = 1, 2, . . . , N , i.e.,

zk = argmax{∥zik − xk∥ : i = 1, 2, . . . , N}.

Step 4. Compute

tjk = αkxk + (1− αk)Tjxk, j = 1, 2, . . . ,M,

ujk = βkt
j
k + (1− βk)Tjzk, j = 1, 2, . . . ,M.

Step 5. Find the farthest element from xk among ujk, j = 1, 2, . . . ,M , i.e.,

uk = argmax{∥ujk − xk∥ : j = 1, 2, . . . ,M}.

Step 6. Construct two closed convex subsets of C

Ck = {x ∈ C : ∥x− uk∥ ≤ ∥x− xk∥},
Qk = {x ∈ C : ⟨x0 − xk, x− xk⟩ ≤ 0}.

Step 7. The next approximation xk+1 is defined as the projection of x0 onto
Ck ∩Qk, i.e.,

xk+1 = PCk∩Qk
(x0).

Step 8. Put k := k + 1 and go to Step 1.
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Theorem 3.3. Suppose that the solution set S is nonempty. Then, the sequence
{xk} which is generated by PHEM Algorithm converges strongly to PS(x0).

Proof. Let q ∈ S. By the definition of zk, we suppose that ik ∈ {1, 2, . . . , N} such

that zikk = zk = argmax{∥zik − xk∥ : i = 1, 2, . . . , N}. Then, by Lemma 2.8 (ii), we
have

∥zk − q∥2 ≤ ∥xk − q∥2 − (1− 2ρikk L1)∥xk − yikk ∥2 − (1− 2ρikk L2)∥yikk − zk∥2,

for each k ∈ N ∪ {0}. This implies that

∥zk − q∥ ≤ ∥xk − q∥,(3.17)

for each k ∈ N ∪ {0}. Since for each j ∈ {1, 2, . . . ,M}, we also have q ∈ Fix(Tj), it
follows from the quasi-nonexpansivity of each Tj that

∥tjk − q∥ ≤ αk∥xk − q∥+ (1− αk)∥Tjxk − q∥
≤ αk∥xk − q∥+ (1− αk)∥xk − q∥
= ∥xk − q∥,(3.18)

for each k ∈ N ∪ {0}. Besides, by the definition of uk, we suppose that jk ∈
{1, 2, . . . ,M} such that ujkk = uk = argmax{∥ujk −xk∥ : j = 1, 2, . . . ,M}. It follows
from the quasi-nonexpansivity of each Tj , j ∈ {1, 2, . . . ,M}, that

∥uk − q∥ ≤ βk∥tjkk − q∥+ (1− βk)∥Tjkzk − q∥
≤ βk∥tjkk − q∥+ (1− βk)∥zk − q∥,

for each k ∈ N ∪ {0}. Thus, in view of (3.17), and (3.18), we get

∥uk − q∥ ≤ βk∥xk − q∥+ (1− βk)∥xk − q∥
= ∥xk − q∥,(3.19)

for each k ∈ N ∪ {0}. Following the proof of Lemma 3.1 and Theorem 3.2, we can
show that S ⊂ Ck ∩ Qk, for each k ∈ N ∪ {0}. Moreover, we can check that the
sequence {xk} is bounded, and

(3.20) lim
k→∞

∥xk+1 − xk∥ = 0.

By the definition of Ck and xk+1 ∈ Ck, we see that

∥xk+1 − uk∥ ≤ ∥xk+1 − xk∥,

for each k ∈ N ∪ {0}. It follows that

∥uk − xk∥ ≤ ∥uk − xk+1∥+ ∥xk+1 − xk∥
≤ ∥xk+1 − xk∥+ ∥xk+1 − xk∥
= 2∥xk+1 − xk∥,(3.21)

for each k ∈ N ∪ {0}. Thus, applying (3.20) to the above inequality, we get

lim
k→∞

∥uk − xk∥ = 0.
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From the definition of uk, we have

