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STRONGLY QUASINONEXPANSIVE MAPPINGS, III

KOJI AOYAMA AND FUMIAKI KOHSAKA

ABSTRACT. This paper is devoted to the study of strongly quasinonexpansive
mappings in a metric-like space. In particular, we give some characterizations of
such mappings and show that the class of strongly quasinonexpansive mappings
is closed under composition. Then we also study strongly quasinonexpansive
mappings with respect to the Bregman distance in a Banach space.

1. INTRODUCTION

In 1974, Bruck and Reich [20] introduced a strongly nonexpansive mapping in
a Banach space to study firmly nonexpansive mappings in the sense of Bruck [21].
They showed that the composition of strongly nonexpansive mappings is strongly
nonexpansive, and that the fixed point set of the composition of strongly nonex-
pansive mappings which have a common fixed point is equal to the common fixed
point set of the mappings.

After that, various kinds of strongly nonexpansive mappings were observed in
several papers. For example, Bruck [19] introduced a strongly quasinonexpansive
mapping in a metric space; Reich [26] studied a strongly nonexpansive mapping
with respect to the set of asymptotic fixed points of the mapping in a Banach
space; the authors [13-15] dealt with some properties and applications of a mapping
of type (sr) which is a strongly-nonexpansive-type mapping with respect to the
fixed point set and the nonnegative real-valued function ¢ on E x E defined by
o(x,y) = ||z||* — 2 (x, Jy) + ||y||* for 2,y € E, where E is a smooth Banach space
and J is the normalized duality mapping on FE; see also [3,10-12,25]. Moreover,
some strong nonexpansiveness for a sequence of mappings and their applications to
fixed point problems have also been investigated; see [2,4-9,16,17] for more details.

Recently, a strongly quasinonexpansive mapping in an abstract space has been
introduced and studied in [18]. Such a mapping is a generalization of mappings of
type (sr) in the sense of [13-15] in a Banach space and strongly quasinonexpansive
mappings in the sense of [3] in a metric space. However, the mapping is different
from a strongly nonexpansive mapping due to Reich [26].

In this paper, in order to unify these mappings as above, we first devote the
study of a strongly quasinonexpansive mapping in a metric-like space. In particular,
we give some characterizations of such mappings, and moreover, we show that the
composition of strongly quasinonexpansive mappings is strongly quasinonexpansive.
Then, using these results, we obtain characterizations and properties of strongly
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quasinonexpansive mappings with respect to the Bregman distance and the set of
asymptotic fixed points of the mappings in a Banach space.

2. PRELIMINARIES

Throughout this paper, R denotes the set of real numbers, R the set of nonneg-
ative real numbers, N the set of positive integers, E a real Banach space, E* the
dual of E,| || -]| the norms of E or E*, and (z,x*) the value of 2* € E* at x € E.
Strong convergence of a sequence {z,} in F to x € E is denoted by z,, — = and
weak convergence by x, — .

Let f: E — R be a function. We say that f is convez if f(Az + (1 — N)y) <
M (@)+ (1 =N)f(y) for all X € [0,1] and z,y € E; [ is strictly convez if f(Az+ (1—
Ny) < Af(z) 4+ (1= X)f(y) for all X € (0,1) and z,y € E with z # y; f is Gdteauz
differentiable at © € E if there exists £* € E* such that

2.1) tim HELD 2T ) o)
for all y € E. In this case, £* is called the Gateaux differential of f at x and denoted
by Vf(x). We say that f is Gateaux differentiable if f is Gateaux differentiable at
all x € E; f is bounded on bounded sets if sup{|f(z)|: z € C'} < oo for all bounded
subsets C of E.

We know the following; see [22, Propositions 1.1.7, 1.1.10, and 1.1.11].

Lemma 2.1. Let E be a Banach space, f: E — R a continuous, convezx, and
Gateaux differentiable function, and D: E x E — R a function defined by

D(y,z) = fy) = f(x) = (y =z, Vf(2))
forall z,y € E. Then D(y,x) > 0 and

(22) D(xz,z) = D(z,y) + D(y,2z) + (x =y, Vf(y) = Vf(2))
for all x,y,z € E. Moreover, the following hold:

o If f is strictly convex, then
(2.3) D(z,y)=0=z=y

forallx,y € E;
o if f is bounded on bounded sets, then {V f(z): x € C} is bounded in E* for
all bounded subsets C' of E.

