
LNALNA ISSN 2188-8167 
2019



518 A. J. ZASLAVSKI

and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1 there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point will be denoted by (1− t)x⊕ ty. We will say that X, or more precisely
(X, ρ,M), is a hyperbolic space if

ρ
(1
2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z
)
≤ 1

2
ρ(y, z)

for all x, y and z in X. An equivalent requirement is that

ρ
(1
2
x⊕ 1

2
y,

1

2
w ⊕ 1

2
z
)
≤ 1

2
(ρ(x,w) + ρ(y, z))

for all x, y, z and w in X. A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x and
y in K.

It is clear that all normed linear spaces are hyperbolic. A discussion of more
examples of hyperbolic spaces and in particular of the Hilbert ball can be found,
for example, in [21, 22].

2. The main result

Let (X, ρ,M) be a complete hyperbolic space and let K be a nonempty closed
ρ-convex subset of X.

For each x ∈ K and each r > 0 set

B(x, r) = {y ∈ K : ρ(x, y) ≤ r}.

Denote by A the set of all operators A : K → K such that

(2.1) ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K.

Fix some θ ∈ K.
We equip the set A with the uniformity determined by the base

(2.2) U(n) = {(A,B) ∈ A×A : ρ(Ax,Bx) ≤ n−1 for all x ∈ B(θ, n)},

where n is a natural number. Clearly the uniform space A is metrizable and com-
plete.

The following theorem is our main result.

Theorem 2.1. Let r̄ > 0, M̄ > 0 and ϵ ∈ (0, 1). Then there exists an open
everywhere dense subset F ⊂ A such that for each B ∈ F there exist xB ∈ K, a
natural number nB, δB ∈ (0, r̄) and an open neighborhood U of B in A such that
the following assertion holds.

Let C ∈ U , n1 be a natural number and let a sequence {xi}∞i=0 ⊂ K be such that

ρ(x0, θ) ≤ M̄,

ρ(xi+1, C(xi)) ≤ r̄ for all integers i ≥ 0

and

ρ(xi+1, C(xi)) ≤ δB for all integers i ≥ n1.
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Then

ρ(xi, xB) ≤ ϵ for all integers i ≥ n1 + nB.

Corollary 2.2. Let r̄ > 0, M̄ > 0 and ϵ ∈ (0, 1) and let an open everywhere dense
subset F ⊂ A be as guaranteed by Theorem 2.1. Assume that B ∈ F , a point
xB ∈ K and an open neighborhood U of B in A are as as guaranteed by Theorem
2.1.

Let C ∈ U and a sequence {xi}∞i=0 be such that

ρ(x0, θ) ≤ M̄,

ρ(xi+1, C(xi)) ≤ r̄ for all integers i ≥ 0

and

lim
i→∞

ρ(xi+1, C(xi)) = 0.

Then

ρ(xi, xB) ≤ ϵ for all sufficiently large natural numbers i.

3. Proof of Theorem 2.1

Let A ∈ A and γ ∈ (0, 1). Define

(3.1) Aγ(x) = (1− γ)A(x)⊕ γθ, x ∈ K.

Clearly, Aγ is a self-mapping of K. By (2.1) and (3.1), for each x, y ∈ K,

ρ(Aγ(x), Aγ(y)) = ρ((1− γ)A(x)⊕ γθ, (1− γ)A(y)⊕ γθ)

≤ (1− γ)ρ(A(x), A(y)) ≤ (1− γ)ρ(x, y).(3.2)

In view of (3.2) and the Banach fixed point theorem, there exists a unique point
x(A, γ) ∈ K such that

(3.3) Aγ(x(A, γ)) = x(A, γ).

Choose a positive number M(A, γ) such that

(3.4) M(A, γ) > 1 + M̄ + ρ(θ, x(A, γ)) + (2r̄ + 1)γ−1.

Clearly, if x ∈ B(θ, M̄), then it follows from (3.4) that

ρ(x, x(A, γ)) ≤ ρ(x, θ) + ρ(θ, x(A, γ))

≤ M̄ + ρ(θ, x(A, γ)) < M(A, γ).

