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ATTRACTIVE POINT, WEAK AND STRONG CONVERGENCE
THEOREMS FOR GENERIC 2-GENERALIZED HYBRID
MAPPINGS IN HILBERT SPACES

ATSUMASA KONDO AND WATARU TAKAHASHI

ABSTRACT. In this paper, we prove attractive point and fixed point theorems
for generic 2-generalized hybrid mappings in a Hilbert space. Next, we obtain
weak convergence theorems of Mann’s type iteration for finding attractive points
and fixed points of the mappings in a Hilbert space. Finally, we prove strong
convergence theorems of Halpern’s type iteration for finding attractive points
and fixed points of the mappings in a Hilbert space.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm ||-||, and let T
be a mapping from C into H, where C' is a nonempty subset of H. The sets of fixed
points and attractive points [24] of T are denoted by

F(T) = {ueC:Tu=u},
AT) = {ueH:|Ty—ul| <|y—ul foralyeC},
respectively. A mapping T : C' — H is said to be nonexpansive if
[Tz — Ty|| < [lz —y| for all z,y € C.

For nonexpansive mappings, several approximation methods for finding fixed points
have been proposed. The following iteration was introduced by Mann [16] in 1953:

x1 € C: given,
Tny1 = Zp+ (1 —=X) T2y, VYneN,
where T': C' — C, N is the set of natural numbers, and {\,} C [0,1]. In 1967,
Halpern proposed a different type of iteration [3]:
ry = x € (C: given,
Tny1 = M+ (1 —Xy)Tx,, VneN,
where T : C' — C, and {\,} C [0,1]. Mann’s and Halpern’s iterations yield weak
and strong convergence, respectively; see Reich [18] and Wittmann [28].

Required conditions on mappings have been relaxed to include important classes
of mappings. In 2010, Kocourek et al. [8] defined a wide class of mappings. A
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mapping T : C' — H is called generalized hybrid [8] if there exist a, 8 € R such that
a|Tz = Ty|* + (1 - a) & - Ty|* < BTz — y|* + (1 - 8) = -y

for all z,y € C, where R is the set of real numbers. The class of generalized hybrid
mappings simultaneously includes nonexpansive mappings, nonspreading mappings
[9, 10], hybrid mappings [23], and A-hybrid mappings [1] as special cases. The non-
spreading mappings are deduced from resolvents of a maximal monotone operator;
see [9, 10].

The class of generalized hybrid mappings has been further extended. A mapping
T :C — C is called 2-generalized hybrid [17] if there exist aq, s, 81, f2 € R such
that

2
ay HTQx = Ty||” + a2 | Tz — Ty|* + (1 — a1 — ag) ||z — Ty|)?

< B1 |2 —y|* + B2 1T — yll* + (1 — B — B2) [l — y|”

for all z,y € C. Obviously, a 2-generalized hybrid mapping with ay = 51 = 0
is generalized hybrid. See Hojo et al. [6] for examples of 2-generalized hybrid
mappings that are not generalized hybrid. Very recently, Kondo and Takahashi
[13] introduced a class of mappings. A mapping T : C — C is called generic
2-generalized hybrid if there exist aj, Bi,7: € R (4,5 = 0,1,2) such that

(1.1) agollz — ylI* + ao [l — Tyl* + agallz — T?y||®
taig [Tz — yl* + an | T — Ty|* + anz | T — Ty
tax | 7% = y||” + az || 7% = Ty||* + az || 7% — T
+B0 ||z — Ta|® + 1 ||Tx — T%2|* + B2 || 7?2 — ||
0 lly = Tyl* + 7 || Ty — T?y||° + 2 || T2 — y||> < 0

for all z,y € C. We also refer such a mapping as (o, 5i,vi; %, = 0,1, 2)-generic
2-generalized hybrid. In Theorem 6.1 and 7.1 of this paper, one of the following two
conditions is assumed:

(1.2) (1) ge + 16 > 0, 26 >0, 16 >0, Bo, 81,52 > 0;
(2) 0 + o1 >0, a2 >0, o1 >0, 70,71,72 >0,

where

(1.3) Qe = iip + a1 + iz and e = g + a1 + a;

for i = 0,1,2. This type of mappings with (1.2) contains 2-generalized hybrid
mappings. Indeed, set

(1.4) (1) ag; =0, age = -1, are =1, fi =7 =0;
(2) @iz =0, aep=—1, ae1 =1, Bi=7;=0
for i = 0,1,2 in (1.1). Then, the condition (1) (resp. (2)) of (1.4) is included by

(1) (resp. (2)) of (1.2). Hence, Theorem 6.1 and 7.1 in this paper contain the case
with 2-generalized hybrid mappings as special cases. Furthermore, if an (ovj, 5s, i;
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i,7 = 0,1,2)-generic 2-generalized hybrid mapping T' satisfies one of the following
conditions

(1.5) (1) e + 10 >0, 2 =0, g >0, fi = =0;

(2) o0 + (o1 = 0, a2 :0, Qe > 0, Bl =Y :0;

for i = 0,1,2, then T is normally 2-generalized hybrid [11]; see also [13].

In this paper, we prove attractive point and fixed point theorems for generic 2-
generalized hybrid mappings in a Hilbert space. Next, we obtain weak convergence
theorems of Mann’s type iteration for finding attractive points and fixed points of
the mappings in a Hilbert space. Finally, we prove strong convergence theorems
of Halpern’s type iteration for finding attractive points and fixed points of the
mappings in a Hilbert space.

2. PRELIMINARIES
Let H be a real Hilbert space. It is well-known that
(2.1) 20z —y, y) < |z~ Iyl < 2(z —y, «)
for all z,y € H. It is also known that
(22) 2z -y, z—w) =z —w|*+ |y —2® o —2|* ~ |ly —w]?

for all x,y,z,w € H. Let {z,} be a sequence in H, and let = (¢ H) be a point of
H. Strong and weak convergence of {z,,} to x are denoted by z,, — x and z,, — z,
respectively. We know that a closed and convex subset C' of H is weakly closed.
For a bounded sequence {z,} in H, {z,} is weakly convergent if and only if every
weakly convergent subsequence of {z,} has the same weak limit, that is,

(2.3) Ty — U <> [z, — u implies that u = v],

where {z,,} is a subsequence of {z,} andu,v € H.

Let C' be a nonempty, closed, and convex subset of H. For any x € H, there
exists a unique nearest point u € C, that is, ||z —u| = inf,ec ||z — z||. This
correspondence is called the metric projection from H onto C, and is denoted by
Po. For the metric projection Pg from H onto C, it holds that

(2.4) (x — Pox, Pox —2z) >0

for all x € H and z € C. For more details, see Takahashi [21, 22].

Takahashi and Takeuchi [24] demonstrated that the set A (T) of attractive points
of a mapping which is defined in Introduction is closed and convex in a Hilbert
space. Thus, if A(T) is nonempty, the metric projection form H onto A(T) is
defined without any condition on the mapping T. A mapping T : C — H with
F(T) # 0 is said to be quasi-nonexpansive if ||Tx —u|| < || —u| for all x € C
and u € F(T). Itoh and Takahashi [7] proved that the set of fixed points of a
quasi-nonexpansive mapping is closed and convex.

Let [®° be the Banach space of bounded sequences of real numbers with the
supremum norm, and let (1°°)* be its dual space. For u € (I°°)*, we denote u ({zn})
by pinZn. A linear continuous functional p € (I°°)* that satisfies the condition
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w({1,1,1,---}) = ||uf]] = 1 is called a mean on [*°. We know that a mean pu
preserves order relations, that is, x, < y, (Yn € N) implies that p,x, < pnyn.

When a mean additionally satisfies pnx, = pnZni1, it is called a Banach limit on
[°°. Tt is well-known that a Banach limit exists. For any {z,} € [°°, it holds that
liminf, oo < ppz, < limsup,,_,. ©n. Thus, if 2, — a (€ R), then p,z, = a.
For more details, see Takahashi [21].

3. LEMMAS

This section presents lemmas that are used in the proofs of the main theorems.
The following lemma is utilized to show the existence of attractive points and fixed
points in Section 5. See Lin and Takahashi [14] and Takahashi [20].

Lemma 3.1 ([14], [20]). Let i be a mean on I*°, and let H be a real Hilbert space.
Then, for any bounded sequence {xy} in H, there is a unique element u € ¢o {x,}
such that

Hn <£Cn, v> = <uv U>

for all v € H, where ¢o{x,} is the closure of the convex hull of {x,, : n € N}.

The following lemma was proved by Takahashi and Toyoda [25] by using the
parallelogram law. Basing on their proof, we provide an alternative proof.

Lemma 3.2 ([25]). Let A be a nonempty, closed and convex subset of a real Hilbert
space H, and let Py be the metric projection from H onto A. Let {x,} be a sequence
such that

(3.1) [Zn+1 = qll < ll@n — 4|

for all g € A and n € N. Then, the sequence {Psx,} is convergent in A, in other
words, there is an element T of A, and Pax, — T as n — oo.