We say that the function D in Lemma 2.1 is the Bregman distance [22,23] corre-
sponding to f.
Using Lemma 2.1, we obtain the following:

Lemma 2.2. Let F be a Banach space, f: E — R a continuous, conver, and
Gateauz differentiable function, {x,} a bounded sequence in E, and z a point in
E. Suppose that f is bounded on bounded sets. Then there exists M > 0 such that
D(z,2,) < M for all n € N, where D is the Bregman distance corresponding to f.
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Proof. Suppose that for any m € N there exists 7(m) € N such that D(z,z,(y,)) >
m. Since {x,} is bounded, it follows that {z,(,): m € N} is bounded. Hence
{f(xT(m)): m € N} and {Vf(xT(m)): m € N} are bounded by assumption and by
Lemma 2.1, respectively. On the other hand, it follows from the definition of D
that

for all m € N, which is a contradiction. This completes the proof. O

The following theorem is a direct consequence of [1, Theorem 1.8].

Theorem 2.3. Let E be a Banach space and f: E — R a Gateaux differentiable
function. Then

[f(2) = f()] < sup {||[VF Az + (1= Ny) || : A€ [0,1]} [l —y]|
forallx,y € E.

Using Lemma 2.1 and Theorem 2.3, we obtain the following:

Lemma 2.4. Let E be a Banach space, C' a nonempty bounded subset of E, and
f: E — R a continuous, convex, and Gateaux differentiable function. Suppose that
f is bounded on bounded sets. Then f is uniformly continuous on C.

Proof. Since C' is bounded, there exists r > 0 such that C' C B,, where B, = {y €
E: |ly|| < r}. Then B, is bounded and convex. Let {x,} and {y,} be sequences in C
such that ||z, — yn|| = 0. It is enough to show that | f(z,) — f(yn)| — 0. Lemma 2.1
implies that {V f(z): z € B, } is bounded. Thus it follows from Theorem 2.3 that

|f(zn) — f(yn)| < sup {va()\xn + (1 — /\)yn) H t A€o, 1}} |Zn — ynll
<sup{[|[Vf(2)|: 2 € By} [|[wn —ynl = 0

as n — 0o. O

Let f: E — R be a function and C' a nonempty convex subset of E. We say that
f is uniformly convexr on C [28] if for any € > 0 there exists § > 0 such that

FOz+ 1 =Ny) <Af(2)+ 1= Nf(y) — AL =)o

for all X € [0,1] and x,y € C with ||z —y|| > e. It is clear that if f is uniformly
convex on C', then f is convex on C. We say that f is uniformly convex on bounded
sets if f is uniformly convex on all bounded convex subsets of E.

The following lemma is a direct consequence of [24, Lemma 3.1].

Lemma 2.5. Let E be a Banach space and f: E — R a continuous Gateaux dif-
ferentiable function. Suppose that f is uniformly conver on bounded sets. If both
{zn} and {yn} are bounded sequences in E and D(xy,y,) — 0, then ||xy, — yn| — 0,
where D is the Bregman distance corresponding to f.
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Let f: E — R be a function and Sg the unit sphere of FE, that is, Sp = {z €
E: ||z|| = 1}. We say that f is Fréchet differentiable at x € E if there exists
£* € E* such that the limit (2.1) is attained uniformly for y € Sg. It is clear that
f is Fréchet differentiable at x € E, then f is Gateaux differential there. Let U
be a nonempty open subset of . We say that a Gateaux differential function f is
uniformly Fréchet differentiable on U if the limit

_fle+ty) — fz)
tim HEL =T _ () 9 f(a)
attained uniformly for z € U and y € Sg.
Using [27, Proposition 2.1], we obtain the following:

Lemma 2.6. Let E be a reflexive Banach space, U a nonempty bounded open con-
vex subset of E, and f: E — R a continuous, convex, and Gateauz differentiable
function. Suppose that f is bounded on bounded sets and uniformly Fréchet differ-
entiable on U. Then V f is uniformly norm-to-norm continuous on U.

