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2. Mathematical preliminaries

2.1. Mathematical terminology and notation. Throughout of this paper, let
Z be a normed vector space and 0Z the origin of Z. For a set A ⊂ Z, intA and clA
denote the topological interior and the topological closure, respectively. We denote
V by the family of nonempty subsets of Z. The sum of two sets V1, V2 ∈ V and the
product of α ∈ R and V ∈ V are defined by

V1 + V2 := {v1 + v2 | v1 ∈ V1, v2 ∈ V2} αV := {αv | v ∈ V }.

In this paper, we assume that C ⊂ Z is a solid closed convex cone, that is, intC ̸= ∅,
clC = C, C + C ⊂ C and t · C ⊂ C for all t ∈ [0,∞).

Lemma 2.1 ([24]). For C ⊂ Z a closed convex cone and A,B, V ∈ V, the following
statements hold:

(i) C + C = C;
(ii) C + intC = intC;
(iii) clA+ clB ⊂ cl(A+B);
(iv) cl(V + C) + C = cl(V + C).

Proof. The last property follows from properties (i) and (iii). □

2.2. Preliminaries in vector optimization. A cone C is called pointed if C ∩
(−C) = {0Z} and solid if intC ̸= ∅, respectively.

Definition 2.2. For a, b ∈ Z and a solid convex cone C ⊂ Z, we define

a ≤C b by b− a ∈ C a ≤intC b by b− a ∈ intC.

Proposition 2.3. For x ∈ Z and y ∈ Z, the following statements hold:

(i) x ≤C y implies that x+ z ≤C y + z for all z ∈ Z,
(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0,
(iii) ≤C is reflexive and transitive. Moreover, if C is pointed, ≤C is antisym-

metric and hence a partial order.

We say that a point a ∈ A ⊂ Z is a minimal [resp. weak minimal] point of A if
there is no â ∈ A \ {a} such that â ≤C a [resp. â ≤intC a]. The above definition is
equivalent to

A ∩ (a− C) = {a} [resp. A ∩ (a− intC) = ∅].
Similarly, we say that a point a ∈ A ⊂ Z is a maximal [resp.weak maximal] point
of A if there is no â ∈ A \ {a} such that a ≤C â [resp. a ≤intC â]. The above
definition is equivalent to

A ∩ (a+ C) = {a} [resp. A ∩ (a+ intC) = ∅].

We denote by Min(A;C)[resp. wMin(A; intC)] and Max(A;C)[resp. wMax(A; intC)]
the set of minimal [resp. weak minimal] and maximal [resp. weak maximal] points
of A with respect to C [resp. intC], respectively. We can easily see that

Min(A;C) ⊂ wMin(A; intC) ⊂ A and Max(A;C) ⊂ wMax(A; intC) ⊂ A.
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2.3. Preliminaries in set optimization. We consider several types of binary
relationships on V by using a solid convex cone C ⊂ Y .

Definition 2.4 (Kuroiwa-Tanaka-Ha [25], Jahn-Ha [17]). For A, B ∈ V and a solid
closed convex cone C ⊂ Y , we define

(lower type) A ≤l
C B by B ⊂ A+ C (A ≤l

intC B by B ⊂ A+ intC),

(upper type) A ≤u
C B by A ⊂ B − C (A ≤u

intC B by A ⊂ B − intC),

(lower and upper type) A ≤l&u
C B by B ⊂ A+ C and A ⊂ B − C

(A ≤l&u
intC B by B ⊂ A+ intC and A ⊂ B − intC).

Proposition 2.5 ([27]). For A, B, D ∈ V, the following statements hold.

(i) A ≤l
C B implies (A + D) ≤l

C (B + D) and A ≤u
C B implies (A + D) ≤u

C

(B +D).
(ii) A ≤l

C B implies αA ≤l
C αB for α ≥ 0 and A ≤u

C B implies αA ≤u
C αB for

α ≥ 0.
(iii) ≤l

C and ≤u
C are reflexive and transitive.

Proposition 2.6 (see also [2]). For A, B ∈ V, the following statements hold.

(i) A ≤l&u
C B implies A ≤l

C B and A ≤l&u
C B implies A ≤u

C B.

(ii) A ≤l
C B and A ≤u

C B are not comparable, that is, A ≤l
C B does not imply

A ≤u
C B and A ≤u

C B does not imply A ≤l
C B.

Definition 2.7 ([29]). It is said that A ∈ V is

(i) C-closed
[
(−C)-closed

]
if A+ C [A− C] is a closed set,

(ii) C-bounded
[
(−C)-bounded

]
if for each neighborhood U of zero in Z there

is some positive number t > 0 such that

A ⊂ tU + C [A ⊂ tU − C],

(iii) C-compact
[
(−C)-compact

]
if any cover of A the form {Uα + C| Uα are

open} [{Uα − C| Uα are open}] admits a finite subcover.

Every C-compact set is C-closed and C-bounded.

Definition 2.8 ([15]). It is said that A ∈ V is C-proper
[
(−C)-proper

]
if

A+ C ̸= Z [A− C ̸= Z].

We denote by VC the family of C-proper subsets of Z, V−C the family of (−C)-
proper subsets of Z and V±C the family of C-proper and (−C)-proper subsets of Z,
respectively.

Remark 2.9. It sometimes happens that ≤l
C is equivalent to ≤l

intC . Thus when

we need to distinguish between A ≤l
C B and A ≤l

intC B for A,B ∈ V, we as-

sume C-closeness of A. Similarly, when we need to distinguish between A ≤u
C B

and A ≤u
intC B, we assume (−C)-closeness of B. Furthermore, when we need to

distinguish between A ≤l&u
C B and A ≤l&u

intC B, we assume C-closeness of A and

(−C)-closeness of B. (see example [2]).
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Introducing the equivalence relations

A ∼l B ⇐⇒ A ≤l
C B and B ≤l

C A,

A ∼u B ⇐⇒ A ≤u
C B and B ≤u

C A,

A ∼l&u B ⇐⇒ A ≤l&u
C B and B ≤l&u

C A,

we can generate a partial ordering on the set of equivalence classes which are denoted
by [·]l, [·]u and [·]l&u, respectively. We can easily see that

A ∈ [B]l ⇐⇒ A+ C = B + C,

A ∈ [B]u ⇐⇒ A− C = B − C,

A ∈ [B]l&u ⇐⇒ A+ C = B + C and A− C = B − C.

Definition 2.10. (l[u, l&u]-minimal and l[u, l&u]-weak minimal element [15, 17,
26]) Let S ⊂ V. We say that Ā ∈ S is a l[u, l&u]-minimal element if for any A ∈ S,

A ≤l[u,l&u]
C Ā implies Ā ≤l[u,l&u]

C A.

