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2 K. AOYAMA AND F. KOHSAKA

quasinonexpansive mappings with respect to the Bregman distance and the set of
asymptotic fixed points of the mappings in a Banach space.

2. Preliminaries

Throughout this paper, R denotes the set of real numbers, R+ the set of nonneg-
ative real numbers, N the set of positive integers, E a real Banach space, E∗ the
dual of E, ∥ · ∥ the norms of E or E∗, and ⟨x, x∗⟩ the value of x∗ ∈ E∗ at x ∈ E.
Strong convergence of a sequence {xn} in E to x ∈ E is denoted by xn → x and
weak convergence by xn ⇀ x.

Let f : E → R be a function. We say that f is convex if f
(
λx + (1 − λ)y

)
≤

λf(x)+ (1−λ)f(y) for all λ ∈ [0, 1] and x, y ∈ E; f is strictly convex if f
(
λx+(1−

λ)y
)
< λf(x) + (1− λ)f(y) for all λ ∈ (0, 1) and x, y ∈ E with x ̸= y; f is Gâteaux

differentiable at x ∈ E if there exists ξ∗ ∈ E∗ such that

(2.1) lim
t→0

f(x+ ty)− f(x)

t
= ⟨y, ξ∗⟩

for all y ∈ E. In this case, ξ∗ is called the Gâteaux differential of f at x and denoted
by ∇f(x). We say that f is Gâteaux differentiable if f is Gâteaux differentiable at
all x ∈ E; f is bounded on bounded sets if sup{|f(x)| : x ∈ C} < ∞ for all bounded
subsets C of E.

We know the following; see [22, Propositions 1.1.7, 1.1.10, and 1.1.11].

Lemma 2.1. Let E be a Banach space, f : E → R a continuous, convex, and
Gâteaux differentiable function, and D : E × E → R a function defined by

D(y, x) = f(y)− f(x)− ⟨y − x,∇f(x)⟩

for all x, y ∈ E. Then D(y, x) ≥ 0 and

(2.2) D(x, z) = D(x, y) +D(y, z) + ⟨x− y,∇f(y)−∇f(z)⟩

for all x, y, z ∈ E. Moreover, the following hold:

• If f is strictly convex, then

(2.3) D(x, y) = 0 ⇒ x = y

for all x, y ∈ E;
• if f is bounded on bounded sets, then {∇f(x) : x ∈ C} is bounded in E∗ for
all bounded subsets C of E.

We say that the function D in Lemma 2.1 is the Bregman distance [22,23] corre-
sponding to f .

Using Lemma 2.1, we obtain the following:

Lemma 2.2. Let E be a Banach space, f : E → R a continuous, convex, and
Gâteaux differentiable function, {xn} a bounded sequence in E, and z a point in
E. Suppose that f is bounded on bounded sets. Then there exists M > 0 such that
D(z, xn) ≤ M for all n ∈ N, where D is the Bregman distance corresponding to f .
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Proof. Suppose that for any m ∈ N there exists τ(m) ∈ N such that D(z, xτ(m)) >

m. Since {xn} is bounded, it follows that
{
xτ(m) : m ∈ N

}
is bounded. Hence{

f(xτ(m)) : m ∈ N
}
and

{
∇f(xτ(m)) : m ∈ N

}
are bounded by assumption and by

Lemma 2.1, respectively. On the other hand, it follows from the definition of D
that

m < D(z, xτ(m)) ≤ |f(z)|+
∣∣f(xτ(m))

∣∣+ ∥∥z − xτ(m)

∥∥∥∥∇f(xτ(m))
∥∥

for all m ∈ N, which is a contradiction. This completes the proof. □

The following theorem is a direct consequence of [1, Theorem 1.8].

Theorem 2.3. Let E be a Banach space and f : E → R a Gâteaux differentiable
function. Then

|f(x)− f(y)| ≤ sup
{∥∥∇f

(
λx+ (1− λ)y

)∥∥ : λ ∈ [0, 1]
}
∥x− y∥

for all x, y ∈ E.

Using Lemma 2.1 and Theorem 2.3, we obtain the following:

Lemma 2.4. Let E be a Banach space, C a nonempty bounded subset of E, and
f : E → R a continuous, convex, and Gâteaux differentiable function. Suppose that
f is bounded on bounded sets. Then f is uniformly continuous on C.