Let f: E — R be a function. We say that f is uniformly Fréchet differentiable
on bounded sets if f is uniformly Fréchet differentiable on all bounded open subsets
of E.

Using lemmas above, we obtain the following:

Lemma 2.7. Let E be a Banach space, {x,} and {y,} bounded sequences in E, and
f: E — R a continuous, convex, and Gateaux differentiable function. Suppose that
Tn—Yn — 0 and f is bounded on bounded sets. Then D(yn,x,) — 0, where D is the
Bregman distance corresponding to f. Moreover, suppose that E is reflexive and f
is uniformly Fréchet differentiable on bounded sets. Then D(z,x,) — D(z,yn) — 0
forall z € E.

Proof. Lemmas 2.1 and 2.4 show that
D(yn, xn) < [f(yn) = f(zn)| + lyn — 2n [ IV f(20)]] = 0

as n — oo. Moreover, let z € E and suppose that FE is reflexive and f is
uniformly Fréchet differentiable on bounded sets. Then Lemma 2.6 implies that
|V f(yn) — Vf(xy)|| = 0. Therefore it follows from (2.2) that

|D(z,2n) = D(2,yn)| < D(yn, zn) + 12 = ynll [V (yn) = Vf(@n)]| =0

as n — o0. O
Using [18, Lemma 3.2], we obtain the following:
Lemma 2.8. Let K be a nonempty set and both f and g functions of K into R.

Then the following are equivalent:

(1) For any € > 0 there exists § > 0 such that x € K and g(z) < § imply
fx) <e

(2) f(zyn) — 0 whenever {x,} is a sequence in K and g(z,) — 0.

Moreover, suppose that f and g are bounded above. Then (1) or (2) is equivalent to
the following:
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(3) there exists a nondecreasing bounded function ~y: [0,a] — Ry such that
v(f(z)) < g(x) for all x € K and ~(t) > 0 for all t € (0,qa], where
a=sup{f(z): z € K}.

Proof. 1t is not hard to verify that (1) and (2) are equivalent. The equivalence
between (1) and (3) follows from [18, Lemma 3.2]. O

Let C' be a nonempty subset of £ and T: C — E a mapping. A point p € E is
said to be an asymptotic fixed point of T [26] if there exists a sequence {z,} in C
such that ||, — Tzy| — 0 and x,, — p. The set of asymptotic fixed points of T is
denoted by F(T). It is clear that F(T) C F(T'), where F(T) is the fixed point set of
T.

Remark 2.9. In [26], the notion of an asymptotic fixed point of a mapping 7: C' —
FE is studied when C is a convex subset of a Banach space F.

3. STRONGLY QUASINONEXPANSIVE MAPPINGS IN A METRIC-LIKE SPACE

In this section, we introduce a quasinonexpansive mapping and a strongly quasi-
nonexpansive mapping in a metric-like space. Then we give some characterizations
of a strongly quasinonexpansive mapping, and moreover, we show that the composi-
tion of two strongly quasinonexpansive mappings is also strongly quasinonexpansive.

Throughout this section, X denotes a nonempty set, o a function of X x X into
R, and B(z, M) a subset of X defined by

B(z,M)={zx € X:0(z,x) < M}

for z € X and M > 0.
We deal with the following three conditions: We say that the pair (X, o) satisfies
the condition (S) if
r#y<o(zy >0
for all z,y € X; (X, o) satisfies the condition (B) if

sup{o(z,y): x,y € B(z, M)} < 0o

for all z € X and M > 0; (X, o) satisfies the condition (T) if for any u € X, M > 0,
and e > 0 there exists n > 0 such that

(3.1) x,y,2 € B(u, M), o(x,y) <n, 0(y,2) <n=o(r,2) <¢

see [18] for more information about these conditions. It is clear that if (X, o) satisfies
the condition (S), then z € B(z, M) and hence B(z, M) is nonempty for all z € X
and M > 0.

Remark 3.1. Suppose that o is a metric on X, that is, (X, 0) is a metric space.
Then it is obvious that (X, o) satisfies the conditions (S), (B), and (T).