Moreover, Ā ∈ S is a l[u, l&u]-weak minimal element if for any A ∈ S,

A ≤l[u,l&u]

intC Ā implies Ā ≤l[u,l&u]

intC A.

We denote the family of l[u, l&u]-minimal elements of S by l[u, l&u]-Min(S;C) and
the family of l[u, l&u]-weak minimal elements of S by l[u, l&u]-wMin(S; intC).

Definition 2.11. (l[u, l&u]-maximal and l[u, l&u]-weak maximal element [17, 26])
Let S ⊂ V. We say that Ā ∈ S is a l[u, l&u]-maximal element if for any A ∈ S,

Ā ≤l[u,l&u]
C A implies A ≤l[u,l&u]

C Ā.

Moreover, Ā ∈ S is a l[u, l&u]-weak maximal element if for any A ∈ S,

Ā ≤l[u,l&u]

intC A implies A ≤l[u,l&u]

intC Ā.

We denote the family of l[u, l&u]-maximal elements of S by l[u, l&u]-Max(S;C) and
the family of l[u, l&u]-weak maximal elements of S by l[u, l&u]-wMax(S; intC).

We can easily see that

l[u, l&u]-Min(S;C) ⊂ l[u, l&u]-wMin(S; intC) ⊂ S,

l[u, l&u]-Max(S;C) ⊂ l[u, l&u]-wMax(S; intC) ⊂ S.
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3. Nonlinear scalarizations

3.1. Nonlinear scalarizing functions for sets. In this subsection, we assume
that k0 ∈ C \ (−C). In 1980s, Gerstewitz [7] introduced a nonlinear scalariz-
ing function in vector optimization problem. The nonlinear scalarizing function is
known as the Gerstewitz’s function.

φC,k0 : Y → (−∞,∞], φC,k0(y) = inf{t ∈ R
∣∣y ≤C tk0 } = inf{t ∈ R

∣∣y ∈ tk0 − C }

The above scalarization method, which is also found in a similar form [31], contains
the linear scalarization as a special case. After in [8, 9], they derived the essential
properties of the Gerstewitz’s function in vector optimization problem, for instance,
monotonicity properties, sublinear properties. Also, the above scalarizing function
has a dual form as follows:

ψC,k0 : Y → [−∞,∞), ψC,k0(y) = sup{t ∈ R
∣∣tk0 ≤C y} = sup{t ∈ R

∣∣y ∈ tk0 + C }.

φC,k0(y) = −ψC,k0(−y).
These functions have wide applications in vector optimization (see also Luc [29],
Göpfert-Riahi-Tammer-Zălinescu [10]).

After that, we investigated the properties of the following two-variable infimum
type hinf : Z×Z → (−∞,∞] and supremum type hsup : Z×Z → [−∞,∞) of nonlin-
ear scalarizing function for vector optimization problem, which are generalizations
of the above scalarizing function (see [1]):

hinf(y, a) = inf{t ∈ R
∣∣y ≤C tk0 + a} = inf{t ∈ R

∣∣y ∈ tk0 + a− C },

hsup(y, a) = sup{t ∈ R
∣∣tk0 + a ≤C y} = sup{t ∈ R

∣∣y ∈ tk0 + a+ C },
(hinf(y, a) := φC,k0(y − a) for a, y ∈ Z). We can easily show

hsup(y, a) = −hinf(−y,−a).

The investigation of scalarizing functions for sets begun at around 2000. In the 2000s
decade there were four important papers [5, 6, 13, 15]. In the last decade, many
authors have been investigated sublinear scalarizing technique for set optimization
problem (see [2, 3, 4, 11, 12, 14, 18, 21, 22, 23, 30, 32, 36] and their references
therein).

In this section, we investigate detailed properties of the following nonlinear scalar-
izing functions for sets, which are natural extension of hinf and hsup. Agreeing
inf ∅ = ∞ and sup ∅ = −∞, we define

hlinf , h
u
inf , h

l&u
inf : V × V → [−∞,∞] and

hlsup, h
u
sup, h

l&u
sup : V × V → [−∞,∞]

as follows. The functions hlinf , h
u
inf , h

l&u
inf , h

l
sup, h

u
sup, h

l&u
sup play the role of utility func-

tions.

hlinf(V1, V2) = inf{t ∈ R
∣∣∣V1 ≤l

C tk0 + V2 } = inf{t ∈ R
∣∣tk0 + V2 ⊂ V1 + C },

huinf(V1, V2) = inf{t ∈ R
∣∣V1 ≤u

C tk0 + V2 } = inf{t ∈ R
∣∣V1 ⊂ tk0 + V2 − C },
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hl&u
inf (V1, V2) = inf{t ∈ R

∣∣∣V1 ≤l&u
C tk0 + V2 }

= inf{t ∈ R
∣∣tk0 + V2 ⊂ V1 + C and V1 ⊂ tk0 + V2 − C },

hlsup(V1, V2) = sup{t ∈ R
∣∣∣tk0 + V2 ≤l

C V1 } = sup{t ∈ R
∣∣V1 ⊂ tk0 + V2 + C },

husup(V1, V2) = sup{t ∈ R
∣∣tk0 + V2 ≤u

C V1 } = sup{t ∈ R
∣∣tk0 + V2 ⊂ V1 − C },

hl&u
sup (V1, V2) = sup{t ∈ R

∣∣∣tk0 + V2 ≤l&u
C V1 }

= sup{t ∈ R
∣∣V1 ⊂ tk0 + V2 + C and tk0 + V2 ⊂ V1 − C }.

Proposition 3.1 (see also [2]). The following statements hold:

(i) hlsup(V1, V2) = −huinf(−V1,−V2);
(ii) husup(V1, V2) = −hlinf(−V1,−V2);
(iii) hl&u

sup (V1, V2) = −hl&u
inf (−V1,−V2);

(iv) hlinf(V1, V2) ≤ hl&u
inf (V1, V2) and h

u
inf(V1, V2) ≤ hl&u

inf (V1, V2);

(v) hl&u
sup (V1, V2) ≤ hlsup(V1, V2) and h

l&u
sup (V1, V2) ≤ husup(V1, V2).

Proof. Conclusion (iv) and (v) are straightforward from Proposition 2.6. □

In this section, we correct some errors of the proofs of [2], which are mainly based
on [11, 12]. The revised results contain some improvements of [2, 11, 12].