Proof. We show that { P4z} is a Cauchy sequence in A. Let m,n € N with m > n.
Since Py, € A, it holds from (2.4) that

2 (xy — Py, Paxy — Paxy) > 0.
Using (2.2), we obtain
|Zm — Pazall® = |2m — Pazml|® — || Pazm — Paza|* > 0.
From the assumption (3.1), we have that

(3.2) ||5Um_PA5L‘mH2+ HPAJWn_PAl‘n”2 me_PA:En||2

<
< lwn — Paza®.
It follows from (3.2) that

|2 — Pazml|* < ||z — Pazy|*
for all m,n € N such that m > n. Therefore, {||xn —PAanZ} is convergent.
Furthermore, we have from (3.2) that

”PAwm - PA:UnH2 < Hxn - PA$n||2 — [|em — PAme2 .
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Since the right-hand side converges to 0 as m,n — oo, { P4x, } is a Cauchy sequence.
Since A is complete, {Paxzy} is convergent in A as claimed. O

In the following lemma, the part (a) was proved by Takahashi [22], which contains
the parallelogram law as a special case with @ = b = 1/2. The part (b) was
established by Maruyama et al. [17] to deal with 2-generalized hybrid mappings.

Lemma 3.3 ([22], [17]). Let z,y,z € H and a,b,c € R. Then, the following hold:
(a) Ifa+b=1, then [lax +by|* = alz|* +blly|* — abllz — y|*.
(b) Ifa+b+c=1, then

laz + by+cz|* = al|z||* + bllyl* + ¢ ||
—abllz —y[|* = belly — 2|* — callz — 2|,
The following lemma was proved by Kondo and Takahashi [13].

Lemma 3.4 ([13]). Let C be a nonempty subset of a real Hilbert space H. Let T be
an (ouj, Bi,vi; 1,7 = 0,1, 2)-generic 2-generalized hybrid mapping from C' into itself
with F (T) # 0. Suppose that T satisfies one of the following conditions:

(1) cpe + 1 > 0, 2 >0, 14 >0, Bo,B1, B2 > 0;
(2) [07Y1) +a.1 2 07 (g2 Z 07 Olel > 07 Y0, Y1 Y2 Z 07

where the notations ae and ae; are defined in (1.3). Then, T is quasi-nonexpansive.

The next lemma will be utilized in the proofs of convergence theorems to points
of F (T?).

Lemma 3.5. Let C be a nonempty subset of a real Hilbert space H. Let T be an
(cvij, Bisviy 1,5 = 0,1,2)-generic 2-generalized hybrid mapping from C into itself
with F (T2) # (). Suppose that T satisfies one of the following conditions:

(1) ago + apz + azo + @22 > 0, aig + 12 > 0, ap1,a11, a1 > 0,
ago + a2 >0, Bo,B1,082 20, v0+71 > 0;
(2) apo + a0 + o2 + aze > 0, a1 +a91 >0, aig, 11,12 > 0,
Qp2 + a2 > 07 BO +Bl Z 07 Y0571, 72 Z 0.
where the notations ce and ae; are defined in (1.3). Then, T? is quasi-nonexpansive.

Proof. Case (2). Supposed that agy + @20 + a2 + a2 > 0, ap1 + a1 > 0,
Q10,011,012 > 0, ag2 + age > 0, Bop + B1 > 0, and vp,7v1,72 > 0. Let z € C
and u € F(T?). We show that ||[T%z —u| < ||z —ull. Since T is (aij, B,
i,7 = 0,1, 2)-generic 2-generalized hybrid, it holds that

(3-3) agollu — x| + agiu — Tz|* + aozllu — Tx|?
+a1o |Tu — 2| + oy [|Tw — Tz | + ana || Tu — T2
+ag HT2u — xH2 + aio1 HT2u — T:L‘H2 + a9 HT2U — TQ.’EH2
+Bo llu— Tull* + By | Tu — T?u|* + B2 | T?u — |
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+50 ||z = Tz)|* + 7 HT:L’ - T2:17H2 + 72 HT% - :UH2 <0.
Since u € F (TQ), we have that
agollu — [ + aoillu = Tz||* + agz||lu — T?z||?
+aqg || Tu — 1:||2 + a1 ||Tu — T.13||2 + aqa HTU — T293H2
+agg [|u — xHQ + a1 ||Ju — TJZ”2 + 99 Hu — T2$H2
+Bo |lu — Tu||* + By | Tw — ul|®
40 |z = Ta|? + 7 || Tz — T2a||* + 72 | 7% — 2||° <0,
that is,
(w00 + @20) [lu — ][> + (@01 + az1) [lu — Tz || + (o2 + @) lu — T2z
+ag |Tu — z||* + an1 | Tu — Tz||* + as | T — T2xH2
+ (8o + B1) llu — Tul|* + o ||z — Tz||* + 7 | Tz — T2xH2 + 72 HTQx - :BH2 <0,
Since aqg, a11, @12 > 0, By + B1 > 0, and g, 71,72 > 0, we have that
(w00 + @20) [lu — 2[|* + (@01 + az1) [|u — Tz||? + (o2 + @) lu — T?z[|* < 0.
Since ag1 + a9 > 0, we obtain
(a0 + a20) [lu — @1 + (o2 + az) [Ju — T?x[|*> < 0.
By using agg + aog + a2 + ass > 0, we have that
(ao2 + az) Ju— T2z|* < — (oo + az) u — z?
< (oo + agg) |lu— |

Since oo + oo > 0,
|u— T2a:”2 < |u—z|?
This means that 72 is quasi-nonexpansive.
Case (1). Supposed that agg+ a2 +ag0+ae > 0, ajg+aie > 0, apr, 11, a1 >
0, agg + gz > 0, By, f1,82 > 0, and 79 + 71 > 0. Replacing v and z in (3.3), we
can derive the desired result. Il

The following two lemmas are exploited to derive the strong convergence theorems
in Section 7.

Lemma 3.6 ([2, 29]). Let {X,,} be a sequence of nonnegative real numbers, let
{Y,.} be a sequence of real numbers such that limsup, ... Y, < 0, and let {Z,}
be a sequence of nonnegative real numbers such that > 2| Z, < oo. Let {\,}
be a sequence of real numbers in the interval [0,1) such that Y >° N\, = oco. If
Xnt1 < (1= Xp) Xpn + \Y, + Z,, for alln €N, then X,, — 0 as n — oo.

Lemma 3.7 ([15]). Let {X,} be a sequence of real numbers. Suppose that {X,}
is not monotone decreasing for sufficiently large n € N, in other words, there exists
a subsequence {Xp,} of {Xn} such that X,, < Xp,41 for all i € N. Let ng be a



ATTRACTIVE POINT, WEAK AND STRONG CONVERGENCE THEOREMS 109

natural number such that {k € N : k < ng, X < Xpi1} is nonempty. Define a

sequence {7 (n)},s,, of natural numbers as follows:

7(n) =max{k € N:k <n, Xy < Xpy1} foralln>ng.

Then, the following hold:
(a) 7(n) — o0 as n — oc;

(b) Xn < X741 and X)) < Xp(ny41 for alln > no.

4. THE SETS OF ATTRACTIVE POINTS

Let C be a nonempty subset of a real Hilbert space H, and let T' be a mapping of
C'into H. In 2011, Takahashi and Takeuchi [24] introduced the concept of attractive
points of T'. In this paper, we denote the set of attractive points of T" by

A (M) =AM ={uecH:||Ty—ul <|ly—ul foralyeC}.
We also call it the set of (1,0)-attractive points of T. Similarly, we define

A (T)={ue H:||T?y—ul| < |ly —u| forally € C}.
We call it the set of (2,0)-attractive points of T. Obviously, A (T) = A (TQ).
Furthermore, we introduce the following set:

Ayt (T)={ue H: ||[T? —u|| < Ty —ul forallyeC}.
We call it the set of (2, 1)-attractive points of T. The following lemma is useful.

Lemma 4.1. Let C be a nonempty subset of H, let T' be a mapping from C into
itself, and let w e H. Then,

(4.1) ue Ay (T) & |Ty—yl> +2(Ty -y, y—u) <0, Vy € C;
(4.2) u€ Ay (T) & HTQy — yH2 +2 <T2y -y, y— u> <0, Yy € C
(4.3) u € Aoy (T) & || T2y — Ty||> + 2(T%y — Ty, Ty —u) <0, ¥y € C.

Proof. The first part (4.1) was proved by Kondo and Takahashi [11]. The second
part (4.2) directly follows from (4.1) since Agg (T) = Ao (T?). The part (4.3) is
proved as follows:

u € Agy (T)
o |12y —u|]” < ||Ty —ul?®, VyeC
& |72 — Ty||* + 2(T% — Ty, Ty —u) +||Ty — u|? < | Ty —u|*, Yy € C
o |72 — Ty||* + 2(T% — Ty, Ty —u) <0, Vy € C.
This completes the proof. O

We give examples to illustrate the concepts of A1 (T"), A2 (T), and Ag (T).
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Example 4.2. Let H = R, and let C' = {—1,1}. Define a nonexpansive mapping
T from C' into itself by

Ter =—=x
for all x € C. In this case, we have that Ajg(T) = A9 (T) = {0}, A (T) =R,
F(T)=0, and F (T?) = {-1,1}.