Lemma 3.2. Suppose that the pair (X, o) satisfies the condition (S). The following
are equivalent:

(1) (X, 0) satisfies the condition (T);
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(2) (20, 2n) — 0 whenever {x,}, {yn} and {z,} are sequences in B(u, M) for
some u € X and M > 0 such that o(zpn,yn) — 0 and o(yn, 2n) — 0.

Proof. Let u € X and M > 0 be given and set K = [B(u, M)]3 By virtue of the
condition (S), we see that K is nonempty. Let f and g be functions of K into Ry
defined by

f(z,y,2) = o(x,2) and g(2,y,2) = o(,y) + 0 (y, 2)
for (z,y,z) € K. Using Lemma 2.8, we can get the conclusion. O

Let C' and F be nonempty subsets of X and T: C — X a mapping. Inspired
by [3,10,13,14,18,19], we introduce the following: T is said to be quasinonerpansive
with respect to (o, F) if 0(z,Tx) < o(z,z) for all z € F and x € C; T is said to be
strongly quasinonexpansive with respect to (o, F') if for any € > 0, z € F, and M > 0
with C' N B(z, M) # () there exists § > 0 such that

r€CNB(z,M), 0(z,7) —0(2,Tx) < = o(Tx,2) < €.

In the rest of this section, the phrase “with respect to (o, F')” will often be omitted
if no possible confusion arises.

Example 3.3. Let C' be a nonempty subset of X and T": C' — X a mapping with a
fixed point. Suppose that 7' is strongly quasinonexpansive with respect to (J, F(T)),
where F(T) is the fixed point set of T. Then we know the following:

e If o is a metric on X, then T is strongly quasinonexpansive in the sense
of [3];

e if X is a smooth Banach space and o is defined by o (z,y) = ||z||*~2 (z, Jy)+
HyH2 for z,y € X, then T is of type (sr) in the sense of [9,13,14], where J
is the duality mapping of F.

A strongly quasinonexpansive mapping is quasinonexpansive as follows:

Lemma 3.4. Let C and F be nonempty subsets of X and T: C — X a strongly
quasinonezxpansive mapping with respect to (o, F'). Suppose that (X, o) satisfies the
condition (S). Then T is quasinonexpansive with respect to (o, F).

Proof. Suppose that there exist z € F and y € C such that o(z,Ty) > o(z,y).
Then it is clear that Ty # y. Set M = o(z,y) + 1 and € = o(Ty,y). We see that
M >0,e>0 y€CnB(z,M), and o(z,y) — o(z,Ty) < 0. Since T is strongly
quasinonexpansive, we have o(Ty,y) < €, which is a contradiction. Therefore, T is
quasinonexpansive with respect to (o, F'). O

To prove the next theorem, we need the following lemmas:

Lemma 3.5. Let C' and F be nonempty subsets of X, T: C — X a quasinon-
expansive mapping with respect to (o, F), z € F, and M > 0. Suppose that
K=CnNB(z,M)#0. Let f and g be functions defined by

(3.2) f@)=0(Tz,x) and g(x) = o(z,2) — o(z,Tx)

forx € K. Then f(K) C Ry, g(K) C Ry, and g is bounded. Moreover, if (X, o)
satisfies the condition (B), then f is bounded.
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Proof. By definition, f(K) C R4 is clear. Since T is quasinonexpansive, it follows
that 0 < g(z) < o(z,z) < M for all z € K. Hence g is bounded and g(K) C R..
Suppose that (X, ) satisfies the condition (B). Since Tz € B(z, M) for all z € K,
we have

sup{f(x): x € K} <sup{o(y,x): x,y € B(z, M)} < c0.
Therefore, f is bounded. O

Lemma 3.6. Let C' and F be nonempty subsets of X and T: C — X a mapping.
Suppose that (X, o) satisfies the condition (S). Then the following are equivalent:

(1) T is strongly quasinonexrpansive with respect to (o, F);

(2) T is quasinonexpansive with respect to (o, F'), and o(Txy, ) — 0 whenever
{x,} is a sequence in C N B(z, M) and o(z,1,) — o(z,Tx,) — 0 for some
z€F and M > 0 with CN B(z, M) # 0.