Proof. Since C is bounded, there exists r > 0 such that C ⊂ Br, where Br = {y ∈
E : ∥y∥ < r}. Then Br is bounded and convex. Let {xn} and {yn} be sequences in C
such that ∥xn − yn∥ → 0. It is enough to show that |f(xn)− f(yn)| → 0. Lemma 2.1
implies that {∇f(z) : z ∈ Br} is bounded. Thus it follows from Theorem 2.3 that

|f(xn)− f(yn)| ≤ sup
{∥∥∇f

(
λxn + (1− λ)yn

)∥∥ : λ ∈ [0, 1]
}
∥xn − yn∥

≤ sup {∥∇f(z)∥ : z ∈ Br} ∥xn − yn∥ → 0

as n → ∞. □

Let f : E → R be a function and C a nonempty convex subset of E. We say that
f is uniformly convex on C [28] if for any ϵ > 0 there exists δ > 0 such that

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)− λ(1− λ)δ

for all λ ∈ [0, 1] and x, y ∈ C with ∥x− y∥ ≥ ϵ. It is clear that if f is uniformly
convex on C, then f is convex on C. We say that f is uniformly convex on bounded
sets if f is uniformly convex on all bounded convex subsets of E.

The following lemma is a direct consequence of [24, Lemma 3.1].

Lemma 2.5. Let E be a Banach space and f : E → R a continuous Gâteaux dif-
ferentiable function. Suppose that f is uniformly convex on bounded sets. If both
{xn} and {yn} are bounded sequences in E and D(xn, yn) → 0, then ∥xn − yn∥ → 0,
where D is the Bregman distance corresponding to f .
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Let f : E → R be a function and SE the unit sphere of E, that is, SE = {x ∈
E : ∥x∥ = 1}. We say that f is Fréchet differentiable at x ∈ E if there exists
ξ∗ ∈ E∗ such that the limit (2.1) is attained uniformly for y ∈ SE . It is clear that
f is Fréchet differentiable at x ∈ E, then f is Gâteaux differential there. Let U
be a nonempty open subset of E. We say that a Gâteaux differential function f is
uniformly Fréchet differentiable on U if the limit

lim
t→0

f(x+ ty)− f(x)

t
= ⟨y,∇f(x)⟩

attained uniformly for x ∈ U and y ∈ SE .
Using [27, Proposition 2.1], we obtain the following:

Lemma 2.6. Let E be a reflexive Banach space, U a nonempty bounded open con-
vex subset of E, and f : E → R a continuous, convex, and Gâteaux differentiable
function. Suppose that f is bounded on bounded sets and uniformly Fréchet differ-
entiable on U . Then ∇f is uniformly norm-to-norm continuous on U .

Let f : E → R be a function. We say that f is uniformly Fréchet differentiable
on bounded sets if f is uniformly Fréchet differentiable on all bounded open subsets
of E.

Using lemmas above, we obtain the following:

Lemma 2.7. Let E be a Banach space, {xn} and {yn} bounded sequences in E, and
f : E → R a continuous, convex, and Gâteaux differentiable function. Suppose that
xn−yn → 0 and f is bounded on bounded sets. Then D(yn, xn) → 0, where D is the
Bregman distance corresponding to f . Moreover, suppose that E is reflexive and f
is uniformly Fréchet differentiable on bounded sets. Then D(z, xn)−D(z, yn) → 0
for all z ∈ E.

Proof. Lemmas 2.1 and 2.4 show that

D(yn, xn) ≤ |f(yn)− f(xn)|+ ∥yn − xn∥ ∥∇f(xn)∥ → 0

as n → ∞. Moreover, let z ∈ E and suppose that E is reflexive and f is
uniformly Fréchet differentiable on bounded sets. Then Lemma 2.6 implies that
∥∇f(yn)−∇f(xn)∥ → 0. Therefore it follows from (2.2) that

|D(z, xn)−D(z, yn)| ≤ D(yn, xn) + ∥z − yn∥ ∥∇f(yn)−∇f(xn)∥ → 0

as n → ∞. □
Using [18, Lemma 3.2], we obtain the following:

Lemma 2.8. Let K be a nonempty set and both f and g functions of K into R+.
Then the following are equivalent:

(1) For any ϵ > 0 there exists δ > 0 such that x ∈ K and g(x) < δ imply
f(x) < ϵ;

(2) f(xn) → 0 whenever {xn} is a sequence in K and g(xn) → 0.