Definition 3.2. We say that the function f : V → [−∞,∞] is

(i) ≤l
C-increasing if V1 ≤l

C V2 implies f(V1) ≤ f(V2),

(ii) strictly ≤l
intC -increasing if V1 ≤l

intC V2 (V1 ̸= V2) implies f(V1) < f(V2).

The definitions of ≤u
C-increasing, ≤l&u

C -increasing, strictly ≤u
intC -increasing and

strictly ≤l&u
intC -increasing are similar to the above ones, respectively.

Theorem 3.3 (see also [2]). The functions hlinf , h
u
inf , h

l&u
inf , h

l
sup, h

u
sup, h

l&u
sup have the

following properties:

(i) hlinf(·, V ) and hlsup(·, V ) are ≤l
C-increasing for every V ∈ V;

(ii) huinf(·, V ) and husup(·, V ) are ≤u
C-increasing for every V ∈ V;

(iii) hl&u
inf (·, V ) and hl&u

sup (·, V ) are ≤l&u
C -increasing for every V ∈ V.

Proof. Condition (iii) is straightforward from the monotonicity of hlinf(·, V ), huinf(·, V ),

hlsup(·, V ) and husup(·, V ), respectively. □

3.2. Non-convex separation type theorems.

Theorem 3.4 (l-inf type, revised version of [2]). Let C ⊂ Z be a solid closed convex
cone and k0 ∈ intC.

(i) If V1 ∈ VC is (−C)-bounded and V2 ∈ V is C-bounded, then hlinf(·, ·) is a
real-valued function.

(ii) Moreover, if V1 ∈ VC is C-closed and V2 ∈ V, then we have

V2 ̸⊂ V1 + C ⇐⇒ hlinf(V1, V2) > 0.
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(iii) Furthermore, if V1 ∈ VC and V2 ∈ V is C-compact, then we have

V2 ̸⊂ V1 + intC ⇐⇒ hlinf(V1, V2) ≥ 0.

Proof. (i) Firstly, we show

V1 ∈ V : C−proper ⇐⇒ hlinf(V1, V2) > −∞.

If V1 +C = Z for V1 ∈ V, then we have tk0 + V2 ⊂ V1 +C for all t ∈ R and V2 ∈ V,
which is equivalent to hlinf(V1, V2) = −∞. Conversely, let tk0 + V2 ⊂ V1 + C for all
t ∈ R and V1, V2 ∈ V. Then we have

tk0 + V2 + C ⊂ V1 + C + C ⊂ V1 + C.

For k0 ∈ intC, it is known that ∪
t∈R

(tk0 + C) = Z

and hence V1 + C = Z.
Next, we prove hlinf(V1, V2) < ∞. Since V2 ∈ V is C-bounded, for the neighbor-

hood of zero

U = −k0 + intC

there exists t2 > 0 such that V2 ⊂ t2(−k0 + intC) + C and hence

t2k
0 + V2 ⊂ C.

Moreover, since V1 ∈ V is (−C)-bounded, for the neighborhood of zero

U = k0 − intC

there exists t1 > 0 such that V1 ⊂ t1(k
0 − intC)− C. Then we have that

0Z ∈ V1 − V1 ⊂ t1k
0 − V1 − intC

and hence

0Z ∈ −t1k0 + V1 + intC.

Thus, we obtain C ⊂ −t1k0 + V1 + C. Therefore, we have

t2k
0 + V2 ⊂ C ⊂ −t1k0 + V1 + C

and hence

(t1 + t2)k
0 + V2 ⊂ V1 + C,

that is, hlinf(V1, V2) ≤ t1 + t2.

(ii) We show the following relationship:

(⋆) hlinf(V1, V2) ≤ t⇐⇒ tk0 + V2 ⊂ cl(V1 + C).

We define

Λl
−(V1, V2) := {t ∈ R

∣∣tk0 + V2 ⊂ int(V1 + C)},

Λl(V1, V2) := {t ∈ R
∣∣tk0 + V2 ⊂ V1 + C },

Λl
+(V1, V2) := {t ∈ R

∣∣tk0 + V2 ⊂ cl(V1 + C)}.
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Then we have obviously that Λl
−(V1, V2) ⊂ Λl(V1, V2) ⊂ Λl

+(V1, V2) and hence

inf Λl
+(V1, V2) ≤ inf Λl(V1;V2)(= hlinf(V1, V2)) ≤ inf Λl

−(V1, V2).

We assume hlinf(V1, V2) ≤ t. Then by the definitions of hlinf and Λl being of epi-

graphical type (that is, t ∈ Λl and t̂ > t implies t̂ ∈ Λl, see [2]), we have

a+

(
t+

1

n

)
k0 ∈ V1 + C

for all n ∈ N and a ∈ V2. Taking the limit when n → ∞, we obtain tk0 + V2 ⊂
cl(V1 + C). Conversely, by the definitions of hlinf , we show

inf Λl
+(V1, V2) = inf Λl(V1, V2) = inf Λl

−(V1, V2).

We assume contrary that inf Λl
+(V1, V2) < inf Λl

−(V1, V2). Then there exists

t1, t2, t3 ∈ R such that inf Λl
+(V1, V2) < t1 < t2 < t3 < inf Λl

−(V1, V2). By

inf Λl
+(V1, V2) < t1 [t1k

0 + V2 ⊂ cl(V1 + C)] and using (iv) of Lemma 2.1, we
have

(∗) t1k
0 + V2 + C ⊂ cl(V1 + C) + C = cl(V1 + C).

On the other hand, using (ii) of Lemma 2.1, we have

(∗∗) t3k
0 + V2 ⊂ t3k

0 + V2 + C = t2k
0 + V2 + C + (t3 − t2)k

0

⊂ t2k
0 + V2 + intC ⊂ int(t1k

0 + V2 + C).

By (∗), we have the following inclusion (the last equality follows from [24])

(∗ ∗ ∗) int(t1k
0 + V2 + C) ⊂ int(cl(V1 + C)) = int(V1 + C).

By (∗∗) and (∗ ∗ ∗), we obtain t3k
0 + V2 ⊂ int(V1 + C), which contradicts t3 <

inf Λl
−(V1, V2).

(iii) We show the following relationship:

hlinf(V1, V2) < 0 ⇐⇒ V2 ⊂ V1 + intC.

Let hlinf(V1, V2) < 0. Then there exists t1 ∈ R such that hlinf(V1, V2) ≤ t1 < 0. By
using (⋆), we have

V2 = t1k
0 − t1k

0 + V2 ⊂ cl(V1 + C)− t1k
0 ⊂ V1 + intC.

Conversely, let V2 ⊂ V1 + intC. For k0 ∈ intC, it is known that

intC =
∪
ε>0

((εk0 + intC) + C).

