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adjacency matrices. In our previous paper [10], using the sequences of the pseu-
dorandom numbers given by the generator, proposed in [11], we construct some
pseudorandom adjacency matrices with their graphs and we numerically investi-
gate these graphs by calculating the eigenvalue distributions whether they have the
properties of the Ramanujan graph. In this paper, since the regular Ramanujan
graph satisfies the graph Riemann Hypothesis, we numerically investigate our pseu-
dorandom nonregular graphs by calculating the distributions of poles of the Ihara
zeta functions, which are obtained by substituting our pseudorandom adjacency
matrices into the Ihara determinant formula.

Our plan of this paper is as follows. In section 2 we introduce the notations of
the graph theory and the properties of regular Ramanujan graphs. In section 3 we
give the definition of the Ihara zeta function and the equivalence relation between
the Ramanujan graph and the graph Riemann Hypothesis. In section 4 we give
the construction method for the pseudorandom graphs given by our pseudorandom
number generator. In section 5 and 6 we show the numerical results, the distribu-
tion of the eigenvalues which specifies the almost Ramanujan properties, and the
distribution of poles of the Ihara zeta functions, which also shows the properties of
the almost Ramanujan graphs corresponding to the graph Riemann Hypothesis.

2. Regular Ramanujan graph

Let X = (V,E) be a graph where V = {v1, v2, ..., vn} is the set of vertices and
E is the set of edges. Let aij be the number of edges joining vi to vj , then the
adjacency matrix of the graph X is given by A = (aij). We assume that (i) X is
simple; there is at most one edge joining adjacent vertices, aij ∈ {0, 1} for every
i, j, (ii) X has no loops; aii = 0 for every vi ∈ V and (iii) X is undirected; A is a
n× n symmetric matrix.

Let k ≥ 2 be an integer and the graph X be k-regular, that is, for every vi ∈ V ,∑
vj∈V

aij = k.

Since A is an n-by-n symmetric matrix, it had n real eigenvalues, counting mul-
tiplicities,

µ0 ≥ µ1 ≥ · · · ≥ µn−1.

The following proposition is easily obtained (cf. [3]).

Proposition 2.1. Let X be a finite connected k-regular graph with n vertices. Then

• µ0 = k;
• |µi| ≤ k, 1 ≤ i ≤ n− 1.

For a graph X = (V,E) and F ⊂ V , define the boundary ∂F of F by the set
of edges with one extremity in F and the other in V − F , that is, ∂F is the set of
edges connecting F to V − F .
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Definition 2.2. The expanding constant h(X) of the graph X is defined by

h(X) = inf{ |∂F |
min{|F |, |V − F |}

: F ⊂ V, 0 < |F | < +∞}.

For the relation between the nontrivial eigenvalue µ ̸= k and the expanding
constant h(X) Dodziuk has shown the following estimates.

Proposition 2.3 ([4]). Let X = (V,E) be a finite, connected, k-regular simple
graph. Let µ1 be the first nontrivial eigenvalue of X. Then

k − µ1

2
≤ h(X) ≤

√
2k(k − µ1).

Let {Xm} be a family of finite, connected, k-regular graphs with |Vm| → +∞ as
m → +∞.

{Xm} is called a family of expanders if there exists a constant ε > 0 such that

h(Xm) ≥ ε, ∀m ≥ 1.

It follows from Proposition 2.3 that we can easily obtain an equivalent condition
for the existence of a family of expanders.

Corollary 2.4. Let {Xm} be a family of finite, connected, k-regular simple graphs
with |Vm| → ∞ as m → ∞. Then, {Xm} is a family of expanders if and only if
there exists a constant ε > 0 such that

k − µ1(Xm) ≥ ε, ∀m ≥ 1.

For the asymptotic behaviors of these eigenvalues the following Alon-Boppana
theorem is well known.