Example 4.3. Let H = R, and let C' = { 1,1 ,2,%% } Let T : C — C be
a nonexpansive mapping defined by

1 i >
Te =1 27 ?fx_O forallz € C.
—x ifz<0

Then, we have that A1 (T) = {0}, Ao (T) = [-3,0], A2 (T) = (—00,0], and
F(T)=F(T% = 0.
We know from Takahashi and Takeuchi [24] that the set of attractive points

A1 (T) of T is closed and convex. Thus, Ay (T) is also closed and convex because
Ag (T) = Axo (T2). Similarly, we can show that As; (T') is closed and convex.

Lemma 4.4. Let C be a nonempty subset of H, and let T be a mapping from C
into itself. Then, A9y (T) is closed and conver.

Proof. First, we prove that Ag; (T) is closed in H. Let {u,} be a sequence in Ay (T')
such that u, — u (€ H). Let y € C. It suffices to show that || 7%y — u| < [Ty — u].
Since u,, € A9y (T), it holds that HTQy — unH < [Ty — uy|| for all n € N. Therefore,
we have that
7%y =l < (7% = wal| + llun — ul
< Ty — unll + [lun — ull

for all n € N. Since u, — u, we obtain that ||T%y — u|| < [Ty — u|| for all y € C,
which means that u € A9 (T).

Next, we demonstrate that Agy (T') is convex. Let u,v € A9y (T') and A € (0,1).
Define w = Au+ (1 —A\)v € H. We show that w € Ay (T'). Let y € C. Using
Lemma 3.3, we have that

T2 —w|® = || T% = Pu+ 1=\ )|
2
= [T =) + (=N (T%y =)
2 2
= MT?y—ul "+ Q=N [T —v|| =20 = A) Jlu—o|

< ATy —ul® + (1= N || Ty = o> = A (1= A) [lu =]

= ATy =)+ (1 =X (Ty —v)|?

= [Ty = Pu+ (1= A o]l

= Ty —w|®.
Thus, we obtain that Hsz—wH < [Ty —w]| for all y € C, which means that
w € Ao (T). O

We have the following result.
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Lemma 4.5. Let C' be a nonempty subset of H, and let T be a mapping from C
into itself. Then, it holds that Ao (T') C A21 (T) N Ao (T) .

Proof. Let u € A9 (T) and y € C. We demonstrate that u € Agy (T') N Ay (T).
Since T : C' — C', we have that Ty € C. Therefore,

[T%y —u| = |IT(Ty) -l
< Ty =l
<y —wull,
which implies that u € Ag; (T') N Az (T). O

The following lemma was proved by Takahashi and Takeuchi [24].

Lemma 4.6 ([24]). Let C be a nonempty subset of H, and let T be a mapping from
C into H. Then, Aqg (T) NCcCF (T)

As a direct result, we have the following lemma because Ag (T') = Ao (TQ).

Lemma 4.7. Let C' be a nonempty subset of H, and let T be a mapping on C.
Then, A (T)NC C F (T?).

The following three lemmas guarantee that a fixed point is an attractive point
under certain conditions. Though the following lemma (Lemma 4.8) is deduced
from Lemmas 3.4 and 4.5, for the sake of completeness, we give the proof.

Lemma 4.8. Let C be a nonempty subset of H. Let T : C' — C be an (aj, Bi, vis
i,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the following condi-
tions:

(1) age + 16 >0, aze >0, aze >0, Bo, 1,82 > 0;
(2) cep + te1 > 0, o2 >0, o1 >0, 70,71,72 >0,
where the notations aie and ce; are defined in (1.3). Then, it holds that
F(T)C Ay (T) = A0 (T) N Az (T) N A2y (T) .
Proof. 1t follows from Lemma 4.5 that Ao (T') = Ao (T) N Az (T) N Az (T). Thus,
it suffices to prove that F' (T') C Ao (7).

Case (2). Suppose that ceg+ e1 > 0, g2 > 0, a1 > 0, and 79, v1,72 > 0. Let
u € F(T) and y € C. We prove that

1Ty —y||* +2(Ty —y, y—u) <O0.

Since T is (avj, Bi, vi; 4, = 0,1, 2)-generic 2-generalized hybrid, it holds from (1.1)
that

(4.4) agollu — ylI* + aor|lu — Tyl* + agallu — T?y|®
+aiol|Tu — y)|* + 11| Tu — Ty[|* + ara|| Tu — T?y||?
+agol|T?u — yl? + ag1|T?u — Ty|* + aga||T*u — T?y|?

+Bollu — Tul|* + 1| Tu — T?u|* + Bo||T?*u — ul|?
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+y0lly = Tyll* + 1l Ty — T?yl* + 72l Ty — yl* < 0.
Since Y0, V1, Y2 Z 07
2
aoo llu =yl + aor lu — Tyl” + oz Ju — Ty
2
+aqo ||[Tu — Z/H2 + a1 ||Tu — Ty||2 + a2 HTu — T2yH
2 2 2
tazo [T — " + aon [T = Ty||” + oo || T*u — Ty||
2 2
+B |lu — Tul* + 51 | Tw — T?ul|” + B2 | T?u —u||” < 0.
Since w = Tu = T?u, we obtain
2
(45) a0 [ — 917 + et s = T2 + v e — T2 < 0.
Since g2 > 0,
e [lu = yl|* + aer [lu — Ty||* <0,
and thus,
cwo [l = ylI? + ver (= yll” +2 =y, y—Ty) + |y - Ty|*) <o0.
We have from aeg + a1 > 0 that
2
aw (2(u—y, y—Ty) +lly = Tyl’) <0,
Since aq1 > 0, we obtain
2(u—y, y—Ty)+ |y —Ty|* <0.

This means from (4.1) that u € Ao (7).
Case (1). Suppose that age + a1e > 0, a2e > 0, a1e > 0, and Sy, 1, 52 > 0.
Replacing u and y in (4.4), we can derive the desired result. O

Lemma 4.9. Let C be a nonempty subset of H. Let T : C — C be an (cuj, Bi, Vi;
i,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the following condi-
tion:

(1) ape + 26 >0, 16 >0, aze >0, Bo, 1,82 > 0;
(2) ctep + a2 > 0, 1 >0, a2 >0, v0,71,72 >0,
where the notations ae and ce; are defined in (1.3). Then, it holds that
F(T) C Ay (T).

Proof. Case (2). Suppose that cep+ ez > 0, g1 > 0, cve2 > 0, and 79,71, 72 > 0.
Let u € F'(T) and y € C. From (4.2), it suffices to prove that

HTQy—yH2+2<T2y—y, y—u> <0.
As in the proof of Lemma 4.8, we obtain the relationship (4.5):
2
a0 [lu = y* + et fJu = Ty||* + ann [Ju = T?y[|” < 0
since vo,71,72 > 0. Using a1 > 0, we have that
2
o [u = yl* + cus [Ju = Ty|* < 0.
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Therefore,
o llu =yl + s (lu = yll* +2(u—y, y—T2) + [ly - T%||") <o.
We have from aeg + g2 > 0 that
aws (2(u =y, y=T%) + [y - T%]) <0
Since aes > 0,

2(u—y, y—T%) +|ly—T%]| <o,

which means that u € Agg (7).
Case (1). Suppose that age + 26 > 0, 16 > 0, age > 0, and Sy, 51,82 > 0. As
in the proof of Lemma 4.8, we can derive the desired result. O

Lemma 4.10. Let C be a nonempty subset of H. Let T : C — C' be an (cvj, Bs, Vi
i,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the following condi-
tions:

(1) a1e + 26 > 0, ape > 0, a2e >0, Po, S1,52 > 0;
(2) o1 + a2 >0, ep >0, a2 >0, 70,71,72 >0,

where the notations aie and ce; are defined in (1.3). Then, it holds that
F(T) C A (T).

Proof. Case (2). Suppose that ce; + ce2 > 0, teg > 0, cte2 > 0, and 79, 71,72 > 0.
Let u € F/(T) and y € C. From (4.3), it suffices to prove that

HTZy — TyH2 +2 <T2y Ty, Ty — u> <0.

As in the proof of Lemmad4.8, we obtain the relationship (4.5):
o 4= | + aat lu = Ty + az [u = 2* < 0
since v0,71,72 > 0. By using aep > 0, we have that
o1 |l — Ty||* + cven |u— T2yH2 <0.
Therefore,
et [lu— Tyl* + cves (Hu — Tyl +2{u—Ty, Ty—T?%)+ | Ty — T2yH2) <0.
We have from «e1 + (g2 > 0 that
(Vo2 (2 <u Ty, Ty — T2y> + HTy — T2y||2) <0.

Since g9 > 0,
2(u—Ty, Ty—T%)+||Ty—T%|* <0,
which means that u € Ag; (7).

Case (1). Suppose that aqe + a2e > 0, age > 0, ct2e > 0, and Sy, f1, 52 > 0. As
in the proof of Lemma 4.8, we can derive the desired result. O
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We prove the following lemmas which are crucial for proving our main theorems.
These lemmas have been developed by many authors; see, for example, [8], [26] and
[17].