Moreover, suppose that f and g are bounded above. Then (1) or (2) is equivalent to
the following:
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(3) there exists a nondecreasing bounded function γ : [0, α] → R+ such that
γ
(
f(x)

)
≤ g(x) for all x ∈ K and γ(t) > 0 for all t ∈ (0, α], where

α = sup{f(x) : x ∈ K}.

Proof. It is not hard to verify that (1) and (2) are equivalent. The equivalence
between (1) and (3) follows from [18, Lemma 3.2]. □

Let C be a nonempty subset of E and T : C → E a mapping. A point p ∈ E is
said to be an asymptotic fixed point of T [26] if there exists a sequence {xn} in C
such that ∥xn − Txn∥ → 0 and xn ⇀ p. The set of asymptotic fixed points of T is

denoted by F̂(T ). It is clear that F(T ) ⊂ F̂(T ), where F(T ) is the fixed point set of
T .

Remark 2.9. In [26], the notion of an asymptotic fixed point of a mapping T : C →
E is studied when C is a convex subset of a Banach space E.

3. Strongly quasinonexpansive mappings in a metric-like space

In this section, we introduce a quasinonexpansive mapping and a strongly quasi-
nonexpansive mapping in a metric-like space. Then we give some characterizations
of a strongly quasinonexpansive mapping, and moreover, we show that the composi-
tion of two strongly quasinonexpansive mappings is also strongly quasinonexpansive.

Throughout this section, X denotes a nonempty set, σ a function of X ×X into
R+, and B̄(z,M) a subset of X defined by

B̄(z,M) = {x ∈ X : σ(z, x) ≤ M}

for z ∈ X and M > 0.
We deal with the following three conditions: We say that the pair (X,σ) satisfies

the condition (S) if

x ̸= y ⇔ σ(x, y) > 0

for all x, y ∈ X; (X,σ) satisfies the condition (B) if

sup{σ(x, y) : x, y ∈ B̄(z,M)} < ∞

for all z ∈ X and M > 0; (X,σ) satisfies the condition (T) if for any u ∈ X, M > 0,
and ϵ > 0 there exists η > 0 such that

(3.1) x, y, z ∈ B̄(u,M), σ(x, y) < η, σ(y, z) < η ⇒ σ(x, z) < ϵ;

see [18] for more information about these conditions. It is clear that if (X,σ) satisfies
the condition (S), then z ∈ B̄(z,M) and hence B̄(z,M) is nonempty for all z ∈ X
and M > 0.

Remark 3.1. Suppose that σ is a metric on X, that is, (X,σ) is a metric space.
Then it is obvious that (X,σ) satisfies the conditions (S), (B), and (T).

Lemma 3.2. Suppose that the pair (X,σ) satisfies the condition (S). The following
are equivalent:

(1) (X,σ) satisfies the condition (T);
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(2) σ(xn, zn) → 0 whenever {xn}, {yn} and {zn} are sequences in B̄(u,M) for
some u ∈ X and M > 0 such that σ(xn, yn) → 0 and σ(yn, zn) → 0.

Proof. Let u ∈ X and M > 0 be given and set K =
[
B̄(u,M)

]3
. By virtue of the

condition (S), we see that K is nonempty. Let f and g be functions of K into R+

defined by
f(x, y, z) = σ(x, z) and g(x, y, z) = σ(x, y) + σ(y, z)

for (x, y, z) ∈ K. Using Lemma 2.8, we can get the conclusion. □
Let C and F be nonempty subsets of X and T : C → X a mapping. Inspired

by [3,10,13,14,18,19], we introduce the following: T is said to be quasinonexpansive
with respect to (σ, F ) if σ(z, Tx) ≤ σ(z, x) for all z ∈ F and x ∈ C; T is said to be
strongly quasinonexpansive with respect to (σ, F ) if for any ϵ > 0, z ∈ F , and M > 0
with C ∩ B̄(z,M) ̸= ∅ there exists δ > 0 such that

x ∈ C ∩ B̄(z,M), σ(z, x)− σ(z, Tx) < δ ⇒ σ(Tx, x) < ϵ.

In the rest of this section, the phrase “with respect to (σ, F )” will often be omitted
if no possible confusion arises.