Theorem 2.5 ([1]). Let {Xm} be a family of finite, connected, k-regular simple
graphs with |Vm| → +∞ as m → +∞. Then,

lim inf
m→+∞

µ1(Xm) ≥ 2
√
k − 1.

Here we give the definition of Ramanujan graph.

Definition 2.6. A finite, connected k-regular graph X is a Ramanujan graph if for
every nontrivial eigenvalue µ(̸= ±k) of X,

|µ| ≤ 2
√
k − 1.

Since an expander constant of a regular graph is greater than or equal to (k −
µ1)/2, making µ1 as small as possible gives us good expander graphs. However, by
the Alon-Boppana theorem, we cannot do better than

lim inf
m→+∞

µ1(Xm) ≥ 2
√
k − 1.

Hence, Ramanujan graphs make good expanders.
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3. Ihara zeta function

For a graph X = (V,E) and a path C = a1a2 · · · as where aj is an oirented edge

of X, we say that it has a backtrack if aj+1 = a−1
j for some j = 1, ..., s − 1 and a

tail if as = a−1
1 . The length of C is s = ν(C) and C is called a closed path or cycle

if the starting vertex is the same as the terminal vertex.
The closed path C = a1 · · · as is called a primitive or prime path if it has no

backtrack or tail and C ̸= Dn, n ≥ 2. For the closed path C = a1 · · · as, the
equivalence class [C] is the following set

[C] = {a1 · · · as, a2 · · · asa1, ..., asa1 · · · as−1}.

A prime in the graph X is an equivalent class [C] of prime paths. The length of the
path C is denoted by ν(C) = s.

Definition 3.1. The Ihara zeta function for a finite connected graph without 1-
degree vertices is defined to be the following function o the complex number u, with
|u| sufficiently small,

ζX(u) =
∏
[P ]

(1− uν(P ))−1

where the product is over all the primes [P ] in X.

Definition 3.2. The radius of the largest circle o f convergence of ζX(u) is denoted
by RX .

When X is a (q + 1)-regular graph, RX = 1/q.

Definition 3.3. Let X be a connected (q+1)-regular graph. We say that the Ihara
zeta function ζX(q−s) satisfies the Riemann Hypothesis iff, when 0 < Re s < 1,

ζX(q−s)−1 = 0 ⇒ Re s =
1

2
.

If u = q−s, Re s = 1
2 means that |u| = 1/

√
q.

The following theorem shows the deep and significant relation between the Ra-
manujan graph and the number theory (cf. [14]).

Theorem 3.4. For a connected (q+1)-regular graph X, ζX(u) satisfies the Riemann
Hypothesis if and only if the graph X is Ramanujan.

4. Pseudorandom number generator

In this section we construct the adjacency matrices of nonregular Ramanujan
graphs, using the pseudorandom number generator given in [11] and following the
method in [10].
(1): Choose a seed, a p-adic integer number, ξ ∈ Zp.
(2): For an integer n ∼ 100,construct a sequence {ξk}nk=1, by a p-adic logistic map
lp, defined by

lp(x) =
xp − x

p
for x ∈ Zp,
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ξ1 = ξ, ξ2 = lp(ξ1), ..., ξn = lp(ξn−1)

(see [12]). In [11] we have taken their modulo p: ξk,p = ξk (mod p) and we have
shown the randomness of the sequence by RMT test (cf. [13]).
(3): For an integerm ∼ 10, a precision order, we calculate the approximate sequence
{ξk,m} of {ξk}, given by

ξk,m =

m−1∑
j=0

ajp
j ∈ Z, k = 1, ..., n

where each ξk has a p-adic expansion

ξk =

∞∑
j=0

ajp
j ∈ Zp, aj ∈ {0, 1, ..., p− 1}

(4): Construct the following knapsack type matrices Am given by

Am =


pm 0 0 . . . 0
ξ1,m 1 0 . . . 0
ξ2,m 0 1 . . . 0
...