Proof. Let z € F and M > 0 be given. Suppose that K = C N B(z, M) # . Let
f and g be functions defined by (3.2) for x € K. Then Lemma 3.5 shows that
f(K) C Ry, and that g(K) C Ry if T is quasinonexpansive with respect to (o, F).
Therefore the conclusion follows from Lemmas 2.8 and 3.4. g

Using Lemmas 2.8, 3.5, and 3.6, we obtain the following characterizations of
strongly quasinonexpansive mappings; see [18, Theorems 4.4 and 4.6] and [3, The-
orem 3.7].

Theorem 3.7. Let C and F' be nonempty subsets of X and T: C — X a mapping.
Suppose that (X, o) satisfies the conditions (S) and (B). Then the following are
equivalent:

(1) T is strongly quasinonexrpansive with respect to (o, F);

(2) T is quasinonexpansive with respect to (o, F'), and o(Txy, ) — 0 whenever
{x,} is a sequence in C N B(z, M) and o(z,1,) — o(z,Tx,) — 0 for some
z€F and M > 0 with C N B(z, M) # 0;

(3) for any z € F and M > 0 with CNB(z, M) # 0 there exists a nondecreasing
bounded function v: [0,a] — Ry such that y(t) > 0 for allt € (0,«a] and

Y(o(Tz,z)) < o(z,2) — 0(z,Tx)
for all z € K, where K = C N B(z,M) and o = sup{o(Txz,z): v € K}.

Proof. The equivalence between (1) and (2) follows from Lemma 3.6. Thus it is
enough to show the equivalence between (1) and (3). Let z € F and M > 0 be
given. Suppose that K = C N B(z, M) # ). Let f and g be functions defined by
(3.2) for z € K. Lemma 3.5 shows that f and g are bounded functions of K into
R, . Therefore Lemma 2.8 implies the equivalence between (1) and (3). O

We know that the class of strongly quasinonexpansive mappings in a metric
space is closed under composition [3, Theorem 3.6]; see also [20, Proposition 1.1]
and [18, Theorem 4.9]. The class of strongly quasinonexpansive mappings discussed
in this section has a similar property as follows:
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Theorem 3.8. Let Ci, Cy, F1, and Fy be nonempty subsets of X, T1: C1 — X
a strongly quasinonezrpansive mapping with respect to (o, F1), and To: Co — X a
strongly quasinonexpansive mapping with respect to (o, Fy). Suppose that Fy N Fy #
0, T1(C1) C Co, and (X,0) satisfies the conditions (S) and (T). Then ToTy is

strongly quasinonezpansive with respect to (o, F1 N F3).

Proof. Let € > 0, u € F{NFy, and M > 0 be given. Suppose that C1NB(u, M) # (.
Since T and T5 are quasinonexpansive by Lemma 3.4 and v € F} N F», we see that
(3.3) o(u, ToTz) <o(u,Thz) < o(u,x) < M

for all x € C; N B(u, M). Thus Tyx € Co N B(u, M) for all z € C; N B(u, M), and
hence Cy N B(u, M) # (). By the condition (T), there exists n > 0 such that (3.1)
holds. Since u € F1 N Fy and both T} and 75 are strongly quasinonexpansive, there
exists > 0 such that

(3.4) r€CiNBu,M), o(u,z) —o(u,Thz) <= o(Tiz,z) <n
and
(3.5) y € Con B(u, M), o(u,y) — o(u, Tay) < § = o(Tay,y) < n.

Suppose that z € C1 N B(u, M) and o(u, z) — o(u, ToeTiz) < 6. It is enough to show
that o(12T1z,z) < e. Taking into account (3.3), we have

o(u,z) —o(u,Thz) < and o(u, Thz) — o(u, IrTiz) < 6.

Therefore it follows from (3.5) and (3.4) that o(T2Thz, Tix) < n and o(Thz,x) < n.
Thus, by virtue of the condition (T), we conclude that o(ToTiz,z) < €. O

Using Theorem 3.8, we obtain the following:

Corollary 3.9 ( [18, Theorem 4.9 (2)]). Let C; and Cy be nonempty subsets of X
and both Ty : Cy — X and Ty: Cy — X mappings such that F(T1) NF(T) # 0 and
T1(C1) C Co. Suppose that (X,o) satisfies the conditions (S) and (T), and that
T, and Ty are strongly quasinonexpansive with respect to (J, F(Tl)) and (o, F(Tg)),
respectively. Then 15T is strongly quasinonexpansive with respect to (a, F(Tle)).