(3.22) lim
k→∞

∥ujk − xk∥ = 0,

for each j = 1, 2, . . . ,M .
Next, for each j = 1, 2, . . . ,M , by (3.18) and the quasi-nonexpansivity of Tj , we

see that

∥ujk − q∥2 = ∥βk(tjk − q) + (1− βk)(Tjzk − q)∥2

= βk∥tjk − q∥2 + (1− βk)∥Tjzk − q∥2 − βk(1− βk)∥tjk − Tjzk∥2

≤ βk∥tjk − q∥2 + (1− βk)∥Tjzk − q∥2

≤ βk∥xk − q∥2 + (1− βk)∥zk − q∥2,

for each k ∈ N ∪ {0}. So, by applying Lemma 2.8 (ii) to the vector zk, we have

∥ujk − q∥2 ≤ βk∥xk − q∥2 + (1− βk)[∥xk − q∥2 − (1− 2ρikk L1)∥xk − yikk ∥2

−(1− 2ρikk L2)∥yikk − zk∥2]
= ∥xk − q∥2 − (1− βk)[(1− 2ρikk L1)∥xk − yikk ∥2

+(1− 2ρikk L2)∥yikk − zk∥2],

for each k ∈ N ∪ {0}. This means

(1− βk)[(1− 2ρikk L1)∥xk − yikk ∥2 + (1− 2ρikk L2)∥yikk − zk∥2] ≤ ∥xk − ujk∥(∥xk − q∥
+∥ujk − q∥),

for each k ∈ N ∪ {0}. Then, by (3.22) and the properties of the control sequences
{βk}, {ρik}, we obtain

(3.23) lim
k→∞

∥xk − yikk ∥ = 0,

and

(3.24) lim
k→∞

∥yikk − zk∥ = 0.

These imply that

(3.25) lim
k→∞

∥xk − zk∥ = 0.

Then, by the definition of zk, we have

(3.26) lim
k→∞

∥xk − zik∥ = 0,

for each i = 1, 2, . . . , N . Moreover, by Lemma 2.8 (ii), for each i = 1, 2, . . . , N , we
get that

∥zik − q∥2 ≤ ∥xk − q∥2 − (1− 2ρikL1)∥xk − yik∥2 − (1− 2ρikL2)∥yik − zik∥2,

for each k ∈ N ∪ {0}. It follows that, for each i = 1, 2, . . . , N , we have

(1− 2ρikL1)∥xk − yik∥2 + (1− 2ρikL2)∥yik − zik∥2 ≤ ∥xk − q∥2 − ∥zik − q∥2

= ∥xk − zik∥(∥xk − q∥+ ∥zik − q∥),
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for each k ∈ N ∪ {0}. This together with (3.26) implies that

(3.27) lim
k→∞

∥xk − yik∥ = 0,

and

(3.28) lim
k→∞

∥yik − zik∥ = 0,

for each i = 1, 2, . . . , N . From the definition of ujk, for each j = 1, 2, . . . ,M , we see
that

(1− βk)∥Tjzk − zk∥ = ∥ujk − zk − βk(t
j
k − zk)∥

≤ ∥ujk − zk∥+ βk∥tjk − zk∥
≤ ∥ujk − xk∥+ βk∥tjk − xk∥+ (1 + βk)∥xk − zk∥
= ∥ujk − xk∥+ βk∥αkxk + (1− αk)Tjxk − xk∥

+(1 + βk)∥xk − zk∥
= ∥ujk − xk∥+ βk(1− αk)∥xk − Tjxk∥+ (1 + βk)∥xk − zk∥,

for each k ∈ N ∪ {0}. Then, by using the assumption on {αk} together with (3.22)
and (3.25), we get

(3.29) lim
k→∞

∥Tjzk − zk∥ = 0,

for each j = 1, 2, . . . ,M .

Next, since {xk} is a bounded sequence, we can find a subsequence {xkm} of {xk}
and p ∈ H such that xkm ⇀ p, as m → ∞. We now show that p ∈ S.

We know that, by using (3.25), the subsequence {zkm} of {zk} also weakly con-
verges to p. This together with (3.29), by the demiclosedness at 0 of I −Tj , implies
that

Tjp = p,

for each j = 1, 2, . . . ,M .
On the other hand, by using (3.27), for each i ∈ {1, 2, . . . , N}, we get that

yikm ⇀ p, as m → ∞. Thus, by Lemma 2.8 (i), for each i ∈ {1, 2, . . . , N}, we have

ρikm [fi(xkm , y)− fi(xkm , y
i
km)] ≥ ⟨yikm − xkm , y

i
km − y⟩, ∀y ∈ C.