Therefore, we have

V2 ⊂ V1 + intC =
∪
ε>0

(
(V1 + εk0 + intC) + C

)
and {(V1+ εk0+intC)+C}ε>0 is a cover of V2. Since V2 is C-compact, we can find
ε1, ε2, . . . , εm > 0 such that

V2 ⊂
m∪
i=1

(
(V1 + εik

0 + intC) + C
)
= V1 + ε0k

0 + intC
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where ε0 := min{εi|i = 1, 2, . . . ,m} > 0. Then we have −ε0k0 + V2 ⊂ cl(V1 + C)
and therefore hlinf(V1, V2) ≤ −ε0 < 0. □

Theorem 3.5 (u-inf type, revised version of [2]). Let C ⊂ Z be a solid closed
convex cone and k0 ∈ intC.

(i) If V1 ∈ V is (−C)-bounded and V2 ∈ V−C is C-bounded, then huinf(·, ·) is a
real-valued function.

(ii) Moreover, if V1 ∈ V and V2 ∈ V−C is (−C)-closed, then we have

V1 ̸⊂ V2 − C ⇐⇒ huinf(V1, V2) > 0.

(iii) Furthermore, if V1 ∈ V is (−C)-compact and V2 ∈ V−C , then we have

V1 ̸⊂ V2 − intC ⇐⇒ huinf(V1, V2) ≥ 0.

Proof. (i) Firstly, we show

V2 ∈ V : (−C)−proper ⇐⇒ huinf(V1, V2) > −∞.

If V2 −C = Z for V2 ∈ V, then we have V1 ⊂ tk0 + V2 −C for all t ∈ R and V1 ∈ V,
which is equivalent to huinf(V1, V2) = −∞. Conversely, let V1 ⊂ tk0 + V2 − C for all
t ∈ R and V1, V2 ∈ V. Then we have

V1 − tk0 − C ⊂ V2 − C − C ⊂ V2 − C.

For k0 ∈ intC, it is known that ∪
t∈R

(−tk0 − C) = Z

and hence V2 − C = Z.
Next, we prove huinf(V1, V2) < ∞. Since V1 ∈ V is (−C)-bounded, for the neigh-

borhood of zero

U = k0 − intC

there exists t1 > 0 such that V1 ⊂ t1(k
0 − intC)− C and hence

V1 ⊂ t1k
0 − C.

Moreover, Since V2 ∈ V is C-bounded, for the neighborhood of zero

U = −k0 + intC

there exists t2 > 0 such that V2 ⊂ t2(−k0 + intC) + C. Then we have that

0Z ∈ V2 − V2 ⊂ −t2k0 − V2 + intC

and hence

0Z ∈ t2k
0 + V2 − intC.

Thus, we obtain −C ⊂ t2k
0 + V2 − C. Therefore, we have

V1 ⊂ t1k
0 − C ⊂ t1k

0 + t2k
0 + V2 − C = (t1 + t2)k

0 + V2 − C

that is, huinf(V1, V2) ≤ t1 + t2.



22 YOUSUKE ARAYA

(ii) We show the following relationship:

huinf(V1, V2) ≤ t⇐⇒ V1 ⊂ cl(tk0 + V2 − C).

We define

Λu
−(V1, V2) := {t ∈ R

∣∣V1 ⊂ int(tk0 + V2 − C)},

Λu(V1, V2) := {t ∈ R
∣∣V1 ⊂ tk0 + V2 − C },

Λu
+(V1, V2) := {t ∈ R

∣∣V1 ⊂ cl(tk0 + V2 − C)}.
Then we have obviously that

inf Λu
+(V1, V2) ≤ inf Λu(V1, V2)(= huinf(V1, V2)) ≤ inf Λu

−(V1, V2).

We assume huinf(V ) ≤ t. Then by the definitions of huinf and Λu being of epigraphical

type (that is, t ∈ Λu and t̂ > t implies t̂ ∈ Λu, see [2]), we have

y −
(
t+

1

n

)
k0 ∈ V2 − C

for all n ∈ N and y ∈ V1. Taking the limit when n → ∞, we obtain V1 ⊂ cl(tk0 +
V2 − C). Conversely, by the definitions of huinf , we show

inf Λu
+(V1, V2) = inf Λu(V1, V2) = inf Λu

−(V1, V2).

We assume contrary that inf Λu
+(V1, V2) < inf Λu

−(V1, V2). Then there exists
t1, t2, t3, t4 ∈ R such that inf Λu

+(V1, V2) < t1 < t2 < t3 < t4 < inf Λu
−(V1, V2).

By inf Λu
+(V1, V2) < t1, we have

(∗) V1 ⊂ cl(t1k
0 + V2 − C) ⊂ t2k

0 + V2 − C.

On the other hand, using (ii) of Lemma 2.1, we have

(∗∗) t2k
0 + V2 − C = t3k

0 + (t2 − t3)k
0 + V2 − C

⊂ t3k
0 + V2 − intC ⊂ int(t4k

0 + V2 − C).

By (∗) and (∗∗), we obtain V1 ⊂ int(t4k
0 + V2 − C), which contradicts t4 <

inf Λu
−(V1, V2).

(iii) We show the following relationship:

huinf(V1, V2) < 0 ⇐⇒ V1 ⊂ V2 − intC.

Let huinf(V1, V2) < 0. Then there exists t1 ∈ R such that huinf(V1, V2) ≤ t1 < 0. By
the definition of huinf , we have

V1 ⊂ cl(t1k
0 + V2 − C) ⊂ V2 − intC.

Conversely, let V1 ⊂ V2 − intC. For k0 ∈ intC, it is known that

intC =
∪
ε>0

(
(εk0 + intC) + C

)
.

Therefore, we have

V1 ⊂ V2 − intC =
∪
ε>0

(
(V2 − εk0 − intC)− C

)



EXISTENCE THEOREMS OF CONE SADDLE-POINTS IN SET OPTIMIZATION 23

and {(V2 − εk0 − intC)−C}ε>0 is a cover of V1. Since V1 ∈ V is (−C)-compact, we
can find ε1, ε2, . . . , εm > 0 such that

V1 ⊂
m∪
i=1

(
(V2 − ε0k

0 − intC)− C
)
= V2 − ε0k

0 − intC ⊂ V2 − ε0k
0 − C

where ε0 := min{εi|i = 1, 2, . . . ,m} > 0. Then we have V1 ⊂ cl(V2 − ε0k
0 −C) and

therefore huinf(V1, V2) ≤ −ε0 < 0. □

Combining the above results, we obtain the following non-convex separation type
theorem with respect to lower and upper type set relation.