Example 3.3. Let C be a nonempty subset of X and T : C → X a mapping with a
fixed point. Suppose that T is strongly quasinonexpansive with respect to

(
σ,F(T )

)
,

where F(T ) is the fixed point set of T . Then we know the following:

• If σ is a metric on X, then T is strongly quasinonexpansive in the sense
of [3];

• ifX is a smooth Banach space and σ is defined by σ(x, y) = ∥x∥2−2 ⟨x, Jy⟩+
∥y∥2 for x, y ∈ X, then T is of type (sr) in the sense of [9, 13, 14], where J
is the duality mapping of E.

A strongly quasinonexpansive mapping is quasinonexpansive as follows:

Lemma 3.4. Let C and F be nonempty subsets of X and T : C → X a strongly
quasinonexpansive mapping with respect to (σ, F ). Suppose that (X,σ) satisfies the
condition (S). Then T is quasinonexpansive with respect to (σ, F ).

Proof. Suppose that there exist z ∈ F and y ∈ C such that σ(z, Ty) > σ(z, y).
Then it is clear that Ty ̸= y. Set M = σ(z, y) + 1 and ϵ = σ(Ty, y). We see that
M > 0, ϵ > 0, y ∈ C ∩ B̄(z,M), and σ(z, y) − σ(z, Ty) < 0. Since T is strongly
quasinonexpansive, we have σ(Ty, y) < ϵ, which is a contradiction. Therefore, T is
quasinonexpansive with respect to (σ, F ). □

To prove the next theorem, we need the following lemmas:

Lemma 3.5. Let C and F be nonempty subsets of X, T : C → X a quasinon-
expansive mapping with respect to (σ, F ), z ∈ F , and M > 0. Suppose that
K = C ∩ B̄(z,M) ̸= ∅. Let f and g be functions defined by

(3.2) f(x) = σ(Tx, x) and g(x) = σ(z, x)− σ(z, Tx)

for x ∈ K. Then f(K) ⊂ R+, g(K) ⊂ R+, and g is bounded. Moreover, if (X,σ)
satisfies the condition (B), then f is bounded.
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Proof. By definition, f(K) ⊂ R+ is clear. Since T is quasinonexpansive, it follows
that 0 ≤ g(x) ≤ σ(z, x) ≤ M for all x ∈ K. Hence g is bounded and g(K) ⊂ R+.
Suppose that (X,σ) satisfies the condition (B). Since Tx ∈ B̄(z,M) for all x ∈ K,
we have

sup{f(x) : x ∈ K} ≤ sup{σ(y, x) : x, y ∈ B̄(z,M)} < ∞.

Therefore, f is bounded. □

Lemma 3.6. Let C and F be nonempty subsets of X and T : C → X a mapping.
Suppose that (X,σ) satisfies the condition (S). Then the following are equivalent:

(1) T is strongly quasinonexpansive with respect to (σ, F );
(2) T is quasinonexpansive with respect to (σ, F ), and σ(Txn, xn) → 0 whenever

{xn} is a sequence in C ∩ B̄(z,M) and σ(z, xn) − σ(z, Txn) → 0 for some
z ∈ F and M > 0 with C ∩ B̄(z,M) ̸= ∅.

Proof. Let z ∈ F and M > 0 be given. Suppose that K = C ∩ B̄(z,M) ̸= ∅. Let
f and g be functions defined by (3.2) for x ∈ K. Then Lemma 3.5 shows that
f(K) ⊂ R+, and that g(K) ⊂ R+ if T is quasinonexpansive with respect to (σ, F ).
Therefore the conclusion follows from Lemmas 2.8 and 3.4. □

Using Lemmas 2.8, 3.5, and 3.6, we obtain the following characterizations of
strongly quasinonexpansive mappings; see [18, Theorems 4.4 and 4.6] and [3, The-
orem 3.7].

Theorem 3.7. Let C and F be nonempty subsets of X and T : C → X a mapping.
Suppose that (X,σ) satisfies the conditions (S) and (B). Then the following are
equivalent:

(1) T is strongly quasinonexpansive with respect to (σ, F );
(2) T is quasinonexpansive with respect to (σ, F ), and σ(Txn, xn) → 0 whenever

{xn} is a sequence in C ∩ B̄(z,M) and σ(z, xn) − σ(z, Txn) → 0 for some
z ∈ F and M > 0 with C ∩ B̄(z,M) ̸= ∅;

(3) for any z ∈ F and M > 0 with C∩B̄(z,M) ̸= ∅ there exists a nondecreasing
bounded function γ : [0, α] → R+ such that γ(t) > 0 for all t ∈ (0, α] and

γ
(
σ(Tx, x)

)
≤ σ(z, x)− σ(z, Tx)

for all x ∈ K, where K = C ∩ B̄(z,M) and α = sup{σ(Tx, x) : x ∈ K}.