This implies that, for each i = 1, 2, . . . , N , we get

fi(xkm , y)− fi(xkm , y
i
km) ≥ − 1

ρikm
∥yikm − xkm∥∥yikm − y∥, ∀y ∈ C.

It follows from (3.27) and the weak continuity of each fi (i ∈ {1, 2, . . . , N}) that

fi(p, y) ≥ 0, ∀y ∈ C,

for each i = 1, 2, . . . , N . Then, we had shown that p ∈ S, and so ωw(xk) ⊂ S.
The rest of the proof is similar to the arguments in the proof of Theorem 3.2, and

it leads to the conclusion that the sequence {xk} converges strongly to PS(x0). □
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Remark 3.4. We observe that if αk = 1, for each k ∈ N ∪ {0}, then the PHEM
Algorithm reduces to the PHMEM Algorithm, which was presented in [20]. We
point out that, by Remark 2.2, we know that the class of quasi-nonexpansive map-
ping is larger than the class of nonexpansive mapping. The PHEM Algorithm can
solve quasi-nonexpansive mappings meanwhile the PHMEM Algorithm may not be
applied in this situation.

The next result is an improvement version of Algorithm (1.7) in the reference
[15]. Notice that, in this paper, we consider the class of quasi-nonexpansive map-
ping while in [15] the authors considerd the class of symmetric generalized hybrid
mapping.

Corollary 3.5. Let T be a quasi-nonexpansive self-mapping on C with I−T demi-
closed at 0 and let f be a bifunction satisfies the assumptions (A1)− (A4). Suppose
that the solution set S = EP (f, C) ∩ Fix(T ) is nonempty. Pick x0 ∈ C, choose
parameters {ρk} with 0 < inf ρk ≤ sup ρk < min{ 1

2L1
, 1
2L2

}, {αk} ⊂ [0, 1] such that

limk→∞ αk = 1, {βk} ⊂ [0, 1) with 0 ≤ inf βk ≤ supβk < 1, and the sequences {xk},
{yk}, {zk}, {tk}, {uk} are defined by

(3.30)



yk = argmin{ρkf(xk, y) + 1
2∥y − xk∥2 : y ∈ C},

zk = argmin{ρkf(yk, y) + 1
2∥y − xk∥2 : y ∈ C},

tk = αkxk + (1− αk)Txk,

uk = βktk + (1− βk)Tzk,

Ck = {x ∈ C : ∥x− uk∥ ≤ ∥x− xk∥},
Qk = {x ∈ C : ⟨x0 − xk, x− xk⟩ ≤ 0},
xk+1 = PCk∩Qk

(x0).

Then, the sequence {xk} converges strongly to PS(x0).

From now on, the algorithm (3.30) will be called Hybrid Extragradient Method
(HEM).

4. Numerical experiments

In this section, we consider some examples and numerical results to support
the main theorems. Additionally, we will compare the two introduced algorithms,
CHEM and PHEM, with the PHMEM Algorithm, which was presented in [20].
In the case M = N = 1, we will compare the HEM Algorithm (3.30) with the
algorithm that was presented in [19]. The numerical experiments are written in
Matlab R2015b and performed on a Desktop with AMD Dual Core R3-2200U CPU
@ 2.50GHz and RAM 4.00 GB.

Example 4.1. Consider a real Hilbert space H = Rn, and C = H. The bifunctions
fi, i = 1, 2, . . . , N , which are given by the form of Nash-Cournot equilibrium model
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[42], are defined by

fi(x, y) = ⟨Pix+Qiy, y − x⟩, ∀x, y ∈ Rn, i = 1, 2, . . . , N,

where Pi ∈ Rn×n, and Qi ∈ Rn×n are symmetric positive semidefinite matrices such
that Pi−Qi are also positive semidefinite matrices. We know that the bifunctions fi,
i = 1, 2, . . . , N , satisfy conditions (A1)− (A4), see [42]. Notice that the bifunctions
fi, i = 1, 2, . . . , N , are Lipshitz-type continuous with constants Li

1 = Li
2 = 1

2∥Pi −
Qi∥. Choose L1 = L2 = max{Li

1 : i = 1, 2, . . . , N}. Then, the bifunctions fi,
i = 1, 2, . . . , N , are Lipshitz-type continuous with constants L1 and L2. On the
other hand, for the boxes Dj , j = 1, 2, . . . ,M , which are given by

Dj = {x ∈ Rn : −dj ≤ xl ≤ dj , ∀l = 1, 2, . . . , n}, j = 1, 2, . . . ,M,

where dj are the positive real numbers, we will consider the nonexpansive mappings
Tj , j = 1, 2, . . . ,M , which are defined by

Tj = PDj , j = 1, 2, . . . ,M.