Theorem 3.6 (l&u-inf type). Let C ⊂ Z be a solid closed convex cone and k0 ∈
intC.

(i) If V1 ∈ VC is (−C)-bounded and V2 ∈ V−C is C-bounded, then hl&u
inf (·, ·) is a

real-valued function.
(ii) Moreover, if V1 ∈ VC is C-closed and V2 ∈ V−C is (−C)-closed, then we

have

V2 ̸⊂ V1 + C and V1 ̸⊂ V2 − C ⇐⇒ hl&u
inf (V1, V2) > 0.

(iii) Furthermore, if V1 ∈ VC is (−C)-compact and V2 ∈ V−C is C-compact, then
we have

V2 ̸⊂ V1 + intC and V1 ̸⊂ V2 − intC ⇐⇒ hl&u
inf (V1, V2) ≥ 0.

By using proposition 3.1, we obtain the following supremum type separation type
theorems.

Theorem 3.7 (l-sup type, revised version of [2]). Let C ⊂ Z be a solid closed
convex cone and k0 ∈ intC.

(i) If V1 ∈ V is C-bounded and V2 ∈ VC is (−C)-bounded, then hlsup(·, ·) is a
real-valued function.

(ii) Moreover, if V1 ∈ V and V2 ∈ VC is C-closed, then we have

V1 ̸⊂ V2 + C ⇐⇒ hlsup(V1, V2) < 0.

(iii) Furthermore, if V1 ∈ V is C-compact and V2 ∈ VC , then we have

V1 ̸⊂ V2 + intC ⇐⇒ hlsup(V1, V2) ≤ 0.

Theorem 3.8 (u-sup type, revised version of [2]). Let C ⊂ Z be a solid closed
convex cone and k0 ∈ intC.

(i) If V1 ∈ V−C is C-bounded and V2 ∈ V is (−C)-bounded, then husup(·, ·) is a
real-valued function.

(ii) Moreover, if V1 ∈ V−C is (−C)-closed and V2 ∈ V, then we have

V2 ̸⊂ V1 − C ⇐⇒ husup(V1, V2) < 0.

(iii) Furthermore, if V1 ∈ V−C and V2 ∈ V is (−C)-compact, then we have

V2 ̸⊂ V1 − intC ⇐⇒ husup(V1, V2) ≤ 0.
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Theorem 3.9 (l&u-sup type). Let C ⊂ Z be a solid closed convex cone and k0 ∈
intC.

(i) If V1 ∈ V−C is C-bounded and V2 ∈ VC is (−C)-bounded, then hl&u
sup (·, ·) is a

real-valued function.
(ii) Moreover, if V1 ∈ V−C is (−C)-closed and V2 ∈ VC is C-closed, then we

have

V1 ̸⊂ V2 + C and V2 ̸⊂ V1 − C ⇐⇒ hl&u
sup (V1, V2) < 0.

(iii) Furthermore, if V1 ∈ V−C is C-compact and V2 ∈ VC is (−C)-compact, then
we have

V1 ̸⊂ V2 + intC and V2 ̸⊂ V1 − intC ⇐⇒ hl&u
sup (V1, V2) ≤ 0.

4. Existence theorems of cone-saddle points

Let X, Y be nonempty sets and f : X×Y → Z be a vector-valued function. The
vector-valued saddle-point problem is to find a pair x̄ ∈ X and ȳ ∈ Y such that

(P) f(x̄, ȳ) ∈ wMax(f(x̄, Y ); intC) ∩ wMin(f(X, ȳ); intC).

A point (x, y) ∈ X ×Y is said to be a weak C-saddle point of function f on X ×Y ,
if it is a solution of the problem (see [35] and their references therein).

Definition 4.1. Let K be a convex set in a real vector space X, Z a normed space
with the partial ordering by a solid pointed convex cone C ⊂ Z. A vector-valued
function f : X → Z is said to be

(i) C-quasi-convex on K if for each x1, x2 ∈ K, λ ∈ [0, 1] and z ∈ Z, we have
that

f(x1), f(x2) ∈ z − C implies f(λx1 + (1− λ)x2) ∈ z − C,

(ii) C-properly quasi-convex on K if either

f(λx1 + (1− λ)x2) ∈ f(x1)− C or f(λx1 + (1− λ)x2) ∈ f(x2)− C,

for every x1, x2 ∈ K and λ ∈ [0, 1].

Definition 4.2. Let X be a topological space and Z a normed space. A vector-
valued function f : X → Z is said to be C-continuous atX if the set {x ∈ X|f(x) ≤C

z} is closed for all z ∈ Z.

Many researchers have investigated existence theorem of cone saddle-point by us-
ing scalarizing technique (see for instance, [35] and references therein). Afterwards,
Kimura and Tanaka presented an existence theorem of cone saddle-point by using
scalarizing function hinf(·; 0Y ).

Theorem 4.3 (Kimura-Tanaka [20]). Let X and Y be nonempty compact convex
sets in two normed spaces, respectively, and Z a normed space with a partial ordering
induced by a solid pointed convex cone C ⊂ Z. If a vector-valued function f :
X × Y → Z satisfies that

(i) x 7→ f(x, y) is C-continuous and C-quasi-convex on X for every y ∈ Y ,
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(ii) y 7→ f(x, y) is (−C)-continuous and (−C)-properly quasi-convex on Y for
every x ∈ X,

then f has at least one weak C-saddle point.

We obtain another type of existence theorem of cone saddle-point by using scalar-
izing function hsup(·; 0Y ).

Theorem 4.4 (Araya [1]). Let X and Y be nonempty compact convex sets in two
normed spaces, respectively, and Z a normed space with a partial ordering induced
by a solid pointed convex cone C ⊂ Z. If a vector-valued function f : X × Y → Z
satisfies that

(i) x 7→ f(x, y) is C-continuous and C-properly quasi-convex on X for every
y ∈ Y ,

(ii) y 7→ f(x, y) is (−C)-continuous and (−C) quasi-convex on Y for every
x ∈ X,

then f has at least one weak C-saddle point.

The aim of this section is to generalize the above existence theorems to set-valued
map as an application of the scalarizations for sets.

4.1. Set-valued saddle-point problem and some definitions. We first give
some definitions of set-valued saddle point problem as a natural generalizations of
vector-valued saddle point problem.