Proof. The equivalence between (1) and (2) follows from Lemma 3.6. Thus it is
enough to show the equivalence between (1) and (3). Let z ∈ F and M > 0 be
given. Suppose that K = C ∩ B̄(z,M) ̸= ∅. Let f and g be functions defined by
(3.2) for x ∈ K. Lemma 3.5 shows that f and g are bounded functions of K into
R+. Therefore Lemma 2.8 implies the equivalence between (1) and (3). □

We know that the class of strongly quasinonexpansive mappings in a metric
space is closed under composition [3, Theorem 3.6]; see also [20, Proposition 1.1]
and [18, Theorem 4.9]. The class of strongly quasinonexpansive mappings discussed
in this section has a similar property as follows:
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Theorem 3.8. Let C1, C2, F1, and F2 be nonempty subsets of X, T1 : C1 → X
a strongly quasinonexpansive mapping with respect to (σ, F1), and T2 : C2 → X a
strongly quasinonexpansive mapping with respect to (σ, F2). Suppose that F1 ∩F2 ̸=
∅, T1(C1) ⊂ C2, and (X,σ) satisfies the conditions (S) and (T). Then T2T1 is
strongly quasinonexpansive with respect to (σ, F1 ∩ F2).

Proof. Let ϵ > 0, u ∈ F1∩F2, and M > 0 be given. Suppose that C1∩B̄(u,M) ̸= ∅.
Since T1 and T2 are quasinonexpansive by Lemma 3.4 and u ∈ F1 ∩F2, we see that

(3.3) σ(u, T2T1x) ≤ σ(u, T1x) ≤ σ(u, x) ≤ M

for all x ∈ C1 ∩ B̄(u,M). Thus T1x ∈ C2 ∩ B̄(u,M) for all x ∈ C1 ∩ B̄(u,M), and
hence C2 ∩ B̄(u,M) ̸= ∅. By the condition (T), there exists η > 0 such that (3.1)
holds. Since u ∈ F1 ∩F2 and both T1 and T2 are strongly quasinonexpansive, there
exists δ > 0 such that

(3.4) x ∈ C1 ∩ B̄(u,M), σ(u, x)− σ(u, T1x) < δ ⇒ σ(T1x, x) < η

and

(3.5) y ∈ C2 ∩ B̄(u,M), σ(u, y)− σ(u, T2y) < δ ⇒ σ(T2y, y) < η.

Suppose that x ∈ C1∩ B̄(u,M) and σ(u, x)−σ(u, T2T1x) < δ. It is enough to show
that σ(T2T1x, x) < ϵ. Taking into account (3.3), we have

σ(u, x)− σ(u, T1x) < δ and σ(u, T1x)− σ(u, T2T1x) < δ.

Therefore it follows from (3.5) and (3.4) that σ(T2T1x, T1x) < η and σ(T1x, x) < η.
Thus, by virtue of the condition (T), we conclude that σ(T2T1x, x) < ϵ. □

Using Theorem 3.8, we obtain the following:

Corollary 3.9 ( [18, Theorem 4.9 (2)]). Let C1 and C2 be nonempty subsets of X
and both T1 : C1 → X and T2 : C2 → X mappings such that F(T1) ∩ F(T2) ̸= ∅ and
T1(C1) ⊂ C2. Suppose that (X,σ) satisfies the conditions (S) and (T), and that
T1 and T2 are strongly quasinonexpansive with respect to

(
σ,F(T1)

)
and

(
σ,F(T2)

)
,

respectively. Then T2T1 is strongly quasinonexpansive with respect to
(
σ,F(T2T1)

)
.

Proof. From [18, Theorem 4.9 (1)], we know that F(T1) ∩ F(T2) = F(T2T1). Thus
Theorem 3.8 implies the conclusion. □

4. Strongly quasinonexpansive mappings in a Banach space

In this section, we apply the results of the previous section to the study of strongly
quasinonexpansive mappings in a Banach space.