Lemma 4.11. Let C be a nonempty subset of a real Hilbert space H. LetT : C'— C
be an (ovij, Bi,vi; 1,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the
following conditions:

(]-) Qe + Ole Z 07 O2e 2 07 Al > O) /BO)ﬁhﬁQ Z 07
(2) Ole() +aol 2 0, Ole2 2 07 Ole1 > 07 Y0, Y1, 72 2 O;

where the notations aje and o are defined in (1.3). Let {x,} be a sequence in C
such that

(4.6) Tp— Ty =0, Txp—T?2, —0, T?x,— 2, — 0.
If ©y, — u, then u € A1y (T).

Proof. Case (2). Suppose that ceg + te1 > 0, a2 > 0, o1 > 0, and 79, v1,72 > 0.
Let y € C. From (4.1), it suffices to show that

Ty —yll +2(Ty —y, y —u) <0.

Since T is (aj, Bi, Vi3 i, J = 0, 1,2)-generic 2-generalized hybrid, it holds from (1.1)
that

(4.7) agollzn — ylI* + aorl|zn — Tyl + avzllzn — Ty|?
+aio| Ten — yl? + a11||Tay — Tyl* + cna| Tz, — T2yl
+agol| T e, — ylI* + ao1 | T?wn — Tyl|® + gl Tz, — T?y|?
+Bolltn — Tan|? + Bl Tan — T?2n|* + B2l| T?2n — 20>

+y0lly = Tyl + nlITy — T?y|* + 72l Ty — y)|* < 0.

Since g, 71,72 > 0, we obtain

00 ||Tn — yl|* + ao1 |z — Tyl> + aos Hazn — T2yH2
+ano [Tz — yl* + an || Ten — Tyl? + iz || T, — T2y
tas || T, — || + az || 720 — Ty||* + e | T2, — 7|
+80 |0 — Tan|* + b1 HTacn — T2an2 + B HTan — mnH2 <0,
and hence,
aoo l|zn = yl* + a0t on — Ty||* + aos [|2n — T2
a0 ([ Twn — al +2(Tww = 2a, @0 = 9) + llew — )
o (T2 = 2all® + 2 (Twn = 20, 20— Ty) + a0 = Ty|?)

4019 (HTxn — anQ +2 <T£L‘n — Tp, Ty — T2y> + Hxn — TQyHQ)
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tano (T2 = wal | + 2 (T2 — 20, 20— 3) + n - w1P)
a1 (|72 = @al|” + 2(T%00 = @0, @0 — Ty) + llon — Ty|)
tas ([T = @al|* + 2 (T?00 = 20, 20— T29) + a0 — T%|")
48070 — Taal? + B | Tan — Tl + 6 |20 — aa* < 0
Applying a Banach limit 1, we obtain from (4.6) that

2
(48) a0t [lzn — ylI* + aern 20 — Tyl|* + aeapin ||z — T?y||” < 0.
Since g2 > 0,
Qo0 fln ||Tn — y||2 + a1 fin ||Tn — TyH2 < 0.
Thus,
2 2 2
taottn |2 = 91I* + cwrptn (llew = ylI* +2 (@ =y, y = Ty) + ly = Tyl”) <.

Since cep + o1 > 0,

aarfin (2 (en =y, y— Ty) +lly = Tyl*) <o0.
Thus,
an (20w =y, y=Ty) +lly - TylP) <.
Since a1 > 0,
2(u—y, y—Ty) +|ly—Tyl* <0
for all y € C. This means that u € Ao (7).

Case (1). Suppose that age + @16 > 0, 2 > 0, aje > 0, and Sy, 51,82 > 0.
Replacing z,, and y in (4.7), we can derive the desired result. H

Lemma 4.12. Let C be a nonempty subset of a real Hilbert space H. LetT : C — C
be an (ovij, B, vis 1,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the
following conditions:

(1) cgo + w2 + a0 + a2 > 0, a9 + 12 > 0, a1, 001, 21 > 0,
agg + a2 >0, Bo, B1, 682 >0, v0,71 > 0;

(2) o + o0 + g2 + 2 > 0, a1 + a1 > 0, o, 11,12 > 0,
o2 +az >0, By, /1 >0, v0,7,72 > 0.
Let {xy,} be a sequence in C' such that
(4.9) Tz, — z, — 0.
If xyy, = u, then u € Ao (T).

a0, 001,12 > 0, ag2 + aze > 0, By, /1 > 0, and 19,7,72 = 0. Let y € C.
From (4.2), it suffices to show that

|72y — y||* +2(T% -y, y —u) <0.

Proof. Case (2). Suppose that agy + a0 + ag2 + 22 > 0, ag1 + ag1 > 0,
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Since T is (ayj, Bi, V43 4§ = 0, 1,2)-generic 2-generalized hybrid, it holds that
(4.10) aoo l|zn = yl* + a0t |n — Ty|* + aos [|2n — T
taro ITzn — ylf? + a1 | T — Tyl + aa || Tan — T
tam | T2 = || + az [T — Ty||” + as || %20 — 2|
+80 |20 — Tn|* + B1 || Tn — T2, || + Ba | T2n — 22|
+0 ly = Tyl? + 7 | Ty — T2|” + 72 | T - | < 0.
Since aqg, 11, @12 > 0, Bo, 61 > 0, and g, 71,72 > 0, we obtain
aoo l|zn = yl* + a0t on — Ty|* + aos [|2n — T
t+as || T2z — y||* + aor || 7200 — Ty + aos || T2, — Ty
+ 2 HT2wn — wnHQ <0,
and hence,
aoo [en = ylI” + a0t l|on = Ty|* + aoe [|on — T2y
tano (T2, = wal|* + 2 (T2 — 20, 20— 3) + ln — w1P)
+ao (HTQSL'n — ZL'nH2 +2(T%%, — Ty, Tn —TY) + ||z — Ty||2)
tazs ([ T%0n = wal* + 2 (T%00 = 20, 20 = T29) + a0 — T?|")
+ 9 HT2xn — anQ <0.
Applying a Banach limit p, we obtain from (4.9) that
(4.11)  (aootag)pnllzs —yl®
+ (o1 + ag1)pinl|zn — Ty[* + (@02 + ag2) |, — T?y||* < 0.
Since a1 + a1 > 0,
(@00 + a20)tin|zn — Yl + (@02 + az2)pn 2 — T?y|* < 0.
Thus, we obtain that
(00 + @20) || 0 — y?
+ (02 + ag2)pin (20 — ylI” + 2 (x0 =y, y = T?y) + |y — T?y|?) <0.
Since agp + a0 + a2 + a2 > 0,
®m+ammn@¢m—y,y—T@%HW—T@W)SQ
Since z,, — u, we have that
(02 +a) (2 (u—y, y—T2) + |ly - %) <.
Since g2 + ago > 0,

2(u—y, y—T%) +|ly— %> <0
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for all y € C. This means that u € Ay (7).

Case (1). Suppose that agg+ g2 + ago + e > 0, a1+ aiz > 0, apr, a11, a1 >
0, agp + a2 > 0, By, B1, P2 > 0, and 79,71 > 0. Replacing z,, and y in (4.10), we
can derive the desired result. Il

5. THE EXISTENCE OF ATTRACTIVE POINTS AND FIXED POINTS

Regarding the existence of (1,0)-attractive points of T, we know the following
result.

Theorem 5.1 ([13]). Let C be a nonempty subset of a real Hilbert space H, and
let T:C — C be an (ouj, Bi,vi; 1,5 = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that T satisfies one of the following conditions:

(1) Qe +a10 2 07 O2e Z 07 Ole > 07 /807617/82 2 07 Y0 +71 Z 07 Y2 Z 07

(2) o0 + o1 > 0, ez >0, a1 >0, Bo+ 51 >0, f2>0, v0,71,72 >0,
where the notations e and ae; are defined in (1.3). If there exists an element

x € C such that the sequence {T"x} in C is bounded, then Ao (T') is nonempty.

By adding the assumption that C' is closed and convex, the following fixed point
theorem was obtained.

Theorem 5.2 ([13]). Let C be a nonempty, closed and convex subset of a real Hilbert
space H, and let T : C — C be (cuj, Bi,vis 1, j = 0,1, 2)-generic 2-generalized hybrid.
Suppose that T satisfies one of the following conditions:

(1) Qe + 16 > 07 (2e > Oa Ole +BO > 07 61762 > 07 ’70—1_71 > Oa 72 > 07

(2) O[.()+O[.1 Z 07 (g2 Z 07 (Olel +/YU > O? BO"‘Bl Z 07 /82 2 07 Y1572 Z 07
where the notations e and ae; are defined in (1.3). If there exists an element

x € C such that the sequence {T™z} in C is bounded, then F (T') is nonempty.

Regarding the existence of (2, 0)-attractive points and fixed points of 72, we have
the following results.

Theorem 5.3. Let C' be a nonempty subset of a real Hilbert space H, and let
T:C — C be an (ayj, Bi,vi; 1, = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that T satisfies one of the following conditions:

(1) ape + 20 > 0, 10 >0, 2e >0, Bo, 51,82 >0, 0+ >0, 72> 0;

(2) Ole() + (o2 2 07 (673} Z 07 Qg2 > Oa BO +51 2 0> 62 2 Oa Y0, V1,72 2 Oa
where the notations e and ae; are defined in (1.3). If there exists an element

x € C such that the sequence {T™x} in C is bounded, then Agy (T') is nonempty.