...
...

. . .
...

ξn−1,m 0 0 . . . 1

 ,

The matrix Am generates a lattice and it is known that, if the sequences {ξk,m}
are random, their lattices are randomly distributed in the set of lattices, the deter-
minants of which have the same value pm (see [6]).
(5): We apply the LLL reduction algorithm to the matrix Am. Then we have
reduced matrices Bm with small integer elements.
(6): By connecting each rows of Bm, we have the sequence Pl of pseudorandom
numbers with its length (n+ 1)2 ∼ 10000.

Furthermore, from this reduced matrix Bm we construct the adjacency matrix
for the nonregular Ramanujan graph.
(7): Take the absolute values of elements of Bm.
(8): Construct an upper triangle matrix Su of Bm, which has the upper triangle
part of Bm with 0 diagonal elements.
(9): Calculate T = Su +tSu.

When the graph given by the adjacency matrix is not simple, we apply the fol-
lowing sage commands, “.remove loops” and “.remove multiple edges” and then we
have the simple graph without loops and mutiple edges.

Here we show some results of numerical experiments given by the seed: p =

17, n = 49, m = 7, ξ = 13
1

103 ∈ Zp.

Am =



410338673 0 0 0 0 · · · 0 0 0 0 0
43730889 1 0 0 0 · · · 0 0 0 0 0

234660880 0 1 0 0 · · · 0 0 0 0 0

.

.

.
. . .

.

.

.
63551984 0 0 0 0 · · · 0 0 0 1 0
68674355 0 0 0 0 · · · 0 0 0 0 1


(50 × 50)
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−→ LLL reduction algorithm −→

Bm =



0 0 0 −1 0 0 0 1 0 0 −1 · · ·
0 0 −1 0 0 −1 0 0 0 −1 0 · · ·

−1 0 −1 0 0 −1 0 0 0 0 0 · · ·
.
.
.

.

.

.
.
.
.

1 −1 0 1 0 1 0 0 0 0 0 · · ·
0 0 0 −1 1 0 1 0 0 1 0 · · ·
0 0 0 0 −1 0 0 1 0 −1 0 · · ·


(50 × 50)

−→ construction of adjacency matrix −→

Tadj =



0 1 0 1 0 0 0 1 0 · · · 1 1 0 0
1 0 0 0 0 0 0 1 0 · · · 0 0 0 0
0 0 0 0 0 1 0 1 0 · · · 1 1 1 0

.

.

.
.
.
.

.

.

.
.
.
.

1 0 1 0 1 0 0 0 0 · · · 0 0 1 1
0 0 1 1 0 1 0 0 1 · · · 0 1 0 0
0 0 0 1 0 0 1 0 1 · · · 0 1 0 0


(50 × 50).

5. almost Ramanujan graph

In the previous section we construct the adjacency matrix for the nonregular
Ramanujan graph, using the reduced matrix Bm. Following our previous paper
([10]), we define the various type of ‘almost’ Ramanujan graphs by using the upper
bounds of ‘nontrivial’ eigenvalues of their adjacency matrices. Correponding to the
regular graph case, here in the nonregular case the trivial eigenvalue is the one
which has the largest absolute value.

We say that a non-regular graph X is a naive Ramanujan graph if

|µ| ≤ 2
√

σX − 1

for every nontrivial eigenvalue µ : |µ| ≨ σX where σX is the largest absolute value
of eigenvalues of the adjacency matrix A,

σX = max{|µ| : µ ∈ SpectrumA}.

The degree of a vertex vi in the graph X is the number of edges joining vi,∑
vj∈V

aij , ai,j ∈ {0, 1}.