Definition 4.5. Let X, Y be nonempty sets and F : X × Y → V be a set-valued
map. The set-valued saddle-point problem is to find a pair x̄ ∈ X and ȳ ∈ Y such
that

(l-P): F (x̄, ȳ) ∈ l-wMax(F (x̄, Y ); intC) ∩ l-wMin(F (X, ȳ); intC),
(u-P): F (x̄, ȳ) ∈ u-wMax(F (x̄, Y ); intC) ∩ u-wMin(F (X, ȳ); intC),
(l&u-P): F (x̄, ȳ) ∈ (l&u)-wMax(F (x̄, Y ); intC)∩ (l&u)-wMin(F (X, ȳ); intC).

A point (x, y) ∈ X × Y is said to be a weak l-C-saddle point [resp. weak u-C-
saddle point, weak (l&u)-C-saddle point] of F on X × Y , if it is a solution of the
problem.

We give some definitions of cone-convexity and cone-continuity of set-valued map
in a similar way as [25, 27, 29, 34].

Definition 4.6 (see also [25, 27, 29, 34]). Let K be a convex set in a real vector
space X. A set-valued map F : X → V is said to be

(i) l-properly quasi C-convex [u-properly quasi C-convex, (l&u)-properly quasi
C-convex] on K if either

F (λx1 + (1− λ)x2) ≤l[u,l&u]
C F (x1) or F (λx1 + (1− λ)x2) ≤l[u,l&u]

C F (x2)

for every x1, x2 ∈ K and λ ∈ [0, 1],
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(ii) l-properly quasi C-concave [u-properly quasi C-concave, (l&u)-properly quasi
C-concave] on K if either

F (x1) ≤l[u,l&u]
C F (λx1 + (1− λ)x2) or F (x2) ≤l[u,l&u]

C F (λx1 + (1− λ)x2)

for every x1, x2 ∈ K and λ ∈ [0, 1],
(iii) l-naturally quasi C-convex [u-naturally quasi C-convex, (l&u)-naturally quasi

C-convex] on K if for each x1, x2 ∈ K and λ ∈ [0, 1], there exists µ ∈ [0, 1]
such that

F (λx1 + (1− λ)x2) ≤l[u,l&u]
C µF (x1) + (1− µ)F (x2),

(iv) l-naturally quasi C-concave [u-naturally quasi C-concave, (l&u)-naturally
quasi C-concave] on K if if for each x1, x2 ∈ K and λ ∈ [0, 1], there exists
µ ∈ [0, 1] such that

µF (x1) + (1− µ)F (x2) ≤l[u,l&u]
C F (λx1 + (1− λ)x2),

(v) l-quasi C-convex [u-quasi C-convex, (l&u)-quasi C-convex] on K if for each
x1, x2 ∈ K, λ ∈ [0, 1] and V ∈ V, we have that

F (x1) ≤l[u,l&u]
C V, F (x2) ≤l[u,l&u]

C V implies F (λx1 + (1− λ)x2) ≤l[u,l&u]
C V,

(vi) l-quasi C-concave [u-quasi C-concave, (l&u)-quasi C-concave] on K if for
each x1, x2 ∈ K, λ ∈ [0, 1] and V ∈ V, we have that

V ≤l[u,l&u]
C F (x1), V ≤l[u,l&u]

C F (x2) implies V ≤l[u,l&u]
C F (λx1 + (1− λ)x2).

Proposition 4.7 (see also [25, 27, 29, 34]). We can confirm the following facts:

•
[
l[u, l&u]-properly quasi C-convex

]
⊂

[
l[u, l&u]-naturally quasi C-convex

]
,

•
[
l[u, l&u]-naturally quasi C-convex

]
⊂

[
l[u, l&u]-quasi C-convex

]
,

•
[
l-properly quasi (−C)-convex

]
=

[
u-properly quasi C-concave

]
,

•
[
u-properly quasi (−C)-convex

]
=

[
l-properly quasi C-concave

]
,

•
[
(l&u)-properly quasi (−C)-convex

]
=

[
(l&u)-properly quasi C-concave

]
,

•
[
l-naturally quasi (−C)-convex

]
=

[
u-naturally quasi C-concave

]
,

•
[
u-naturally quasi (−C)-convex

]
=

[
l-naturally quasi C-concave

]
,

•
[
(l&u)-naturally quasi (−C)-convex

]
=

[
(l&u)-naturally quasi C-concave

]
,

•
[
l-quasi (−C)-convex

]
=

[
u-quasi C-concave

]
,

•
[
u-quasi (−C)-convex

]
=

[
l-quasi C-concave

]
,

•
[
(l&u)-quasi (−C)-convex

]
=

[
(l&u)-quasi C-concave

]
.

Proof. Using the several definitions of convexity and following the same line as
Theorem 1 and 2 of [34], we obtain the first inclusions. The latter part is clear from
the definitions. □

Lemma 4.8. Let K be a convex set in a real vector space X and k0 ∈ intC. If a

set-valued map F : X → V is l[u, l&u]-quasi C-convex, then h
l[u,l&u]
inf (F (·), V ) and

h
l[u,l&u]
sup (F (·), V ) are quasi-convex on K for every V ∈ V.
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Proof. Let for all α ∈ R

Lev(hlinf(F (·), V );α) := {x ∈ K|hlinf(F (x), V ) ≤ α}.
Let λ ∈ [0, 1] and x1, x2 ∈ Lev(hlinf(F (·);V );α). Then we have

hlinf(F (x1), V ) ≤ α, hlinf(F (x2), V ) ≤ α.

By the l-quasi C-convexity of F , we have

F (x1) ≤l
C V1, F (x2) ≤l

C V1 implies F (λx1 + (1− λ)x2) ≤l
C V1.

We take V1 ∈ V such that hlinf(V1, V ) = α. By using Theorem 3.3, we have

hlinf(F (x1), V ) ≤ hlinf(V1, V ) = α, hlinf(F (x2), V ) ≤ hlinf(V1, V ) = α

=⇒ hlinf(F (λx1 + (1− λ)x2), V ) ≤ hlinf(V1, V ) = α

which implies that λx1 + (1− λ)x2 ∈ Lev(hlinf(F (·), V );α). Similarly, we can prove
the rest part of the proofs. □
Lemma 4.9. Let K be a convex set in a real vector space X and k0 ∈ intC. If a

set-valued map F : X → V is l[u, l&u]-quasi C-concave, then h
l[u,l&u]
inf (F (·), V ) and

h
l[u,l&u]
sup (F (·), V ) are quasi-concave on K for every V ∈ V.