In what follows, we assume the following:

• E is a reflexive Banach space;
• f : E → R is a continuous, strictly convex, and Gâteaux differentiable func-
tion;

• f is bounded on bounded sets;
• D is the Bregman distance corresponding to f , that is, D(y, x) = f(y) −
f(x)− ⟨y − x,∇f(x)⟩ for all x, y ∈ E.
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We also assume the following condition:

(A) B̄(z,M) = {x ∈ E : D(z, x) ≤ M}

is bounded for all z ∈ E and M > 0.
Taking into account (2.3), we know that the pair (E,D) satisfies the condition (S),

that is, D(x, y) = 0 ⇔ x = y for all x, y ∈ E. We also know the following:

Lemma 4.1. The pair (E,D) satisfies the condition (B), that is,

sup{D(x, y) : x, y ∈ B̄(z,M)} < ∞

for all z ∈ E and M > 0. Moreover, if f is uniformly convex on bounded sets, then
(E,D) satisfies the condition (T), that is, D(xn, zn) → 0 whenever {xn}, {yn} and
{zn} are sequences in B̄(u,M) for some u ∈ X and M > 0 such that D(xn, yn) → 0
and D(yn, zn) → 0.

Proof. Let z ∈ E and M > 0 be given. Then, by assumption, B̄(z,M) and
{|f(x)− f(y)| : x, y ∈ B̄(z,M)} are bounded. Moreover, Lemma 2.1 shows that
{∥∇f(y)∥ : y ∈ B̄(z,M)} is also bounded. On the other hand, it follows from the
definition of D that

D(x, y) ≤ |f(x)− f(y)|+ ∥x− y∥ ∥∇f(y)∥

for all x, y ∈ B̄(z,M). Therefore, (E,D) satisfies the condition (B).
We next suppose that f is uniformly convex on bounded sets. Let {xn}, {yn}, and

{zn} be sequences in B̄(u,M) for some u ∈ E and M > 0 such that D(xn, yn) → 0
and D(yn, zn) → 0. It is enough to show that D(xn, zn) → 0. Since {xn}, {yn},
and {zn} are bounded by the assumption (A), we deduce that ∥xn − yn∥ → 0 by
Lemma 2.5 and {∇f(yn) − ∇f(zn)} is bounded by Lemma 2.1. Using (2.2), we
conclude that

D(xn, zn) ≤ D(xn, yn) +D(yn, zn) + ∥xn − yn∥ ∥∇f(yn)−∇f(zn)∥ → 0

as n → 0. □

Let C be a nonempty subset of E and T : C → E a mapping. Recall that a point
p ∈ E is said to be an asymptotic fixed point of T if there exists a sequence {xn} in
C such that ∥xn − Txn∥ → 0 and xn ⇀ p. The set of asymptotic fixed points of T

is denoted by F̂(T ). From now on we assume that F̂(T ) is nonempty. Recall that a

mapping T is said to be quasinonexpansive with respect to (D, F̂(T )) if D(z, Tx) ≤
D(z, x) for all z ∈ F̂(T ) and x ∈ C; T is said to be strongly quasinonexpansive with

respect to (D, F̂(T )) if for any ϵ > 0, z ∈ F̂(T ), and M > 0 with C ∩ B̄(z,M) ̸= ∅
there exists δ > 0 such that

x ∈ C ∩ B̄(z,M), D(z, x)−D(z, Tx) < δ ⇒ D(Tx, x) < ϵ.

We often omit the phrase “with respect to (D, F̂(T ))” if no possible confusion arises.
Using Theorem 3.7 and Lemma 4.1, we obtain the following characterizations of

strongly quasinonexpansive mappings.
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Theorem 4.2. Let C be a nonempty subset of E and T : C → E a mapping such
that F̂(T ) is nonempty. Then the following are equivalent:

(1) T is strongly quasinonexpansive with respect to (D, F̂(T ));

(2) T is quasinonexpansive with respect to (D, F̂(T )) and D(Txn, xn) → 0 when-
ever {xn} is a sequence in C ∩ B̄(z,M) and D(z, xn)−D(z, Txn) → 0 for

some z ∈ F̂(T ) and M > 0 with C ∩ B̄(z,M) ̸= ∅;
(3) for any z ∈ F̂(T ) and M > 0 with C ∩ B̄(z,M) ̸= ∅ there exists a nonde-

creasing bounded function γ : [0, α] → R+ such that γ(t) > 0 for all t ∈ (0, α]
and

γ
(
D(Tx, x)

)
≤ D(z, x)−D(z, Tx)

for all x ∈ K, where K = C ∩ B̄(z,M) and α = sup{D(Tx, x) : x ∈ K}.