This implies that

(3.5) B(θ, M̄) ⊂ B(x(A, γ),M(A, γ)).

Assume that

(3.6) x ∈ B(x(A, γ),M(A, γ)),

(3.7) y ∈ K, ρ(y,Aγ(x)) ≤ 2r̄.

By (3.2), (3.3), (3.4), (3.6) and (3.7),

ρ(y, x(A, γ)) ≤ ρ(y,Aγ(x)) + ρ(Aγ(x), x(A, γ))
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≤ 2r̄ + ρ(Aγ(x), Aγ(x(A, γ)))

≤ 2r̄ + (1− γ)ρ(x, x(A, γ))

≤ 2r̄ + (1− γ)M(A, γ)

= M(A, γ) + 2r̄ − γM(A, γ)

< M(A, γ).

Thus we have shown that

{y ∈ K : there is x ∈ B(x(A, γ),M(A, γ)) such that ρ(y,Aγ(x)) ≤ 2r̄}

(3.8) ⊂ B(x(A, γ),M(A, γ)).

Choose a number δ(A, γ) ∈ (0, r̄) such that

(3.9) δ(A, γ) < 4−1γϵ.

Denote by U(A, γ) an open neighborhood of Aγ in A such that

U(A, γ) ⊂ {C ∈ A : ρ(C(z), Aγ(z)) ≤ δ(A, γ)

(3.10) for all z ∈ B(x(A, γ),M(A, γ))}.

By (2.1) and (3.1), for each z ∈ K,

ρ(A(z), Aγ(z)) = ρ(A(z), (1− γ)A(z)⊕ γθ)

≤ γρ(θ,A(z)) ≤ γ(ρ(θ,A(θ)) + ρ(A(θ), A(z)))

≤ γ(ρ(θ,A(θ)) + ρ(θ, z)).

This implies that for each neighborhood V of A in A there exists γV ∈ (0, 1) such
that for each γ ∈ (0, γV ), Aγ ∈ V . Therefore

{Aγ : A ∈ A, γ ∈ (0, 1)}

is an everywhere dense subset of A.
Set

(3.11) F = ∪{U(A, γ) : A ∈ A, γ ∈ (0, 1)}.

Clearly, F is an open everywhere dense subset of A.
Let

(3.12) B ∈ F .

By (3.11) and (3.12), there exist A ∈ A and γ ∈ (0, 1) such that

(3.13) B ∈ U(A, γ).

Set

(3.14) xB = x(A, γ),

(3.15) δB = δ(A, γ)

and choose a natural number nB such that

(3.16) nB > 2M(A, γ)(γϵ)−1.
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Assume that

(3.17) C ∈ U(A, γ),
n1 is a natural number and that a sequence {xi}∞i=0 ⊂ K satisfies

(3.18) ρ(x0, θ) ≤ M̄,

(3.19) ρ(xi+1, C(xi)) ≤ r̄ for all integers i ≥ 0

and

(3.20) ρ(xi+1, C(xi)) ≤ δB for all integers i ≥ n1.

In order to complete the proof it is sufficient to show that

ρ(xi, xB) ≤ ϵ for all integers i ≥ n1 + nB.

First we show that

(3.21) ρ(xi, x(A, γ)) ≤ M(A, γ)

for all integers i ≥ 0. In view of (3.5) and (3.18), inequality (3.21) holds for i = 0.
Assume that an integer j ≥ 0 and (3.21) holds for i = j. Thus

(3.22) ρ(xj , x(A, γ)) ≤ M(A, γ).

By (3.10), (3.17) and (3.22),

(3.23) ρ(C(xj), Aγ(xj)) ≤ δ(A, γ) < r̄.

It follows from (3.2), (3.3), (3.4), (3.19), (3.22) and (3.23) that

ρ(xj+1, x(A, γ)) ≤ ρ(xj+1, C(xj)) + ρ(C(xj), Aγ(xj)) + ρ(Aγ(xj), Aγx(A, γ))

≤ r̄ + r̄ + (1− γ)ρ(xj , x(A, γ))

≤ 2r̄ + (1− γ)M(A, γ) ≤ M(A, γ).