Proof. From [18, Theorem 4.9 (1)], we know that F(71) NF(T3) = F(1>T1). Thus
Theorem 3.8 implies the conclusion. O

4. STRONGLY QUASINONEXPANSIVE MAPPINGS IN A BANACH SPACE

In this section, we apply the results of the previous section to the study of strongly
quasinonexpansive mappings in a Banach space.
In what follows, we assume the following;:

e F is a reflexive Banach space;

e f: F — R is a continuous, strictly convex, and Géteaux differentiable func-
tion;

e f is bounded on bounded sets;

e D is the Bregman distance corresponding to f, that is, D(y,z) = f(y) —
flz) = (y—z,Vf(x)) for all z,y € E.



STRONGLY QUASINONEXPANSIVE MAPPINGS 9

We also assume the following condition:

(A) B(z,M)={x € E: D(z,z) < M}

is bounded for all z € F and M > 0.
Taking into account (2.3), we know that the pair (E, D) satisfies the condition (S),
that is, D(z,y) = 0< x =y for all z,y € E. We also know the following:

Lemma 4.1. The pair (E, D) satisfies the condition (B), that is,
sup{D(z,): 2,y € Bz, M)} < oo

forall z € E and M > 0. Moreover, if f is uniformly convex on bounded sets, then
(E, D) satisfies the condition (T), that is, D(xp, zn) — 0 whenever {x,}, {yn} and
{zn} are sequences in B(u, M) for some v € X and M > 0 such that D(z,,yn) — 0
and D(yp, zn) — 0.

Proof. Let z € E and M > 0 be given. Then, by assumption, B(z, M) and
{If(z) — f(W)| : z,y € B(z2,M)} are bounded. Moreover, Lemma 2.1 shows that
{IVf()| : y € B(z, M)} is also bounded. On the other hand, it follows from the
definition of D that

D(z,y) < [f(x) = FW) + [lz =yl IVF W)l

for all z,y € B(z, M). Therefore, (E, D) satisfies the condition (B).

We next suppose that f is uniformly convex on bounded sets. Let {z,}, {yn}, and
{zn} be sequences in B(u, M) for some u € E and M > 0 such that D(zy,,yn) — 0
and D(yn, zn,) — 0. It is enough to show that D(x,,z,) — 0. Since {z,}, {yn},
and {z,} are bounded by the assumption (A), we deduce that ||z, — y,| — 0 by
Lemma 2.5 and {Vf(yn) — Vf(2n)} is bounded by Lemma 2.1. Using (2.2), we
conclude that

D(2n, 2n) < D(Tnyyn) + D(Yn, 20) + |20 — ynll IV F(yn) = Vf(zn)]| = 0

asn — 0. O

Let C be a nonempty subset of ¥ and T": C' — F a mapping. Recall that a point
p € E is said to be an asymptotic fized point of T if there exists a sequence {z,} in
C such that ||z, — T'zy| — 0 and z,, — p. The set of asymptotic fixed points of T’
is denoted by F(T)). From now on we assume that F(T') is nonempty. Recall that a
mapping T is said to be quasinonezpansive with respect to (D, F(T)) if D(z,Tx) <
D(z,x) for all z € F(T) and x € C; T is said to be strongly quasinonexpansive with
respect to (D, F(T)) if for any € > 0, z € F(T), and M > 0 with C N B(z, M) # 0
there exists & > 0 such that

r€CNB(z,M), D(z,2) — D(2,Tx) < § = D(Tz,z) < e.

We often omit the phrase “with respect to (D, F(T))” if no possible confusion arises.
Using Theorem 3.7 and Lemma 4.1, we obtain the following characterizations of
strongly quasinonexpansive mappings.
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Theorem 4.2. Let C' be a nonempty subset of E and T: C — E a mapping such
that F(T) is nonempty. Then the following are equivalent:

(1) T is strongly quasinonexpansive with respect to (D, F(T));

(2) T is quasinonexpansive with respect to (D, F(T)) and D(Txy, ) — 0 when-
ever {z,} is a sequence in C N B(z, M) and D(z,x,) — D(z,Tx,) — 0 for
some z € F(T) and M > 0 with C 0 B(z, M) # 0;

(3) for any z € F(T) and M > 0 with C N B(z, M) # 0 there exists a nonde-
creasing bounded function v: [0, a] — Ry such that y(t) > 0 for allt € (0, o]
and

v(D(Tz,z)) < D(z,2) — D(2,Tx)
for allx € K, where K = C N B(z, M) and o = sup{D(Tx,z): x € K}.