Proof. In a similar way as the above lemma, we obtain the conclusions. □
Definition 4.10. Let X be a topological space. A set-valued function F : X → V
is said to be

(i) l-C-lower semi-continuous (u-(−C)-upper semi-continuous) at X if the set
{x ∈ X|F (x) ≤l

C V } = {x ∈ X|V ≤u
(−C) F (x)} is closed for all V ∈ V,

(ii) u-C-lower semi-continuous (l-(−C)-upper semi-continuous) at X if the set
{x ∈ X|F (x) ≤u

C V } = {x ∈ X|V ≤l
(−C) F (x)} is closed for all V ∈ V,

(iii) (l&u)-C-lower semi-continuous ((l&u)-(−C)-upper semi-continuous) at X if
the set

{x ∈ X|F (x) ≤l&u
C V } = {x ∈ X|V ≤l&u

(−C) F (x)} is closed for all V ∈ V,
(iv) l-C-upper semi-continuous (u-(−C)-lower semi-continuous) at X if the set

{x ∈ X|V ≤l
C F (x)} = {x ∈ X|F (x) ≤u

(−C) V } is closed for all V ∈ V,
(v) u-C-upper semi-continuous (l-(−C)-lower semi-continuous) at X if the set

{x ∈ X|V ≤u
C F (x)} = {x ∈ X|F (x) ≤l

(−C) V } is closed for all V ∈ V,
(vi) (l&u)-C-upper semi-continuous ((l&u)-(−C)-lower semi-continuous) at X if

the set
{x ∈ X|V ≤l&u

C F (x)} = {x ∈ X|F (x) ≤l&u
(−C) V } is closed for all V ∈ V.

Lemma 4.11. Let X be a topological space and k0 ∈ intC. If a set-valued map
F : X → V is

(i) l[u, l&u]-C-lower semi-continuous, then h
l[u,l&u]
inf (F (·), V ) and h

l[u,l&u]
sup (F (·), V )

are lower semi-continuous for every V ∈ V,
(ii) l[u, l&u]-C-upper semi-continuous, then h

l[u,l&u]
inf (F (·), V ) and h

l[u,l&u]
sup (F (·), V )

are upper semi-continuous for every V ∈ V.
Proof. By using Theorem 3.3, we obtain the conclusions. □
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4.2. Existence theorems of cone-saddle point.

Theorem 4.12 (Existence of weak l-C-saddle point). Let X and Y be nonempty
compact convex sets in two normed spaces, respectively. If a C-proper and C-
compact-valued map F : X × Y → VC satisfies that

(i) F (·, y) is l-quasi C-convex on X for every y ∈ Y ,
(ii) F (·, y) is l-C-lower semi-continuous on X for every y ∈ Y ,
(iii) F (x, ·) is l-quasi C-concave on Y for every x ∈ X,
(iv) F (x, ·) is l-C-upper semi-continuous on Y for every x ∈ X,

then F has at least one weak l-C-saddle point.

Proof. (I: by using scalarizing function hlinf)

We see that by Lemma 4.8 and Lemma 4.11 the map x 7→ hlinf(F (·, y), V ) is
lower semi-continuous and quasi-convex on X for every V ∈ VC . Moreover, we
see that by Lemma 4.9 and Lemma 4.11, the map y 7→ hlinf(F (x, ·), V ) is upper
semi-continuous and quasi-concave on Y for every V ∈ VC . By Sion’s minimax
theorem [33], hlinf(F, V ) has a saddle point for every V ∈ VC , that is, there exists
(x̄, ȳ) ∈ X × Y such that

0 = hlinf(F (x̄, y), F (x̄, y)) ≤ hlinf(F (x̄, ȳ), F (x̄, y)) ≤ hlinf(F (x, ȳ), F (x̄, y)) and

hlinf(F (x̄, y), F (x̄, ȳ)) ≤ hlinf(F (x̄, ȳ), F (x̄, ȳ)) = 0 ≤ hlinf(F (x, ȳ), F (x̄, ȳ)).

By (iii) of Theorem 3.4, F has at least one weak l-C-saddle point.

(II: by using scalarizing function hlsup)

Similarly, we see that by Lemma 4.8 and Lemma 4.11 the map x 7→ hlsup(F (·, y), V )
is lower semi-continuous and quasi-convex on X for every V ∈ VC . Moreover, we
see that by Lemma 4.9 and Lemma 4.11, the map y 7→ hlsup(F (x, ·), V ) is upper
semi-continuous and quasi-concave on Y for every V ∈ VC . By Sion’s minimax
theorem [33], hlsup(F, V ) has a saddle point for every V ∈ VC , that is, there exists
(x̄, ȳ) ∈ X × Y such that

hlsup(F (x̄, y), F (x, ȳ)) ≤ hlsup(F (x̄, ȳ), F (x, ȳ)) ≤ hlsup(F (x, ȳ), F (x, ȳ)) = 0 and

hlsup(F (x̄, y), F (x̄, ȳ)) ≤ hlsup(F (x̄, ȳ), F (x̄, ȳ)) = 0 ≤ hlsup(F (x, ȳ), F (x̄, ȳ)).

By (iii) of Theorem 3.7, F has at least one weak l-C-saddle point. □

By using huinf , h
u
sup, h

l&u
inf , h

l&u
sup , we obtain existence theorems of u-C-saddle point

and weak (l&u)-C-saddle point in a similar way as Theorem 4.12.

Theorem 4.13 (Existence of weak u-C-saddle point). Let X and Y be nonempty
compact convex sets in two normed spaces, respectively. If a (−C)-proper and (−C)-
compact-valued map F : X × Y → V−C satisfies that

(i) F (·, y) is u-quasi C-convex on X for every y ∈ Y ,
(ii) F (·, y) is u-C-lower semi-continuous on X for every y ∈ Y ,
(iii) F (x, ·) is u-quasi C-concave on Y for every x ∈ X,
(iv) F (x, ·) is u-C-upper semi-continuous on Y for every x ∈ X,
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then F has at least one weak u-C-saddle point.

Theorem 4.14 (Existence of weak l&u-C-saddle point). Let X and Y be nonempty
compact convex sets in two normed spaces, respectively. If a C-proper, (−C)-proper,
C-compact and (−C)-compact-valued map F : X × Y → V±C satisfies that

(i) F (·, y) is (l&u)-quasi C-convex on X for every y ∈ Y ,
(ii) F (·, y) is (l&u)-C-lower semi-continuous on X for every y ∈ Y ,
(iii) F (x, ·) is (l&u)-quasi C-concave on Y for every x ∈ X,
(iv) F (x, ·) is (l&u)-C-upper semi-continuous on Y for every x ∈ X,

then F has at least one weak (l&u)-C-saddle point.

Example 4.15 (l-type). We set

X = Y = [0, 2], Z = R2, C = R2
+ := {(x, y) ∈ R2 | x ≥ 0, y ≥ 0},

F : X × Y → V, F (x, y) = [x,∞)× [y,∞), k0 = (1, 1).