The numerical experiment is considered under the following setting: for each
i = 1, 2, . . . , N , the matrices Pi, and Qi are randomly chosen from the interval
[−5, 5] such that they satisfy the above required properties. Besides, for each j =
1, 2, . . . ,M , the real numbers dj are randomly chosen from the interval (0, 3). We
will concern with these parameters: ρk = 0.49

L1
, for the CHEM Algorithm, and

ρik = 0.49
L1

, i = 1, 2, . . . , N , for the PHEM Algorithm, when n = 10, N = 10, and
M = 20. The following five cases of the parameters αk and βk are considered:

Case 1. αk = 1− 1

ln(k + 3)
, βk =

1

k + 2
.

Case 2. αk = 1− 1

ln(k + 3)
, βk = 0.5 +

1

k + 3
.

Case 3. αk = 1, βk =
1

k + 2
.

Case 4. αk = 1, βk = 0.5 +
1

k + 3
.

Case 5. αk = 1, βk = 0.

The function quadprog in Matlab Optimization Toolbox was used to solve vectors
yk, zk, for the CHEM Algorithm; yik, z

i
k, i = 1, 2, . . . , N , for the PHEM Algorithm.

Note that the solution set S is nonempty because of 0 ∈ S. The PHMEM Algorithm
was tested by using the starting point x0 as (1, 1, . . . , 1)T ∈ Rn, and the stopping
criteria ∥xk+1 − xk∥ < 10−4 for approximating solution x∗ ∈ S. After that, the
CHEM and PHEM algorithms were tested along with the PHMEM Algorithm by
using the starting point x0 as (1, 1, . . . , 1)T ∈ Rn, and the stopping criteria ∥xk −
x∗∥ < 10−4. Notice that the metric projection of a point x0 onto the set Ck ∩ Qk

was computed by using the explicit formula as in [17].
Table 1 shows that the number of iterations of the PHEM Algorithm in case 1

is better than other all considered cases. Meanwhile, the CPU times of the CHEM
Algorithm in case 3 is better than other all considered cases. We would like to
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CPU times (sec) Number of iterations
Cases CHEM PHEM PHMEM CHEM PHEM PHMEM

1 147.8594 218.0156 216.6094 13255 5824 6154
2 471.0000 777.5313 818.4531 43265 21811 21577
3 108.0156 216.6094 216.6094 13631 6154 6154
4 343.0000 818.4531 818.4531 42921 21577 21577
5 108.7500 217.9375 - 13481 5925 -

Table 1. The numerical results for five different cases parameters
αk and βk

remind that we solve yik, z
i
k, i = 1, 2, . . . , N , by using N bifunctions and compute

tjk, u
j
k, j = 1, 2, . . . ,M , by using M mappings for the PHEM Algorithm. On the

other hand, we solve only yk, zk, by using a bifunction and compute only tk, uk, by
using a mapping for the CHEM Algorithm. This should be a reason for the results
that the number of iterations of the PHEM Algorithm is better than the CHEM
Algorithm, while the CPU times of the CHEM Algorithm is better than the PHEM
Algorithm in all considered cases.

Example 4.2. In the case M = N = 1, we will compare the HEM Algorithm
(3.30) with the following algorithm (4.1), which was presented by Hieu [19], when
T is a quasi-nonexpansive mapping and f is a pseudomonotone and Lipschitz-type
continuous bifunction with positive constants L1, L2:

(4.1)


x0 ∈ H,

yk = argmin{ρkf(xk, y) + 1
2∥xk − y∥2 : y ∈ C},

zk = argmin{ρkf(yk, y) + 1
2∥xk − y∥2 : y ∈ C},

xk+1 = (1− αk − βk)zk + βkTzk,

where {ρk} ⊂ [ρ, ρ] with 0 < ρ ≤ ρ < min{ 1
2L1

, 1
2L2

}, {αk} ⊂ [0, 1] such that

limk→∞ αk = 0,
∑∞

k=1 αk = +∞, and {βk} ⊂ [β, β] ⊂ (0, 1), for some β > β > 0.
Hieu [19] proved that the sequence {xk} generated by (4.1) converges strongly to
an element in the solution set S = EP (f, C)∩Fix(T ). In this paper, the algorithm
(4.1) will be called NH Algorithm.