Remark 4.3. Under the assumptions of Theorem 4.2, by virtue of Lemma 2.2 and
the condition (A), we can check that {xn} is a bounded sequence in C if and only if
{xn} is a sequence in C∩ B̄(z,M) for some z ∈ E and M > 0. Therefore a mapping
T which satisfies the condition (2) in Theorem 4.2 is strongly nonexpansive in the
sense of [26].

To prove the next theorem, we need the following; see [26, Lemma 1] and [18,
Theorem 4.9 (1)].

Lemma 4.4. Let C1 and C2 be nonempty subsets of E, T1 : C1 → E a quasi-
nonexpansive mapping with respect to

(
D, F̂(T1)

)
, and T2 : C2 → E a quasinon-

expansive mapping with respect to
(
D, F̂(T2)

)
. Suppose that f is both uniformly

convex and uniformly Fréchet differentiable on bounded sets, T1(C1) ⊂ C2, and both

F̂(T1) ∩ F̂(T2) and F̂(T2T1) are nonempty. If T1 is strongly quasinonexpansive with

respect to
(
D, F̂(T1)

)
or T2 is strongly quasinonexpansive with respect to

(
D, F̂(T2)

)
,

then F̂(T2T1) ⊂ F̂(T1) ∩ F̂(T2).

Proof. Let z ∈ F̂(T2T1) and w ∈ F̂(T1) ∩ F̂(T2) be given. Then there exists a
sequence {xn} in C1 such that xn ⇀ z and ∥xn − T2T1xn∥ → 0. Since {xn} is
bounded, Lemma 2.2 implies that there exists M > 0 such that xn ∈ B̄(w,M) for
all n ∈ N. Moreover, Lemma 2.7 implies that

D(w, xn)−D(w, T2T1xn) → 0.

Since both T1 and T2 are quasinonexpansive and w ∈ F̂(T1) ∩ F̂(T2), we have

D(w, T2T1xn) ≤ D(w, T1xn) ≤ D(w, xn) ≤ M.

This shows that T1xn, T2T1xn ∈ B̄(w,M) for all n ∈ N, and hence {T1xn} and
{T2T1xn} are bounded by the condition (A). Moreover, we see that

0 ≤ D(w, xn)−D(w, T1xn) ≤ D(w, xn)−D(w, T2T1xn),

and
0 ≤ D(w, T1xn)−D(w, T2T1xn) ≤ D(w, xn)−D(w, T2T1xn)

for all n ∈ N. As a result, we deduce that

D(w, xn)−D(w, T1xn) → 0(4.1)
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and

(4.2) D(w, T1xn)−D(w, T2T1xn) → 0.

Now suppose that T1 is strongly quasinonexpansive. Then, according to (4.1)
and Theorem 4.2, we see that D(T1xn, xn) → 0, and hence ∥T1xn − xn∥ → 0 by

Lemma 2.5. Thus z ∈ F̂(T1), T2T1xn − T1xn = T2T1xn − xn + xn − T1xn →
0, and T1xn = T1xn − xn + xn ⇀ z. Hence z ∈ F̂(T2). Consequently, z ∈
F̂(T1) ∩ F̂(T2). On the other hand, suppose that T2 is strongly quasinonexpan-
sive. Then it follows from (4.2) and Theorem 4.2 that D(T2T1xn, T1xn) → 0, and
hence ∥T2T1xn − T1xn∥ → 0 by Lemma 2.5. Thus, T1xn − xn = T1xn − T2T1xn +

T2T1xn−xn → 0 and T1xn = T1xn−xn+xn ⇀ z. Therefore, z ∈ F̂(T1)∩ F̂(T2). □

Using Theorem 3.8, Lemmas 4.1, and 4.4, we obtain the following theorem;
see [26, Lemma 2].

Theorem 4.5. In addition to the assumptions of Theorem 4.4, suppose that T1 and
T2 are strongly quasinonexpansive with respect to

(
D, F̂(T1)

)
and

(
D, F̂(T2)

)
, respec-

tively. Then T2T1 is strongly quasinonexpansive with respect to
(
D, F̂(T1)∩ F̂(T2)

)
.

In particular, T2T1 is strongly quasinonexpansive with respect to
(
D, F̂(T2T1)

)
.
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