Thus

ρ(xj+1, x(A, γ)) ≤ M(A, γ)

and (3.21) holds for i = j + 1. Therefore we conclude that (3.21) holds for all
integers i ≥ 0.

We show that there exists an integer i ∈ [n1, n1 + nB] such that

ρ(xi, x(A, γ)) ≤ ϵ.

Assume the contrary. Then

(3.24) ρ(xi, x(A, γ)) > ϵ

for all i = n1, . . . , n1 + nB. Assume that an integer i satisfies

n1 ≤ i ≤ n1 + nB − 1.

Then (3.24) holds. By (3.2), (3.3) and (3.20),

ρ(xi+1, x(A, γ)) ≤ ρ(xi+1, C(xi)) + ρ(C(xi), Aγ(xi)) + ρ(Aγ(xi), x(A, γ))

≤ δB + ρ(C(xi), Aγ(xi)) + ρ(Aγ(xi), Aγ(x(A, γ)))

≤ δB + ρ(C(xi), Aγ(xi)) + (1− γ)ρ(xi, x(A, γ)).(3.25)
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It follows from (3.10), (3.15), (3.17) and (3.21) that

(3.26) ρ(C(xi), Aγ(xi)) ≤ δ(A, γ) = δB.

In view of (3.25) and (3.26),

(3.27) ρ(xi+1, x(A, γ)) ≤ 2δB + (1− γ)ρ(xi, x(A, γ)).

By (3.9), (3.15), (3.24) and (3.27),

ρ(xi, x(A, γ))− ρ(xi+1, x(A, γ)) ≥ γρ(xi, x(A, γ))− 2δB

> γϵ− 2δ(A, γ) > γϵ/2.

Thus

ρ(xi, x(A, γ))− ρ(xi+1, x(A, γ)) > γϵ/2

for every integer i satisfying n1 ≤ i ≤ n1+nB−1. Together with (3.21) this implies
that

M(A, γ) ≥ ρ(xn1 , x(A, γ))− ρ(xn1+nB , x(A, γ))

=

n1+nB−1∑
i=n1

(ρ(xi, x(A, γ))− ρ(xi+1, x(A, γ)))

> nBγϵ/2

and

nB < 2(γϵ)−1M(A, γ).

This contradicts (3.16). The contradiction we have reached proves that there exists
an integer

(3.28) j ∈ [n1, n1 + nB]

such that

(3.29) ρ(xj , x(A, γ)) ≤ ϵ.

Assume that an integer i satisfies

(3.30) i ≥ n1, ρ(xi, x(A, γ)) ≤ ϵ.

We show that

ρ(xi+1, x(A, γ)) ≤ ϵ.

By (3.2), (3.3), (3.20) and (3.30),

ρ(xi+1, x(A, γ)) ≤ ρ(xi+1, C(xi)) + ρ(C(xi), Aγ(xi)) + ρ(Aγ(xi), Aγ(x(A, γ)))

≤ δB + ρ(C(xi), Aγ(xi)) + (1− γ)ρ(xi, x(A, γ)).(3.31)

In view of (3.10), (3.17) and (3.21),

(3.32) ρ(C(xi), Aγ(xi)) ≤ δ(A, γ).

There are two cases:

(3.33) ρ(xi, x(A, γ)) ≤ ϵ/2;

(3.34) ρ(xi, x(A, γ)) > ϵ/2.
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Assume that (3.33) holds. By (3.9), (3.15), (3.31), (3.32) and (3.33),

ρ(xi+1, x(A, γ)) ≤ 2δ(A, γ) + ρ(xi, x(A, γ)) ≤ 2δ(A, γ) + ϵ/2 < ϵ.

Assume that (3.34) holds. It follows from (3.9), (3.15), (3.30), (3.31) and (3.32)
that

ρ(xi+1, x(A, γ)) ≤ 2δ(A, γ) + (1− γ)ϵ < ϵ.

Thus in the both cases

(3.35) ρ(xi+1, x(A, γ)) ≤ ϵ.

In view of (3.28) and (3.29), we have shown by induction that for all integers
i ≥ j ∈ [n1, n1 + nB], inequality (3.35) holds. This completes the proof of Theorem
2.1.
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