Consider a real Hilbert space H = Rn, and C = H. Recall that the quadratic
function h : Rn → R is defined by

h(x) =
1

2
xTQx+ bTx,

where b ∈ Rn, Q ∈ Rn×n is a symmetric positive semidefinite matrix. Here, we will
focus on the case (In−QQ+)b = 0, when In is the identity matrix, and Q+ ∈ Rn×n

is a pseudoinverse matrix of Q. We consider the bifunction f , which is defined by

f(x, y) = h(y)− h(x), ∀x, y ∈ Rn.

It is clear that
f(x, y) + f(y, x) = 0, ∀x, y ∈ Rn.
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Thus, the bifunction f is monotone, and so is pseudomonotone. Moreover, it is easy
to see that

f(x, y) + f(y, z)− f(x, z) ≥ −∥x− y∥2 − ∥y − z∥2, ∀x, y, z ∈ Rn.

Then, the bifunction f is Lipschitz-type continuous with constants L1 = L2 = 1.
On the other hand, for a convex function g : Rn → R such that there is x ∈ Rn

satisfied g(x) ≤ 0, we consider a mapping T : Rn → Rn, which is defined by

Tx =

{
x− g(x)

∥zx∥2 zx, if g(x) > 0,

x, otherwise,

where zx ∈ ∂g(x). Then we know that T is a quasi-nonexpansive mapping with
I − T demiclosed at 0, and Fix(T ) = {x ∈ Rn : g(x) ≤ 0}, see [4, 22].

The numerical experiment is considered under the following setting: Q1 ∈ Rn×n

is an orthogonal matrix and its entries are randomly chosen from the interval (0, 5).
The matrix Q2 = (qij) ∈ Rn×n is defined by qij = a, if i = j = 1; qij = 0,
otherwise, where the real number a is randomly chosen from the interval (4, 5).
The positive semidefinite matrix Q is constructed by Q = Q1Q2Q

T
1 . Besides, we

consider g(x) = max{0, ⟨c, x⟩ + d}, where the real number d is randomly chosen
from the interval (−2,−3), and the vector c ∈ Rn is randomly chosen from the
interval (0, 2). Note that the solution set S is nonempty because of −Q+b ∈ S. We
will concern with these parameters: ρk = 1

5 , αk = 1 − 1
k+2 , and βk = 0.5 + 1

k+3 ,
when n = 10. The function quadprog in Matlab Optimization Toolbox was used
to solve vectors yk, and zk. Again, the metric projection of a point x0 onto the
set Ck ∩ Qk was computed by using the explicit formula as in [17]. The HEM
Algorithm is compared with the NH Algorithm by using the starting point x0 as
(0, 0, . . . , 0)T ∈ Rn, and the stopping criteria ∥xk+1 − xk∥ < 10−6. The following
results were presented as averages calculated from 10 tested problems.

Average CPU Times (sec) Average Iterations
HEM NH HEM NH

0.2953 2.1360 91.8 805.3

Table 2. The numerical results for N = 1 and M = 1

Table 2 shows that the HEM Algorithm yields better both the CPU times and the
number of iterations than the NH Algorithm. We notice that, in this experiment,
the starting point x0 := 0 ∈ Rn means that the solution PS(0) has the minimum
norm over the set S. Furthermore, we observe that, if the starting point x0 ∈ S,
the HEM Algorithm will be stopped at the iteration x1, but the NH Algorithm may
not.

5. Conclusion

We present two algorithms for finding the closest point to the intersection of
the set of fixed points of a finite family for quasi-nonexpansive mappings and the
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solution set of equilibrium problems of a finite family for pseudomonotone bifunc-
tions in a real Hilbert space. We consider both extragradient and hybrid methods
together with Ishikawa iterative method for introducing sequence which is strongly
convergent to a solution of the considered problems. Some numerical experiments
are performed to illustrate the convergence of introduced algorithms and compare
them with some appeared algorithms.
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