Remark 4.3. Under the assumptions of Theorem 4.2, by virtue of Lemma 2.2 and
the condition (A), we can check that {x,} is a bounded sequence in C' if and only if
{x,} is a sequence in CNB(z, M) for some z € E and M > 0. Therefore a mapping
T which satisfies the condition (2) in Theorem 4.2 is strongly nonexpansive in the
sense of [26].

To prove the next theorem, we need the following; see [26, Lemma 1] and [18,
Theorem 4.9 (1)].

Lemma 4.4. Let Cy and Co be nonempty subsets of E, T1: C1 — E a quasi-
nonerpansive mapping with respect to (D,F(Tl)), and Ty: Cy — E a quasinon-
expansive mapping with respect to (D,F(Tg)). Suppose that f is both uniformly
convex and uniformly Fréchet differentiable on bounded sets, T1(C1) C Ca, and both
F(Tl) N F(Tg) and F(Tng) are nonempty. If T1 is strongly quasinonexpansive with
respect to (D7 F(Tl)) or T5 is strongly quasinonexpansive with respect to (D, F(Tg)),
then F(TyT1) C F(T1) NF(Ty).

Proof. Let z € F(TyT1) and w € F(Ty) N F(Ty) be given. Then there exists a
sequence {x,} in C; such that =, — z and ||z, — T2T1x,|| — 0. Since {z,} is
bounded, Lemma 2.2 implies that there exists M > 0 such that x, € B(w, M) for
all n € N. Moreover, Lemma 2.7 implies that

D(w,z,) — D(w, T5Tzy,) — 0.
Since both T7 and T5 are quasinonexpansive and w € F(Tl) N F(TQ), we have
D(w, ToT1x,) < D(w, Thzy) < D(w,z,) < M.

This shows that Tyz,, TyTix, € B(w, M) for all n € N, and hence {Tiz,} and
{T»T x,} are bounded by the condition (A). Moreover, we see that

0 < D(w,zy) — D(w, T1xy) < D(w,x,) — D(w, ToT12y,),

and
0 < D(w,Tizy) — D(w, ToT1x,) < D(w,x,) — D(w, ToTh )
for all n € N. As a result, we deduce that

(4.1) D(w,x,) — D(w, Tixy) — 0
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and
(4.2) D(w, Thzy) — D(w, TyT12,) — 0.

Now suppose that T is strongly quasinonexpansive. Then, according to (4.1)
and Theorem 4.2, we see that D(T1xy,z,) — 0, and hence ||Thz, — z,| — 0 by
Lemma 2.5. Thus z € ﬁ(Tl), ToTxy, — Tz, = ToTixy — xp + xp — Thx —
0, and Thz, = Thxp — T, + T, — 2. Hence z € F(T2). Consequently, z €
F‘(Tl) N F(Tg). On the other hand, suppose that Ty is strongly quasinonexpan-
sive. Then it follows from (4.2) and Theorem 4.2 that D(T5T 2y, Ti2,) — 0, and
hence ||T5T1x, — Ti2y|| — 0 by Lemma 2.5. Thus, Tz, — x, = Tix, — ToTiz), +
TyTix,—xn, — 0and Thx, = Ti2, — Tp+ 2, — 2. Therefore, z € F(Tl)ﬂF‘(Tg). O

Using Theorem 3.8, Lemmas 4.1, and 4.4, we obtain the following theorem:;
see [26, Lemma 2].

Theorem 4.5. In addition to the assumptions of Theorem 4.4, suppose that T} and
Ty are strongly quasinonexpansive with respect to (D, F(Tl)) and (D, F(Tg)), respec-
tively. Then TyTy is strongly quasinonexpansive with respect to (D, F(Tl) N F(Tg))
In particular, 15T, s strongly quasinonexpansive with respect to (D, F (Tng)).
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