We can confirm that F is C-proper and C-compact valued function and F satisfies
assumptions of Theorem 4.12. Then we see that (x̄, ȳ) = (0, 2) is a weak l-C-saddle
point. Moreover, for any x, y ∈ [0, 2] we have

• hlinf(F (0, y), F (0, y)) = 0 ≤ hlinf(F (0, 2), F (0, y)) = 2− y

≤ hlinf(F (x, 2), F (0, y)) =max{2− y, x},
• hlinf(F (0, y), F (0, 2)) = 0 ≤ hlinf(F (0, 2), F (0, 2)) = 0 ≤ hlinf(F (x, 2), F (0, 2)) =
x,

• hlsup(F (0, y), F (x, 2)) = −max{2− y, x}
≤ hlsup(F (0, 2), F (x, 2)) = −x ≤ hlsup(F (x, 2), F (x, 2)) = 0,

• hlsup(F (0, y), F (0, 2)) = y − 2

≤ hlsup(F (0, 2), F (0, 2)) = 0 ≤ hlsup(F (x, 2), F (0, 2)) = 0.

Example 4.16 (u-type). We set

X = Y = [0, 2], Z = R2, C = R2
+,

F : X × Y → V, F (x, y) = (−∞, x]× (−∞, y], k0 = (1, 1).

We can confirm that F is (−C)-proper and (−C)-compact valued function and F
satisfies assumptions of Theorem 4.13. Then we see that (x̄, ȳ) = (0, 2) is a weak
u-C-saddle point. Moreover, for any x, y ∈ [0, 2] we have

• huinf(F (0, y), F (0, y)) = 0 ≤ huinf(F (0, 2), F (0, y)) = 2− y
≤ huinf(F (x, 2), F (0, y)) =max{2− y, x},

• huinf(F (0, y), F (0, 2)) = 0 ≤ huinf(F (0, 2), F (0, 2)) = 0 ≤ huinf(F (x, 2), F (0, 2)) =
x,

• husup(F (0, y), F (x, 2)) = −max{2− y, x}
≤ husup(F (0, 2), F (x, 2)) = −x ≤ husup(F (x, 2), F (x, 2)) = 0,

• husup(F (0, y), F (0, 2)) = y − 2
≤ husup(F (0, 2), F (0, 2)) = 0 ≤ husup(F (x, 2), F (0, 2)) = 0.
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Example 4.17 (l&u-type). We set

X = Y = [0, 2], Z = R2, C = {(x, y) | y ≥ 0},

F : X × Y → V±C , F (x, y) = [x,∞)× [y, y + 1], k0 = (1, 1).

We can confirm that F is C-proper, (−C)-proper, C-compact and (−C)-compact
valued function and F satisfies assumptions of Theorem 4.14. Then we see that
(x̄, ȳ) = (0, 2) is a weak (l&u)-C-saddle point. Moreover, for any x, y ∈ [0, 2] we
have the following inequalities.

• 0 = hl&u
inf (F (0, y), F (0, y)) ≤ hl&u

inf (F (0, 2), F (0, y)) = hl&u
inf (F (x, 2), F (0, y))

= 2− y,

• y − 2 = hl&u
inf (F (0, y), F (0, 2)) ≤ hl&u

inf (F (0, 2), F (0, 2)) = hl&u
inf (F (x, 2), F (0, 2)) = 0,

• y − 2 = hl&u
sup (F (0, y), F (x, 2)) ≤ hl&u

sup (F (0, 2), F (x, 2))

= hl&u
sup (F (x, 2), F (x, 2)) = 0,

• y − 2 = hl&u
sup (F (0, y), F (0, 2)) ≤ hl&u

sup (F (0, 2), F (0, 2))

= hl&u
sup (F (x, 2), F (0, 2)) = 0.

Let S ⊂ V. By proposition 2.6, we have the following inclusions:

(l&u)-wMin(S; intC) ⊂ l-wMin(S; intC),

(l&u)-wMin(S; intC) ⊂ u-wMin(S; intC),

(l&u)-wMax(S; intC) ⊂ l-wMax(S; intC),

(l&u)-wMax(S; intC) ⊂ u-wMax(S; intC).

We consider the following lu-C-saddle point and ul-C-saddle point problem:

(lu-P): F (x̄, ȳ) ∈ l-wMax(F (x̄, Y ); intC) ∩ u-wMin(F (X, ȳ); intC),
(ul-P): F (x̄, ȳ) ∈ u-wMax(F (x̄, Y ); intC) ∩ l-wMin(F (X, ȳ); intC).

By using the above facts, we obtain the following corollary.

Corollary 4.18 (Existence of weak lu and ul-C-saddle point). We assume the
assumptions of Theorem 4.14. Then F has at least one weak lu-C-saddle point
and weak ul-C-saddle point (of course, weak l-C-saddle point and weak u-C-saddle
point).

5. Conclusions

In this paper, first we corrected some errors of the properties of the six types of
scalarizing functions for sets [2]. Then we relaxed the compactness condition of the
result in [12].
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Next, we presented three types of existence theorems of cone saddle-point for
set-valued map which are natural extensions of Sion’s minimax theorem [33] and
vector-valued C-saddle point theorem.

(I) In proposition 4.7 and definition 4.10, we also investigated relationships among
several concepts of cone-quasi convexity and cone continuity. Especially, we have
found that l-type set relation is strong connection with u-type one.

(II) In vector-valued saddle point problem, compactness assumptions of image of
f is not needed to obtain the existence of cone saddle-points (see also [20] and [35]).

On the other hand, in set-valued saddle point problem, we need additional con-
ditions on F to show sufficiency of existence of cone saddle-points.

• F : C-proper & C-compact valued map =⇒ existence of weak l-C-saddle
point

• F : (−C)-proper & (−C)-compact valued map
=⇒ existence of weak u-C-saddle point

• F : C-proper & (−C)-proper & C-compact & (−C)-compact valued map
=⇒ existence of weak l&u-C-saddle point

(III) In the proof of existence theorems for set-valued map (Theorem 4.12, 4.13,
4.14), we used two types of nonlinear scalarizing techniques. The previous part of
the proof is an inf-type scalarizing technique and the latter part is a sup-type one.

Recently in [16], they revealed strong connections between set optimization prob-
lem and uncertain multi-objective optimization problem. Moreover, they clarified
that finding robust solutions to uncertain multi-objective optimization problem can
be interpreted as an application to set optimization problem. Thus, we expect our
results to apply robust game theory and it will be one of the most important subject
of game theory.
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