Let dX be the average degree of the vertices of X. We say that a non-regular graph
X is a weak Ramanujan graph if

|µ| ≤ 2

√
dX − 1

for every nontrivial eigenvalue µ : |µ| ≨ σX .
In our numerical experiments, using the maximal degree DX , we say that a non-

regular graph X is a mild Ramanujan graph if the following inequality hold

|µ| ≤ 2
√
DX − 1

for every nontrivial eigenvalue µ : |µ| ≨ σX .
In the histograms showing the distributions of the eigenvalues we plot these upper

bound values colored as follows:
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2
√
DX − 1: mild Ramanujan bounds (green diamond marker)

> 2
√
σX − 1: naive Ramanujan bounds (red diamond marker)

> 2
√
dX − 1: weak Ramanujan bounds (blue diamond marker).

Next we calculate the eigenvalues and plot the histograms of their distributions
(Fig. 2, Fig. 4, Fig. 6. We can see that all absolute values of nontrivial eigenvalues
are smaller than the upper bound of each almost Ramanujan bound.
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6. Weak graph Riemann hypothesis

In Section 3 for the regular graph case we see that the poles of the Ihara zeta
function ζX(u), u = q−s = Rs

X , satisfies Graph Riemann Hypothesis, that is,
they are just on the circle |u| =

√
RX , Re s = 1/2, when 0 < Re s < 1. In this

section we numerically calculate the distribution of poles of ζX(u) for our nonregular
pseudorandom graphs, using the determinant formula given by Bass in [2]. We use
the same notations and the definitions as those in Section 2, but here we consider
the nonregular graphs.

Theorem 6.1 ([2]). Let A be the adjacency matrix of X and Q the diagonal matrix
with jth diagonal entry qj such that qj+1 is the degree of the jth vertex of X. Then
we have the Ihara three-term determinant formula

ζX(u)−1 = (1− u2)r−1 det(I −Au+Qu2)

where r is the rank of th fundamental group of X; r − 1 = |E| − |V |.

Following the results obtained by Kotani and Sunagawa in [7] on nonregular
graphs, we investigate the ‘weak Graph Riemann Hypothesis’.

Theorem 6.2 ([7]). Suppose that a graph X has vertices with maximum degree
q + 1 and minimum degree p+ 1. Then

(1) Every pole of ζX(u) satisfies RX ≤ |u| ≤ 1 and

(6.1) q−1 ≤ RX ≤ p−1.

(2) Every non-real pole of ζX(u) satisfies the inequality

(6.2)
1
√
q
≤ |u| ≤ 1

√
p
.

We use the same cases where the vertices numbers are n = 30, 50, 70 and the same
numerical parameters as those in the previous section. Here we use the floating-
point complex numbers with 120 bits precision.

In [14] Terras defined the graph theory Riemann Hypothesis by the following pole
free region of ζX(u),

RX < |u| <
√

RX .

and the weak graph theory Riemann Hypothesis by the following pole free region
of ζX(u),

RX < |u| < 1
√
q
.

We plot the four circles colored by green, purple, red and blue as follows.

• The green circle is |u| = RX .
• T The purple circle is |u| = 1/

√
q.

• T The red circle is |u| =
√
RX .

• T The blue circle is |u| = 1/
√
p.
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The following inequalities

RX <
1
√
q
<

√
RX <

1
√
p

hold.

For the random graphs obtained by using the sage command“graphs.RandomGNM”
or “graphs.RandomGNP” we can see that these random graphs have the almost
same distributions of poles as those of our pseudorandom graphs. Here we use the
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command “graphs.RandomGNM”, giving the same numbers of vertices and edges
as those in our pseudorandom cases. We can compare the pseudorandom graph to
the random graph in each case, n=30, 50, 70.

Remark 6.3. The poles of the zeta functions in the three cases n = 30, 50, 70
satisfy the weak GRH and approximately satisfy the GRH. It seems that the larger
the degrees of the polynomials given by the determinant formula become, the more
these poles be spreading apart from the red circle with its radius

√
RX , which shows

the Riemann Hypothesis. The inequalities (6.2) are satisfied in all cases.
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