Proof. Let p € (I°°)" be a Banach limit. For the bounded sequence {T"z}, it holds
from Lemma 3.1 that there exists a unique element u € ¢o {T"x} (C H) such that

(5.1) pin (T3, v) = (u, v)
for all v € H. We show that u € Agg (7).
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Case (2). Suppose that aep + ez > 0, ate1 > 0, a2 >0, By + 51 >0, f2 > 0,
and 7p,71,72 > 0. Let y € C. From (4.2), it is enough to prove that
2
HT2y—yH +2<T2y—y, y—u> <0.
Since T is (aj, Bi, Vi3 i, J = 0, 1,2)-generic 2-generalized hybrid, it holds from (1.1)
that
(5.2) agol|T"z — y|I* + aq[|T"z — Ty||* + age| T 2 — T?y|?
+aro|[ T e — y||* + an||T" e = Ty|? + an| T — Ty
+ago||T" 22 — y||* + ao1 [T 22 — Ty|* + age| T2 — T?y|?
+50HTn33 - Tn+1xH2 + BIHTnJrlx o T”+2xH2 + ,32”Tn+21' o TanQ
+y0lly = Tyl? + Ty — T?y))> + 72lIT%y — yl*> <0
for all n € N. Since 82 > 0, v9,71,72 > 0, we obtain that
2
aoo [Tz — y||* + aor |T"x — Ty||* + aoz ||T"a — T?y||
oo [T =y + an [T e = Ty||” + ar |77 e - T2
tam |77 — y|* + am |72 — Ty[|* + an |72 - 72|
By [T — TP 4 By T — TP < 0
It holds that
2
oo [IT"2 — yl|* + cver [Tz — Ty||* + cvas || T2 — T?y||
2 2
targ ([ = y||* = 1772 = yI?) + anr (|72 = Tyl = T - Ty)?)
2 2
s ([T = 2y = |17 - 1))
2 2
taz ([T = y||* = 17"z = yI*) + azr (|72 = Ty||” - T2 — Ty)?)
2 2
+ags ([ 7720 = 72" — [T — T%|")
LBo||T7 — T | 4 By T e — T2 <.
Applying the Banach limit y, we obtain that
2
Ctaotin T2 — g + e jin 1T — Tyl + vt | T2 — T2
+ (Bo + B1) un || Tz — Tz |* < 0.
It follows from [y + B1 > 0 that
2
(53)  awopn 1T — Y2 + qarpin [T — Tyl2 + awapin | Tz — T2 < 0.
Since g1 > 0, we have that
2
Qe lin ||Tn1" - yH2 + Qe2fin HTnfL' - T2yH <0.
Using aeg + (te2 > 0, we obtain that

et | T2 = T2||* < —awopn [Tz — yI?
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< i [Tz =yl
Since ey > 0, we have that
i || T = T2||* < o | T2 — ),
and thus,
i (177 = y|> +2(T" — y, y = T%) + |ly = T%|") < pn 172 = >
This means that
i (2(T"0 —y, y = T%) + [y - T%|*) <0,
From (5.1), it holds that
(5.4) 2(u—y, y—T%) + |y - T%|* <0

for all y € C. This implies from (4.2) that u € Agg (T).
Case (1). Suppose that age + a2e > 0, avje > 0, e > 0, So,B1,82 > 0,

Yo+71 > 0, and 2 > 0. We can obtain the desired result by replacing the variables
y and T"x in (5.2). O

Theorem 5.4. Let C' be a nonempty, closed and convexr subset of a real Hilbert
space H, and let T : C — C be (auj,Bi,7vi; 4,7 = 0,1,2)-generic 2-generalized
hybrid. Suppose that T satisfies one of the following conditions:

(1) 0400"‘0420207 041.20, (342.4—62 >07 50751 207 ’70+’71 Zoa ’72207
(2) a0 + o2 > 0, o1 >0, ez +72>0, fo+ 81 >0, B2 >0, 7,71 > 0;

where the notations e and aw; are defined in (1.3). If there exists an element
x € C such that the sequence {T™z} in C is bounded, then F (T2) 18 nonempty.

Proof. Let p € (I°°)" be a Banach limit. From Lemma 3.1, it holds that for the
bounded sequence {T™z}, there exists a unique element u € ¢o {T"z} such that

(5.5) pn (T, v) = (u, v)

for all v € H. Note that since C' is closed and convex, we have that co{T"z} C C.
Thus, u € C. We show that v € F (TQ).

Case (2). Suppose that aep + ez > 0, ae1 > 0, o2 +72 > 0, o+ 1 > 0,
B2 > 0, and 9,71 > 0. Since T is (auj, B, Vi; 1,4 = 0,1, 2)-generic 2-generalized
hybrid, we have from (1.1) that

(5.6) aoo|| Tz — ul|* + ao |T"z — Tu|* + ag||T"x — T?u)?
+aqo|| T — u|)® + an [T e — Tul? + a| T2 — T%ul?
oo || T2z — u||* + aoy |7 22 — T + ags|| T 22 — T?u)?
B0l T — T ae||” + Bu| T e — T2 || + Bof| T2 — T
+y0llu = Tull® + v Tu — T?u? + 72| T?u — u|* <0
for all n € N. Since 2,70, 71 > 0, we obtain that

aoo || Tz — ul® + a1 | Tz — Tul|* + aps |T"a — TzuH2
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tar [Tz — ul* + au [T — Tul* + are | T2 — T
bz |72 — |+ 772 = Tl + aza [ 7742 — 72
+Bo ||[T"2 — T"HxH2 + 61 HT"HJJ — T"“ac“2 + 72 HTQu - uH2 <0,
and hence,
a0 | T2 — ul|? + a1 | T2 — Tul® + aves | T2 — Tu)?
+ao (HT"“x —ul* = Tz - u||2) + o (HT”+1x — Tu|? = |T"x - TuH?)
tana (|| = T2l — |77 — T2)

+azo (|72 — ul|” ~ |

1T — uHQ) + a1 (HT"% — T — || T — TW)
ta (|72 - T||” — |77 - 7% *)
80 | T — T || + B0 || T 2 — T2 ||* + 42 | T?u — || < 0.
Applying the Banach limit p, we obtain that
vaopin | T — w)|® + ot fin || T2 — Tu||? + Qtanfin | Tz — T2uH2
+ (Bo + Bu) pn || T2 — T |* + 42 || T2 — u]|* < 0.
Since Sy + 81 > 0, we have that
Qaotin | T2 — ul| >+ a1 in | T2 — Tul*+aeopin | T"x — T?u||*+72 | T?u — u||* < 0,
Since a1 > 0, it holds that
aotin | T2 — ul|* + cvazpin | T2 — T%u||* + 72 || T%u — u)* < 0.
This yields that
veopin | T2 — u||® + Qtanfin (HT”x —ul*+2 (T"x —u, u—T?z) + |ju— T2uH2>
+ 30 | T?u - < 0.
Since aeg + ez > 0, it holds that
cazpin (2(T" =, w=T2%) + [|lu = T2u[*) + 92 | T2 u||” < 0.
We have from (5.5) that
caz (2w =, w=T22) + [[u = T%|*) + 5 || 7% — u|* <0,

and hence,
2
(o2 + 72) Hu — T2uH <o0.
Since a2 + 72 > 0, we obtain that u € F (TQ).
Case (1). Suppose that ape + 2e > 0, vje > 0, age + P2 > 0, By, 01 > 0,

Yo +71 > 0, and 2 > 0. We can obtain the desired result by replacing the variables
wand T"x in (5.6). O
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Regarding the existence of (2, 1)-attractive points of T, we have the following
result.

Theorem 5.5. Let C be a nonempty subset of a real Hilbert space H, and let
T :C — C be an (ouj, Bi,vi; 1,5 = 0,1,2)-generic 2-generalized hybrid mapping.
Suppose that T satisfies one of the following conditions:

(1) 1 + 0026 2 07 Qe Z 07 oe > Oa 50761752 2 07 70+71 Z 07 72 Z Oa
(2) (e7%1 +a.2 Z 07 [67Y1)] 2 07 Qg2 > 05 /BD+/BI 2 O) /62 Z 07 Y0, 71, Y2 Z Oa

where the notations e and ae; are defined in (1.3). If there exists an element
x € C such that the sequence {T"x} in C is bounded, then A (T') is nonempty.

Proof. Let u € (I°)" be a Banach limit. For the bounded sequence {T"x}, we
obtain from Lemma 3.1 that there exists a unique element u € co{T"x} (C H)
such that

(5.7) pn (T, v) = (u, v)

for all v € H. We show that u € Ag; (T)).
Case (2) Suppose that Qo] + (te2 > 07 Qe > 07 Ole2 > 07 BO + Bl > 07 62 > Oa
and 7p,71,72 > 0. Let y € C. From (4.3), it suffices to prove that

7%y — Ty||* + 2(T% — Ty, Ty —u) <0.
As the proof of Theorem 5.3, we can obtain (5.3):
2
aopin [|T"2 = y||* + o1 pin [|T"2 = Tyl|® + cvaapan || T2 = T?y|” < 0
since B2 > 0, Y0, 71,72 > 0, and By + S1 > 0. Since aeg > 0, the following holds:
2
et1fin || T"x — Ty||* + cvezfin |T" e — T2yH <0.
From ce1 + cte2 > 0,

Qo2 n HTnx - T2yH2 < —Qelln ||Tnx - TyH2

A

< awzpn [T = Tyl
Therefore, since o > 0, we have that
pn || T — Ty||* < g | T — Ty
Thus, it holds that
fin (HT"-’IJ — Ty|* +2(T"x — Ty, Ty — T°y) + || Ty - TZyHQ) < i | T2 — Ty|1?,
and thus,
pon (2(T" = Ty, Ty~ T) + || Ty - T%|*) <o0.
By using (5.7), we have
2(u—Ty, Ty—T%)+|Ty—-T%|" <0
for all y € C. This implies that v € Agy (T).
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Case (1). Suppose that aje + a2 > 0, e > 0, a2e > 0, Bo, 51,62 > 0,

Y +v1 >0, and 2 > 0. As in the proof of Theorem 5.3, we can derive the desired
result. O

6. WEAK CONVERGENCE THEOREMS

In this section, we present weak convergence theorems for finding attractive points
of generic 2-generalized hybrid mappings without assuming that the domains of the
mappings are closed. For finding fixed points of the mappings, we additionally
assume that the domains are closed. The fundamentals of the proofs were improved
by many authors; see, for example, [8], [26], [17], [11], and [4].

Theorem 6.1. Let C be a nonempty and convex subset of a real Hilbert space H.
LetT : C — C be an (auj, Bi,vi; i, § = 0,1, 2)-generic 2-generalized hybrid mapping
that satisfies one of the following conditions:

(1) ape + 10 > 0, e >0, a1e >0, Bo, b1, 82 > 0;

(2) [7Y0] —I—Oé.l Z 0, Ole2 2 07 Qg1 > 07 Y0, Y1, 72 2 0.

Suppose that Ayo (T') is nonempty. Let Py (r) be the metric projection from H onto
Ao (T). Let a,b € (0,1) such that a < b, and let {ay}, {bn}, and {c,} be sequences
of real numbers such that a, + b, +c, =1 and 0 < a < an, by, ¢y < b < 1 for all
n € N. Define a sequence {x,} in C as

Tpal = anTp + bpTxy + ey T2y, (e O)

for all n € N, where x1 € C is given. Then, the sequence {x,} converges weakly to
an element T of Ao (T), where T = limy,_00 Payo(r)Tn-

Additionally, if C is closed in H, then {x,} converges weakly to a fized point
T = limp 0 Pp(ryzn of T, where Pp(ry is the metric projection from H onto F (T').

Proof. Case (2). Suppose that cep+ ce1 > 0, g2 > 0, g1 > 0, and 7g,71,72 > 0.
It follows from [24] that Ao (7T') is closed and convex. Since it is assumed that
A1p (T) is nonempty, there exists the metric projection Py, (r) from H onto Ay (T').
First, we show that

(6.1) [2nt1 = qll < [lzn — qll

for all ¢ € A19(T) and n € N. Indeed, since {ay}, {b,}, and {¢,} are sequences of
positive real numbers such that a,, + b, + ¢, = 1, we have that

lxnt1 — ql| = Han$n + by Ty + cnT?xy, — qH
= ||an (zn — @) + by (Tzn, — q) + o (T2n — q) ||
< an |0 — gl + bn (| Tz — gl + cn || 7?20 — 4|
< ap |2n — qll + by |20 — gl + cn l2n — 4]
= llzn —dll.-

Thus, {||z, — q||} is convergent in R, and then, {x,} is bounded. Furthermore, we
obtain from (6.1) and Lemma 3.2 that { P4, 1)z} is convergent in Ayq (7).
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Next, we demonstrate that
(62)  anby |20 — Tn|? +bpcn | Tn — T2an||” + oy, || T2, — 2|
<lzn = al® = l|lzns1 — ql®
for all ¢ € Ao (T) and n € N. Indeed, using Lemma 3.3, we have
|ns1 —al®
= Han (xn —q) + bp (Tzy, — q) + cp (T21:n — q) H
= an llan = all® + bu 1 T2n = qll” + o | %20 — o

2

— anby, ||Tn — T:an2 — bpen, HTa?n — T2:zan2 — Ccpan HTQ.CCn — an2
< an||zy - QHQ + bn [|2n — QH2 + ¢ [|Tn — CIHQ

— apby ||Tn — Tan2 — bycp, HTazn - TQ:/U”H2 — cpan, HTQZL‘H — :L‘nH2
2
b

= ||lzn — ql|* — anbn |20 — Txn|* — buca | Ty — TanH2 — et || T?2y — 24|

which implies that (6.2) holds. Since the sequence {||z,, — ¢||} is convergent, we
have from (6.2) that

(6.3) Tp —Tan —0, Tan—T*z,, T*z,—1,—0

as n — 00.

Since the sequence {z,} is bounded, there exists a subsequence {xy,} of {zy}
such that z,, — u for some v € H. From (6.3) and Lemma 4.11, we have that
u € Ao (T). We prove that ¥, — u. Assume that z,, — u; and x,, — us,
where {z,;} and {z,,} are subsequences of {x,}. From (6.3) and Lemma 4.11, it
holds that uy,us € Ajo (T'). Thus, two sequences {||z, — u1||} and {||z, — ua||} are

convergent. Define a = limy,_,o0 ( ||2n — u1]|* — || — u2|*) (€ R). It holds that

= wrl® = [l — ual® = =2 (@, wr — ug) + [lur|* = [Jua||®.
Since ,;, — u1, we have that a = —2(u1, ug —uz) + lu]|® = |lug||®. Similarly,
since &, — ug, we have that a = —2 (uy, u; — ug) + |lug||* — [|uz|/®. As a result,

we obtain (u; — ug, uy — ug) = 0. This means that u; = ug, and thus, z, — u.

We demonstrate that u =7 (E limy, oo PAlO(T)xn). Since u € Ao (T), it follows
that

<:Ij'n — PAlo(T)xm PAlo(T)xn — 'LL> > 0
for all n € N. Taking the limit as n — oo, we have that (u —Z, T —u) > 0. This
means that v = T. Hence, we obtain z,, — T.

Suppose, in addition to the other assumptions, that C' is closed in H. Since C
is weakly closed and z, — T (€ A9 (T)), we have that T € C' N Ay (7). From
Lemma 4.6, T € F (T). Thus, F (T) is nonempty. From Lemma 3.4, T is quasi-
nonexpansive. Hence, F'(T") is closed and convex, and there exists the metric pro-
jection Pp(ry from H onto F/(T). As in the proof of (6.1), we can obtain

[zn41 = gll < flzn — gl
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for all ¢ € F(T) and n € N. Thus, we have from Lemma 3.2 that {Ppr)7n}
converges strongly to an element = of F(T), that is, ¥ = lim,co Pp(ryTn. We
prove that

z (: lim PAlo(T)xn> = 53\(: lim PF(T)$n) .

n—o0 n—oo

Since T € F' (T'), we have from the property of the metric projection that

(Tn — Pp(ryTn, Ppyzn —7) 20
for all n € N. Since x,, — T and Pp(p)z, — T, we have that (T -7, 7 —7) > 0, and
then, ¥ = 7. Thus, {z,} converges weakly to T = limy, 0 Pp(1)Tn-

Case (1). Suppose that age + a1e > 0, e > 0, a1e > 0, Bo, 51,52 > 0. As in
the proof of Case (2), we can derive the desired result. O

Theorem 6.2. Let C' be a nonempty and convex subset of a real Hilbert space H.
LetT : C — C be an (auj, i, vi; i, § = 0, 1,2)-generic 2-generalized hybrid mapping
that satisfies one of the following conditions:

(1) o + g2 + a0 + a2 > 0, aip + 12 > 0, a1, 091, 21 > 0,
ago + g2 >0, Bo,B1,B2 >0, v0,71 > 0;

(2) apo + oo + g2 + a2 > 0, ap1 + a1 > 0, g, a1, 12 > 0,
ap2 + aa >0, Bo,B1 >0, v0,71,72 = 0.

Suppose that Az (T') is nonempty. Let Pa,, (1) be the metric projection from H onto
Ao (T). Let a,b € (0,1) such that a <b, and let {an} and {c,} be sequences of real
numbers such that a, + ¢, =1 and 0 < a < ap,c, < b <1 for alln € N. Define a
sequence {xp} in C as
Tpg1 = anZp + cn T2, (e O)

for all n € N, where x1 € C is given. Then, the sequence {x,} converges weakly to
an element T of Az (T'), where T = limy, 00 Payy(1)Tn-

Additionally, if C is closed in H, then the sequence {xy,} converges weakly to a
fized point T = lim, s Ppp2yzn of T2, where Pr 72y 1s the metric projection from
H onto F (TQ).

Proof. Case (2). Suppose that agy + a2 + apa + aza > 0, ap1 + a1 > 0,
a1, 11,012 > 0, gz + a2 > 0, fo, B1 > 0, and vg,v1,72 > 0. Since Aoy (T') =
Aqp (T2), it follows from [24] that Agg (T) is closed and convex. Furthermore, we
assume that Agg (T') is nonempty. Thus, there exists the metric projection Py, (1)
from H onto Agy (T). We show that

(6.4) [2nt1 = qll < [lzn — qll

for all ¢ € Agg (T') and n € N. Indeed, since {a,} and {c,} are sequence of positive
real numbers such that a, + ¢, = 1, we have that

”xn—l—l - QH = H(anxn + Cnszn) - QH
= Han (xn - Q) +cn (Tzl'n - Q) H
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<ap ||:L‘n - QH +cp HTQl'n - QH
< ap ||zn — ql| 4 cn |l2n — 4]
= ||lzn — 4ql|.-

Thus, {||z, — ¢||} is convergent in R, and then, {x,} is bounded. Furthermore, we
obtain from Lemma 3.2 that {PAQO(T)xn} is convergent in Ay (7).
Next, we demonstrate that

(6.5) ancn |20 — T?20|* < l|zn — ql* = 201 — glf?
for all ¢ € Ay (T') and n € N. Indeed, using Lemma 3.3, we have that
s — gl
= [Jan (@0 — @) + ca (T2 — q) ||’
= an [ — al* + o |00 — || — anca |2n — T2,
< ay e = gl* + cn 2w — ql* = anen |20 — Ta2]|
= ||z — gl — ancn Hxn — TQZL'nH2 ,

which means that (6.5) holds. Since the sequence {||z,, — ¢||} is convergent, we have
from (6.5) that

(6.6) Ty — T%2, — 0

as n — 0.

Since the sequence {x,} is bounded, there exists a subsequence {x,,} of {z,}
such that z,, — u for some v € H. From (6.6) and Lemma 4.12, we have that
u € A (T). We prove that x, — u. Assume that z,, — u; and x,, — us,
where {z,,} and {zy,} are subsequences of {z,}. From (6.6) and Lemma 4.12,
ui,ug € Ago (T). Thus, two sequences {||x, — u1||} and {||x,, — uz||} are convergent.

Define a = lim,,_s00 <||a:n - u1H2 — ||zn — U2||2> (€ R). It holds that

= w ] = an = u2l® = =2 (@n, w1 —ug) + lur | = Juzl.
Since x,,; — u1, we have that a = —2 (u1, u1 — ug) + l|u1]|* = |juz||*. Similarly, since
Tn, — Uz, we have that a = —2 (ug, u; — ug) + |luy||® — |luz||®. Consequently, we

obtain (u; — ug, u; — ug) = 0. This means that u; = ug, and thus, z, — u.
We show that u =7 (E limy, 500 PAQO(T):L*”). Since u € Asy (T), it follows that

<xn — PAQO(T)xn, PAQO(T)»Tn — u> >0

for all n € N. Taking the limit as n — oo, we have that (v —Z, T —u) > 0. This
means that v = Z. Hence, we obtain z,, =~ T (E limy oo PAQO(T).CC]C).

Suppose, in addition to the other assumptions, that C is closed in H. Since C' is
weakly closed and z, — T (€ Az (1)), we have that T € C'N Ay (T'). From Lemma
4.7, it holds that * € F (T2). Thus, F (T2) is nonempty. Furthermore, from
Lemma 3.5, T? is quasi-nonexpansive. Therefore, F (T2) is closed and convex.
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Consequently, there exists the metric projection Pp(p2) from H onto F (T?). In
much the same way as for the proof of (6.4), we can obtain

[#n+1 — gl < llzn — 4l
for all ¢ € F(T?) and n € N. Thus, we have from Lemma 3.2 that {Ppr2)zn}
converges strongly to an element Z of F(T?), that is, Z = lim, 0o Pp(r2)z,. We
prove that

T (E lim PAQO(T)a:n> =T (E lim PF(Tz)xn) .

n—oo n—o0

Since T € F (T 2), we have from the property of the metric projection that
<f17n — PF(TQ)xna PF(TQ):ETL - j> 2 0
for alln € N. Since x,, — T and Pp(p2)z, — T, we have that (T—7, 2—7) > 0, which
means that ¥ = Z. Thus, {z,} converges weakly to T = limy, 00 Pp(r2)Zn € F' (T%).
Case (1). Suppose that agg+ aga +ago + a2 > 0, arp+aiz > 0, apr, 11, a1 >

0, awo+ age >0, Bo, f1, P2 > 0, and 79,1 > 0. As in the proof of Case (2), we can
derive the desired result. Il

7. STRONG CONVERGENCE THEOREMS

In this section, we present strong convergence theorems for finding attractive
points of generic 2-generalized hybrid mappings without assuming that the domains
of the mappings are closed. Additionally, for finding fixed points of the mappings, we
assume that the domains are closed. The fundamentals of the proof were developed
in [27], [12], [5], and [19].

Theorem 7.1. Let C be a nonempty and convexr subset of H. Let T : C — C be
an (oij, Bis Vi 4,J = 0,1,2)-generic 2-generalized hybrid mapping that satisfies one
of the following conditions:

(1) age + @10 > 0, 26 >0, are >0, Bo,B1,82 > 0;

(2) oo + o1 > 0, te2 >0, o1 >0, 70,71,72 > 0.
Suppose that Ayo (T) is nonempty. Let Pa (1) be the metric projection from H
onto Ao (T). Let a,b € (0,1) such that a < b, and let {\,}, {an}, {bn}, and {c,}

be sequences of real numbers in the interval (0,1) such that
o
Ap — 0, Z Ap = 00,
n=1

ap +bp+cn=1, 0<a<ayby,c, <b<1l, VneN.

Let {z,} be a sequence in C' such that z, — z. Define a sequence {x,} in C as
follows:

Tl = Anzn + (1= Ap) (anxn + b, Tz, + ch2$n)
for all n € N, where x1 € C is given. Then, the sequence {x,} converges strongly
to an attractive point Z € Ay (T), where Z = Py, (1)2-
Additionally, if C is closed in H, then {x,} converges strongly to a fized point
= Pp(r)z € F(T), where Pp(ry is the metric projection from H onto F (T).

)
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Proof. Case (2). Suppose that cep+ ce1 > 0, a2 > 0, 1 > 0, and 79, 71,72 > 0.
Define y, = anzy + bpTx, + ¢, T2, € C for all n € N. Then, we have that
Tnt1 = Anzn + (1= Ap) yn € C.

First, we show that z, — 2z = P4, (1)2. It is easy to verify that

(7.1) lyn — ¢l < llzn — 4|

for all ¢ € A19(T") and n € N. Indeed, since ¢ € Ao (T), an + by + ¢, = 1, and
Qn, by, cn > 0, we have that

Hanxn + b Ty + cn T2y, — qH

an [|Tn = gl + bn [ Tzn — ql| + cn HTQ"En - (]H
an [|zn = qll + b 20 — qll + cn [l2n — g

[ 2n — gl -

We can demonstrate that the sequence {z,} is bounded by using mathematical
induction. Indeed, let ¢ € Ao (T'), and define

1yn — qll

IN A

M = max {sup T q||} .
keN

Since {z} is bounded, M is a real number. We prove that ||z, —¢|| < M for all
n € N. (i) It is obvious for the case of n = 1. (ii) Assume that |z, — ¢|| < M for
some k € N. We have from (7.1) that

Az + (1= Aw) i — gl

Ak 1z = qll + (1= M) 1y — dll

Ak llze — gl + (1= Xe) [|lzx — 4l
)\kM—{—(l—)\k)M:M.

211 — gl

IAIA A A

Hence, {x,} is bounded.
Let us show that the following inequality holds:

(7.2) anbp |20 =Txp||? + bucn | Txn — T 20|12 + cnan||T? 20 — x0)?
< Aallzn = al? + llzn — a® = |zp41 — glf?
for all ¢ € A9 (T") and n € N. Indeed, using Lemma 3.3, we obtain
|zn+1 = all* = 1A (20 — @) + (1= A) (9 — @)
< A llzn = all* + (1= M) llya — gl
< An llzn = all® + [[an (20 — @) + bu (Taw = @) + e (P20 — 0) |
= Aallzn = all® + an lew = all® + bu [ T2n — gl + e | T2 — g
— anby, ||Tn — TwnH2 — bpen, HTxn — sznHz — CpOn HTza:n — anQ
< Anllzn = al® + an |z — all* + by @0 — all* + ca 20 — gl
— anby || Tn — T:L'n||2 — bycn, HTmn — T2£L'nH2 — cpan HT2:En — :EnH2

= Ao llzn — all® + len — glf?
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— apby ||xn — T:L’n||2 — bycn HTxn — T2mnH2 — cnan, HTQSL'n — :nnH2 .
Thus, the relationship (7.2) follows. Furthermore, it holds that
(73) s — 2all € A lzn — 2all + 1T — wall + || T2, — 2
for all n € N. This inequality can be ascertained as follows:
[#nt1 = @nll = | Anzn + (1 = An) yn — 24l
< Anllzn = @nll + (1 = An) lyn — 20|
< Mallzn = ol + l|an@n + bpTxn + cnT%x, — (an + by + ¢) |
< Anllzn — 2ol + on || Tzn — 20| + Cn||T2xn — Ty |
< Aallzn = @l + [Ty — 20 + Hszn — zn.
Define X,, = |z, —z||* (> 0), where z = Pa,o(ryz- Our goal is to show that
X, — 0 as n — o0o. Let us divide the rest of the proof into two cases.
Case (A). Suppose that there exists a natural number n’ such that X, 11 < X,

for all n > n’. In this case, the sequence {X,,} is convergent. Since z € Ay (T), it
holds from (7.2) that

(7.4) anbnH:lcn—TaUnH2 — bpen||Tx, — TgaUnH2 — cnanHT2xn — xn\|2
< Mallzn = 212 + Nz — 2 = o — 2
= Mallzn — 2|2 + X — Xpta

for all n € N. Since {z,} is bounded and \,, — 0, we have that

(7.5) Tp —Tan =0, Tan—T*z, =0, T?x,—1z,—0.

Then, it holds from (7.3) that

(7.6) Tpg1 — Tp — 0.

Using (2.1) and (7.1), we obtain

Xps1 = |znsr — 2

1A (20 = 2) + (1= M) (= 2|

(1= 2 [y — 2> + 200 (Tng1 — 2, 20— 2)

(1= M) [|2n = 2|12 + 200 (g1 — Tny 20— 2) + (&0 — 2, 20 — 2))

(1= Xn) X + 20, ((pg1 — Ty 20 —2) + (@0 — Z, 20 — 2))

for all n € N. Since {z,} is bounded, it holds from (7.6) that (z,+1—2n, 2n—2) — 0.
Since > 7, Ap = 0o is assumed, from Lemma 3.6, it suffices to prove that

IA A

limsup (z, — %, 2z, —2) < 0.
n—o0

Since the sequences {z,} is bounded and z, — z, we can assume, without loss of
generality, that there exists a subsequence {z,} of {z,} such that

limsup (z, — Z, zp, —2) = lim (z,,, — Z, 2, — 2)
n—oo 1—00
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and x,, — u for some u € H. Lemma 4.11 and (7.5) imply that u € Ajo (7). Then,
we have from 2, — 2 and zZ = Py (7)z that
limsup (zn, — %, 2p, —2) = lim (vy, —Z, 2n, — 2)
n—oo 1—00

= (u—2%, z2—2%)<0.

This completes the proof for Case (A).
Case (B). Suppose that there exists a subsequence {X,,} of {X,} such that
Xy, < Xy,41 for all © € N. Let ng be a natural number such that

{kEN:kSno, Xk<Xk+1}
is nonempty. Define
7(n)=max{k e N:k<n, Xi<Xpi1}, Vn>no.

From Lemma 3.7, we have that

(7.7) T(n) — o0 asn — oo
(78) Xn < XT(TL)+17 Vn > no;
(79) XT(n) < XT(n)—‘,—lv Vn > ng.

From (7.8), it suffices to show that X )41 — 0. From the assumptions of this
theorem, we have that

7.10 Arin) — 0 as n — oo,

(n)
(7.11) Q7 (n) =+ bT(n) + Cr(n) = 1 and
(712) 0<ac< Ar(n)> b‘r(n)7 Cr(n) <b<l1

for all n > ng. Since Z € Ay (T), inequalities (7.1)—(7.3) yields
(7.13) lyrmy = 2| < [l = 21|+

2
aT(n)bT(n) Hx’r(n) - Tx’r(n) H2 + bT(n)CT(n) HT'%.’T(H) - szT(n) H

(714) + Cr(n)@r(n) "TZ:I"T(N) — Tr(n) H2

< ey 12emy = 2| + J2r) = 2 = |21 — 2]
= Arty |2rmy = 2]+ Xy = X1

and
(715) ||x7'(n)+1 — ng(n)H
< )\T(H)HZT(H) - xT(n)” + HT'Q:T(H) - x’r(n)H + HTQ'I‘T(n) - xT(n)H
From (7.9) and (7.14), it holds that
2 2 2
ar()br(n) [|27n) = T2y ||” + brny Crny | T2r () — T2 27|

2 _
+ Crmr() [ T2 ) = Ty || < Ay |2rmy — 2|
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Since {zT(n)} is bounded, we obtain from (7.10) and (7.12) that

(7.16) @) — Ty = 0, Tapp) — T2xT(n) — 0, TQZL‘T(n) — Zr(n) = 0
as n — oo. Furthermore, (7.10), (7.16) and (7.15) imply that

(7.17) Tr(n)+1 — Tr(n) — 0

Since {.Z‘T(n)} and {.I‘T(n)_H} are bounded, we have that

(7.18) Xrmy41 — Xo(m) = 0.

Thus, our aim is to prove that X (,) — 0. We have from (2.1) and (7.13) that

X1 = |@rme =2
N2
= A (e = 2) + (1= Ariy) (vr ) = 2|
2 _ _
< (1= 2r)” lwr) = 2" + 220y (@ruy = 2 20wy = 2)
< (1= M) e = 217 + 220y (Trmys1 = % 20wy = 2)
= (1= X)) Xom) + 2000 (Tr(my+1 = Z5 2r(n) — 2) 5
and hence,
AT(n)X’r(n) < XT(n) - XT(n)+1 + 2)‘7'(71) <x’r(n)+1 -z, Zr(n) — E> :
From (7.9),
Ar(m) Xr(n) < PArn) (Tr(my i1 = 25 Zr(n) = 7) -
From A;(,) > 0, we have that
XT(n) < 2 <x'r(n)+1 -z, Zr(n) — §>
= 2(Tr(u)41 — Tr(n) Zr(n) — 2) T 2(Trm) =% Zr(n) —Z)
= 2 <x7(n)+1 — Tr(n)> 2r(n) — §>
+2(@r(n) — %, Zr(n) = 2) +2(Tr(n) — 7, 2 —Z)
Since {mT(n)} is bounded and z,(,y — z, we have from (7.17) that

2(Tr(n)+1 = Tr(n)s Zr(n) = Z) + 2(Trn) = F, Zr(m) —2) =0
as n — o0o. Hence, it suffices to prove that

lim sup <$T(n) -z, z— §> .
n—oo

Since {xT(n)} is bounded, we can assume, without loss of generality, that there is a
subsequence {xT(ni)} of {xT(n)} such that

liTILn_)solép <xT( —Z, z— z> = zliglo <1: —Z, z— Z>

and 7.,y — u for some v € H. From Lemma 4.11 and (7.16), it holds that
u € Ay (T). Since Z = Py, (12, we obtain

lim sup <ZL‘7—(n) —Z, z— 2> = lim <xT(n —Z, z— §>
n—00 =00

= (u—2%, 2—2z) <0.
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This completes the proof for Case (B), and we have shown that x, — Z = Py, (1)2.

Next, suppose, in addition to the other assumptions, that C' is closed in H. We
show that x, — 2 = Pp(p)2z. Since z, — Z = Py ()2 and C is closed, we have
that z € C' N Ao (7). From Lemma 4.6, it holds that z € F' (T'). Thus, F (T) is
nonempty. Since T is quasi-nonexpansive, F'(T') is closed and convex. Hence, there
exists the metric projection Pp(ry from H onto F(T'). We demonstrate that

(f?f\ E) PF(T)Z =z (E PAlo(T)Z) .

Since z € F (T), it suffices to prove that ||z — Z|| < ||z — v]|| for all v € F(T'). Let
v e F(T). Since F (T) C Ao (T), we have that

|z =2 = inf{[[z—q| :q€ A (T)}
< inf{llz—qll: g€ F(T)}
< e =l

This means that Z = Pg(7)2z (= Z). This completes the proof for Case (2).
Case (1). Suppose that age + 16 > 0, @2e > 0, 16 > 0, and Sy, 51, 82 > 0. As
in the proof of Case (2), we can derive the desired result. O

As in the proofs of Theorems 6.2 and 7.1, we also have the following strong
convergence theorem in a Hilbert space.

Theorem 7.2. Let C be a nonempty and convex subset of H. Let T : C — C be
an (g, Bi, Vi 4,J = 0,1,2)-generic 2-generalized hybrid mapping that satisfies one
of the following conditions:

(1) oo + g2 + g0 + a2 > 0, ago + a1z > 0, a1, aq1, 21 > 0,
Q20 + g > 07 /807/817/82 2 07 0,71 Z 07

(2) ago + g0 + o2 + 22 > 0, apr + a1 >0, ao, a1, a12 >0,
aoz + a2 >0, 70,71,72 = 0, Bo, 51 > 0.
Suppose that Azo (T') is nonempty. Let Pa,, (1) be the metric projection from H onto

Ao (T). Let a,b € (0,1) such that a < b, and let {\,}, {an} and {c,,} be sequences
of real numbers in the interval (0,1) such that

o0
A — 0, Z Ay = 00,
n=1

ant+cen=1 0<a<anp,c, <b<1l forallneN.

Let {zn} be a sequence in C' such that z, — z. Define a sequence {x,} in C as
follows:
Tntl = Anzn + (1= Ap) (anmn + chan)
for all n € N, where x1 € C is given. Then, the sequence {x,} converges strongly
to a (2,0)-attractive point Z € Ago (T'), where Z = Py, (12
Additionally, if C is closed in H, then {x,} converges strongly to a fized point
Z=Ppoyz €F (Tz), where Pp 72y is the metric projection from H onto F (Tz).
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Problem. We do not know whether weak and strong convergence theorems which
relate to (2, 1)-attractive points hold or not.
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